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Abstract. Self-Organizing Maps, or Kohonen networks, are a widely used 
neural network architecture. This paper starts with a brief overview of how self-
organizing maps can be used in different types of problems. A simple and 
intuitive explanation of how a self-organizing map is trained is provided, 
together with a formal explanation of the algorithm, and some of the more 
important parameters are discussed. Finally an overview of different 
applications of SOMs in maritime problems is presented. 
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1   Introduction 

Although the term “Self-Organizing Map” has been used to designate a number of 
different entities, it generally refers to Kohonen’s Self Organizing Map [1], or SOM 
for short. These maps are also referred to as “Kohonen Neural Networks”[2], 
“Topological Neural Networks”[3], “Self-organizing Feature Maps-SOFM”, or 
“Topology preserving feature maps” [1], or some variant of these names. 

Professor Kohonen worked on auto-associative memory during the 70’s and early 
80’s, and presented his self-organizing map algorithm in 1982 [4]. However, it was 
not until the publication of the second edition of his book “Self-Organization and 
Associative Memory” in 1988 [5], and his paper named “The Neural Phonetic 
Typewriter” on IEEE Computer [5] that his work became widely known.  Since then 
there have been many excellent papers and books on SOM, but his 2001 book [1]is 
generally regarded as the main reference on the subject. This book has had very 
flattering reviews, presenting a thorough covering of the mathematical background for 
SOM, it’s physiological interpretation, the basic SOM, developments and 
applications. 

 



Although Professor Kohonen has retired, his research group maintains a very good 
web-site at Helsinki’s Technical University at “http://www.cis.hut.fi/research”. That 
site contains public domain software, various manuals, papers, technical reports, and a 
very thorough and searchable list of papers dealing with SOM (available at 
“http://www.cis.hut.fi/research/som-bibl” and containing a total of 7718 references in 
December 2008). The som_pak programs, that are available with source code, and the 
Somtoolbox for Matlab are of particular interest to anyone wanting to experiment 
with SOM. We strongly recommend a visit to these sites. 

Kohonen himself describes SOM as a “visualization and analysis tool for high 
dimensional data”. These are indeed the two most attractive characteristics of  SOM, 
but, as we shall see,  it can be used many other applications. 

1.1 - What can a SOM do? 

Despite de simplicity of the SOM algorithm, it can and has been used to perform 
many different tasks, the most common of which are: 

 
1. Clustering (k-means type clustering) – This is probably the most common 

application of SOM, albeit probably not the best.  In this context, the SOM is 
used as an alternative to k-means clustering [6-8], i.e., given a fixed number k of 
clusters, the SOM will partition the available data into k different groups. As an 
example, we may want to divide customers into 4 different groups according to 
their characteristics, for marketing purposes. The main advantage of o SOM in 
this case is that it is less prone to local minima than the traditional k-means 
clustering algorithm, and thus can act as a good initialization algorithm for that 
method. In fact, it can substitute k-means altogether, for as noted in [9], the final 
stages of the SOM training algorithm are exactly the same as the k-means 
algorithm. An extra bonus of the SOM algorithm is that the clusters obtained are 
topologically ordered, i.e., similar clusters are (usually) grouped together. 

 
2. Exploratory data analysis and visualization – This is, arguably, the most 

important application of SOM. In this case, the SOM is used as a non-linear 
projection algorithm, mapping n-dimensional data onto a 1 or 2 dimensional 
grid. The SOM can thus be an alternative to PCA projections, Principal curves, 
or Multi-dimensional Scaling (MDS) algorithms such as Sammon Mappings 
[10]. Different projection algorithms perform different trade-offs when mapping 
from high to low dimension, since in all but the most trivial cases some 
information will be lost. The main advantage of projecting multidimensional 
data onto 1 or 2 dimensions is that we can easily visualize the data in these 
dimensions. From this visualization we can identify outliers (data points that are 
far from other data), identify data that is similar to a given reference, or 
generally compare different data. If we project data onto 1 dimension, we may 
then plot histograms, and thus identify “natural” clusters of data. A similar 
result may be obtained with a technique closely related to SOM called U-Matrix 
[11] that can be extended to visualize what can loosely be interpreted as a 2-
dimensional histogram. 



 
3. Ordering of multidimensional data – This type of application makes use of the 

topological ordering of the SOM to organize a given set of data vectors 
according to some criteria. As an example, a 1-dimensional SOM can be used to 
solve the well-known travelling salesman or related problems [12]. Another 
interesting use of this ordering capacity of a SOM is to create colour palettes 
from pictures. 

 
4. Supervised data classification – The SOM is not meant to be a classifier, and a 

related technique called LVQ-Linear Vector Quantization [1] is best suited for 
this task. However, just like the centroids obtained by a k-means algorithm, a 
SOM may also be used supervised classification by labeling the neurons (or 
units) with the classes of the data that are mapped to it. 

 
5. Sampling – The units of a SOM have a probability distribution that is a function 

of the probability distribution of the data used for training. Generally, the SOM 
will over represent regions of the input space that have a low density, but that is 
many times an advantage since it helps detect outliers and novel data patterns.  

 
6. Feature extraction – Since the SOM performs a mapping from a high-

dimensional space to a low dimensional one, it may be used for feature 
extraction. In the simpler case, the new features are simply the coordinates of 
the mapped data point. This is one of the few cases where SOMs with a 
dimension greater than 2 are easy to use. 

 
7. Control and/or data sensitive processing – A SOM can be used to select, based 

on available data, the best model, controller, or data processor for a given 
situation. The main idea behind this type of application is that instead of 
designing a rather complex controller, multiple simple controllers may be used, 
each one tuned to a particular type of situation. During the training of the SOM 
the input data is partitioned into various Voronoi regions, and each of these is 
used to train or define the parameters of a different controller. 

 
8. Data interpolation – When using the SOM to interpolate data, the output space 

of the SOM will have the same dimension as the input space, but since the units 
are ordered on a regular grid, that grid provides a locally linear interpolator for 
the data. 

 
Beyond these more typical applications of SOM, there have been many others, and 

a complete list is not practical or indeed interesting. An example of an unexpected 
application is the use of SOM to draw cartograms [13]. 



2   Basic Principles 

A SOM is single layer neural network. The name neural network, or more correctly 
artificial neural network, is due to the historical fact that they were originally inspired 
by the way biological neurons where believed to work. Although this analogy is, 
generally speaking, still valid, developments in artificial neural networks and in our 
knowledge of how biological neurons actually work, have let many researchers to 
refer to the basic computing units of artificial neural networks not as “neurons”, but as 
“units”. In this paper, to stress the difference between the mathematical model of a 
biological neuron and our computational units, we will follow the more recent 
conventions, and refer to them simply as “units”. 

There are also many terms used to designate the data that is used to train the 
network, or later to use it. In this paper we will follow the term most used in the 
pattern recognition community, which is simply “pattern” or “data pattern”. Different 
communities will call it “sample”, “instance”, “point”, or “entity”. 

In a SOM, the units are set along an n-dimensional grid. In most applications this 
grid is 2-dimensional and rectangular, though many applications use hexagonal grids, 
and 1, 3, or more dimensional spaces. In this grid we can define neighborhoods in 
what we call the output space, as opposed to the input space of the data patterns. 
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Fig. 1 - Basic SOM architecture. On the bottom, the input patterns are shown as a 4 
dimensional vector (left) or 3 dimensional point (right). The units are also points in this input 
space. On the top, the grid of units is shown (left) together with a U-matrix coloring of a SOM. 
 

Each unit, being an input layer unit, has as many weights or coefficients as the 
input patterns, and can thus be regarded as a vector in the same space as the patterns. 
When we train or use a SOM with a given input pattern, we calculate the distance 
between that pattern and every unit in the network. We then select the unit that is 
closest as the winning unit (or Best Matching Unit – BMU), and say that the pattern is 
mapped onto that unit. If the SOM has been trained successfully, then patterns that are 
close in the input space will be mapped to units that are close (or the same) in the 
output space and, hopefully, vice-versa. Thus, SOM is “topology preserving” in the 
sense that (as far as possible) neighborhoods are preserved through the mapping 
process.  

Generally, no matter how much we train the network, there will always be some 
difference between any given input pattern and the unit it is mapped to. This is a 
situation identical to vector quantization, where there is some difference between a 
pattern and its code-book vector representation. This difference is called quantization 
error, and is used as a measure of how well map units represent the input patterns. 



We can look at a SOM as a “rubber surface” that is stretched and bent all over the 
input space, so as to be close to all the training points in that space. In this sense, a 
SOM is similar to the input layer of a Radial Basis Function neural network (e.g. 
[14]), a neural gas model [15], or a k-means algorithm. The big difference is that 
while in these methods there is no notion of “output space” neighborhood (all units 
are “independent” from each other), in a SOM the units are “tied together” in the 
output space. It thus imposes an ordering of the units that is not present in the other 
methods. These ties are equivalent to a strong lateral feedback, common in other 
competitive learning algorithms. 

 Let us imagine a very simple example, where we have 4 clusters of 3 dimensional 
training patterns, centered at four of the vertices of the unit cubre:  (0,0,0), (0,0,1), 
(1,1,0), and (1,1,1). If we trained a 2 dimensional, 4 node map, we would expect to 
obtain units centered at those vertices. If we use a larger map, with 16 nodes, for 
example, we would expect to obtain a map where the units are grouped in clusters of 
4 nodes on each of the vertices (see Fig. 2). 

 

 

      

 

 

 
Fig. 2. Left: a 4 unit 2D SOM clustering some vertices of a 3D unit cube. On the far left we can 
see the units in the input (data) space, and center left in the output (grid) space. Right: a 16 unit 
SOM clustering the same data. 

Before training, the units may be initialized randomly. During the first part of 
training, they are “spread out”, and pulled towards the general area (in the input 
space) where they will stay. This is usually called the unfolding phase of training. 
After this phase, the general shape of the network in the input space is defined, and 
we can then proceed to the fine tuning phase, where we will match the units as far as 
possible to the input patterns, thus decreasing the quantization error. 

To visualize the training process, let us follow a 2-dimensional to 1-dimensional 
mapping presented in [1]. In this problem, 2-dimensional data points are uniformly 
distributed in a triangle, and a 1-dimensional SOM is trained with these patterns. 
Figure 4 represents the evolution of the units in the input space. As training proceeds, 
the line first unfolds (steps 1 to 100), and then fine-tunes itself to cover the input 
space. 

 
Fig. 3 -2D to 1D mapping by a SOM, from [1]. The number of iterations used increases from 
the left to right, from 0 to 25000. 



3 - Description of the training algorithm 

3.1 - The algorithm 

 
Let xk (with k=1 to the number of training patterns N) be the n-dimensional training 
patterns. Let wij be the unit in position (i,j). Let 0 ≤ α ≤ 1 be the learning rate 
(sometimes referred to as η), and h(wij,wmn,r) be the neighborhood function 
(sometimes referred to as Λ or Nc). This neighborhood function has values in [0,1] 
and is high for units that are close in the output space, and small (or 0) for units far 
away. It is usual to select a function that is 1 if wij=wmn , monotonically decreases as 
the distance in the grid between them increases up to a radius r (called neighborhood 
radius) and is zero from there onwards. Let wbmu be the best matching unit for a given 
input pattern. 

The algorithm for training the network is then: 
 

For each input pattern xk: 
1. Calculate the distances between the pattern xk and all units wij: dij = || xk - wij || 
2. Select the nearest unit wij as best matching unit wbmu = wij : dij = min( dmn)  
3. Update each unit wij according to the rule wij = wij + α  h(wbmu,wij,r)  || xk – wij ||  
4. Repeat the process until a certain stopping criterion is met. Usually, the 

stopping criterion is a fixed number of iterations. To guarantee convergence 
and stability of the map, the learning rate α and neighborhood radius r are 
decreased in each iteration, thus converging to zero. 

 
The distance measure between the vectors is usually the Euclidean distance, but 

many others can and are used, such as norm based Minkowski metrics, dot products, 
director cosines, Tanimoto measures, or Hausdorff distances. 

3.2 - Neighborhood functions 

The neighborhood function provides a bond between a unit and its neighbors, and is 
responsible for the topological ordering of the map. In fact, without this neighborhood 
function (or when it’s radius is zero), the SOM training algorithm is exactly the same 
as the incremental k-means algorithm [6]. The two most common neighborhood 
functions are the Gaussian and the square (or bubble) functions: 

 

2
22 )()(

2
1

),,(
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −+−
−

=
r

mjni

mnijg erwwh     
 

⎪⎩

⎪
⎨
⎧

>−+−⇐

≤−+−⇐
=

rmjni
rmjnirwwh mnijs 22

22

)()(0
)()(1),,(   

 



In both cases, r decreases to 0 or 1 during training. If r→ 0 the final quantization 
error will be minimized, but the topological ordering may be lost, since the algorithm 
is performing a k-means clustering. On the other hand, forcing r→ 1 will preserve the 
ordering of the units, but the quantization error will not be minimized. Moreover, in 
this case there will be a boarder effect, by which units close to the border will be 
dragged to the center, and present higher quantization errors. 

 
The algorithm is surprisingly robust to changes in the neighborhood function, and 

our experience is that it will usually converge to approximately the same final map, 
whatever our choice, providing the radius and learning rate decrease to 0. The 
Gaussian neighborhood tends to be more reliable (different initializations tend to 
converge to the same map), while the bubble neighborhood leads to smaller 
quantization errors, and is computationally much faster. A theoretic discussion of the 
effect of neighborhood functions (although only for the 1-dimensional case) can be 
found in [17], and a less rigorous but more general one in [18]. 

3.3 – Other parameters and training options 

As mentioned before, training is usually done in two phases: the unfolding phase, and 
the fine-tuning phase. The algorithm is exactly the same in both cases, but while in 
the first phase the neighborhood radius and learning rate have rather high values (to 
allow for a general orientation of the map),  in the second phase they will have 
smaller values, to perform only fine adjustments on the unit’s positions. As a rule of 
thumb, the initial radius for the first phase should be roughly the length of the smaller 
side of the map, while for the second it should be the radius of the expected size of 
clusters in the output space. 

The size of the map will depend a lot on the particular problem at hand and on the 
data available. If the SOM is to be used as alternative to k-means, one unit per desired 
cluster should be used. For that type of application, a 1-dimensional SOM will usually 
provide the best results [9]. For exploratory data analysis, a larger map should be 
used. These are sometimes called Emergent-SOM or ESOM [19]. Depending on the 
amount and variability of available data, a rule of thumb could be to use one unit for 
each 4 to 20 or more data patterns, but in some cases one might use more units than 
data patterns (to obtain very clear cut U-Matrices). 

3.4 – U-Matrices 

U-Matrices where introduced by Ultsch [11], and are one of the most popular and 
useful ways of visualizing clusters with a SOM. A U-Matrix is obtained by computing 
the distance in the input space of units that are neighbors in the output space. If these 
differences are small, it means that the units are close together, and thus there is a 
cluster of similar data in that region of the input space. On the other hand, if the 
distances are large, the units are far apart, and there isn’t much data in that region of 
the input space. The U-Matrix can thus be seen as a sort of extension of an inverted 
histogram for multidimensional data projected on a lower dimensional space: low 



values indicate large concentrations of data, and high values indicate sparse regions. 
U-Matrices are usually presented as color-coded maps: white regions indicate low 
values (and thus clusters), while dark regions indicate separations between clusters. 

4 - SOM variants 

Many different variants of the basic SOM algorithm have been proposed, and a 
complete review of these is beyond the scope of this paper. Some reviews of these 
variants have been published [20, 21], and we will overview some of them to show 
how the basic algorithm can be adapted to different problems. 

The original SOM algorithm and most of its variants deal with vector data only. 
Some variants for non-vector data have also been proposed namely the Dissimilarity 
SOM [22], the Kohonen Multiple Correspondence Analysis and the Kohonen 
algorithm on Disjuctive Table [23]. For the simpler case of binary valued data, both 
the original algorithm using 0 and 1 as real numbers, and binary variants of SOM 
produce good results [24, 25]. 

SOMs have frequently been used to analyze temporal data, such as EEG or Stock 
Exchange data. In most cases time can be imbedded into the data vector, and a 
standard SOM algorithm is used, treating that vector as a simple input pattern. More 
interesting uses of SOM have been made by changing the learning rule or by 
changing the topology or structure of the network so as to explicitly take time into 
consideration. In the former case, the learning rule may, for example, consider only 
the neighbors of the last BMU as candidates for the next input pattern, or separate the 
time variable from the rest when computing the similarity. As for changes in topology 
and structure, some approaches use hierarchical SOMs with different time frames, or 
include time delay memories in the units. A review of the different ways in which this 
has been done, together with a proposal for a taxonomy of temporal SOMs is 
available in [26]. 

Geographical information science problems also have a special variable (special 
location) that should, like time, be treated in a different way. To this end a variant 
called GeoSOM has also been developed [21, 27, 28].  

Hierarchical SOMs [29, 30] combine several SOMs to process data a low level, 
and then use their outputs as inputs to a high level SOM that fuses the results. 

In some applications, the notion of output grid is substituted by a more general 
graph, such as happens in the Minimum Spanning Tree SOM [20], Tree-Structured 
SOM [29], or Growing Cells [31, 32]. The links and concept of output space may 
even disappear, as happens in the Neural Gas model [15, 33, 34]. 

Another important type of variants on the basic SOM algorithm are those that try 
and overcome the theoretical obstacles raised by the fact that the SOM does not 
minimize a global energy function. One solution is to change the learning rule 
slightly, as was done in [35]. Another solution is to use a variation of Gaussian 
Mixture Models to derive a topologically ordered map, as is done with the Generative 
Topographic Mapping [36]. However, despite the theoretical soundness of these 
methods, they do not provide significantly better results and are computationally more 
complex than the original algorithm. 



5 - Applications in maritime environment 

Given the wide range of capabilities of the SOM there have been many 
applications of this technique on maritime problems.  

SOMs have been used quite frequently to cluster and classify satellite images [3, 
37-41]. In most cases, the SOM is basically used as a classifier, and each pixel of the 
satellite image forms a data pattern. When analyzing satellite images, the ground truth 
(i.e., the real class of a given pixel) is usually established by an expert, and is rather 
slow, expensive, and prone to errors. Therefore not many classified pixels are 
available.  One advantage of the SOM in this case is that it may be trained with all the 
data, including non-classified pixels, and then labeled with only the classified ones. 
This labeling may then be extended to other units that belong to the same cluster, 
improving the classification capabilities of the system. Very similar approaches have 
been made with data that combines satellite images with other data [42], data obtained 
by radars [43], data obtained by meteorological stations [44], airborne lasers [45], or 
even data obtained by simulators. The common factor in all these cases is that a 2-
dimensional map with pixels that are multidimensional vectors is presented to a SOM 
for clustering and classification. Let us see one of these with a little more detail, and 
then overview the problems where these approaches were successfully applied.  

One application of SOM to satellite images, that concerns reflectance spectra of 
ocean waters, is presented in [3]. In this case, a 20x20 unit probabilistic SOM (or 
more precisely PSOM) is trained with 43000 6-dimensional vectors. Each of these 
corresponds to sampled pixels of a satellite image with 5 pre-processed frequency 
bands, and an extra value corresponding to the spatial standard deviation of one of 
those measurements. A human expert will then label some of the pixels, and these are 
used to label the SOM units, either directly or indirectly after these are clustered with 
a hierarchical clustering algorithm. The authors point out that the method used 
provides a good overall classification of the data, in part due to the fact that that the 
probabilistic nature of PSOM allows for a confidence level to be assigned to each 
classification. The PSOM is also considered useful by showing that a lot of resources 
are dedicated to separating clouds from other pixels, thus leading to the suggestion 
that the images be pre-processed to remove these clouds. The author’s main interest is 
in the characterization of Sahara dust, clouds, and other aerosols present over the 
ocean, and they do not go into great detail on the parameterization of the PSOM. It 
could be argued that a non-square map would lead to a better stabilization of the 
training process, and that the use of a U-Matrix would help define larger clusters 
(instead of using hierarchical clustering), but the authors did not follow that path.  

The SOM has been used in a similar way (i.e. for clustering and classifying data 
contained in 2-dimensional maps or images), in many applications of environmental 
science, climatology, geology, and oceanography. These include analyzing sea 
surface temperature [46-49], plankton [50, 51], ocean current patterns [43, 52], 
estuary and basin dynamics [53], sediment structure [54], atmospheric pressure [55, 
56], wind patterns [39], storm systems [41], the El Niño weather conditions [42], 
clouds [57], ice [53, 58, 59], rainfall [44, 60, 61], oil spills [45], the influence of 
ocean conditions in droughts [62], and the relationship between sardine abundance 
and upwelling phenomena [40]. 



Data concerning fisheries was analyzed in different perspectives using a SOM in 
[63]. The use of SOM in this case clearly shows the existence of well defined changes 
in fisheries along time, and relationships between different species. 

A more creative use of SOM in shown in [64], where the SOM is used to segment 
maps of the seafloor obtained with multibeam sonars. The segmented data is then 
classified with specialized classifiers for each segment. The SOM is thus used to pre-
process the data so that multiple simpler or more precise classifiers can be used to 
obtain the desired results. 

Although classical harmonical methods can provide good sea level predictions in 
most cases, those predictions can have rather large errors in basins, estuaries, or 
regions where weather conditions have a large influence. In those cases, SOMs have 
been used to predict sea levels with greater accuracy in [65]. 

Following an approach common in several problems in robotics [66], the SOM has 
been used to control a Underwater Autonomous Vehicle (AUV) [67-69]. The basic 
idea in this type of application is that the SOM receives the sensor inputs, and based 
on that chooses a unit that will provide the guidance for the AUV. The main 
advantage of the SOM in this case is that each of the units has a quite simple control 
law (as opposed to a complicated non-linear controller), and the topological ordering 
of the SOM makes it relatively robust to noise in the inputs. 

With the increase in maritme traffic, the consequences of accidents, and the 
availability of Vessel Traffic Sytems (VTS), the automatic detection of anomalous 
behavious of ships became a pressing problem. This problem was addressed, in [70], 
where track data (heading, speed, etc) from navy exercises was used to train a SOM. 
Clusters where then identified on that SOM, and both suspicious behavior clusters and 
outliers where flagged as potential threats. The same problem was tackled in a similar 
way in [71]. In this case the emphasis in more on visualization of the data, and on 
estimating the probability of a given situation occurring in the dataset. 

Also related with ship trajectories, SOMs have been used to plan patrol trajectories 
of naval vessels in [72]. The approach followed was basically the one used to solve 
the traveling salesman problem with a SOM (e.g. [12]). In this case, the geographical 
locations of “incidents” (accidents and illegal fishing) where used as training patterns, 
and the trajectory obtained tries to maximize the probability of passing in the area 
where there were “incidents” in the past. 

In underwater acoustics SOMs have been used extensively to analyze passive sonar 
recordings [73-76]. Although ship noise or transient recognition is basically a 
supervised task, it is very important to detect novelties, and to relate those novelties 
with known causes. The SOM can provide this by using large maps which will have 
many unlabeled units. Additionally it provides an easy to use and understand interface 
for the operators. 

Also concerning fluids, although not directly applied to the maritime environment, 
an interesting use of SOM is given in [77, 78] for analyzing movement in fluids by 
tracking particles in suspension. The idea is to use successive images of the fluid for 
training a map, and then infer the movement by observing how the units change from 
one step to the next. 



6 - Conclusions 

An introduction to how a Self-Organizing Map (SOM) works and how it can be used 
was presented. Despite its simplicity, the SOM can be used for a wide variety of 
applications. Some of its shortcomings where also pointed out, as well as the main 
issues that must be taken into consideration when using them. 

An overview of applications in the marine environment was given, showing that it 
has successfully been used in many real maritime problems. I believe that its use in 
this field is still at a preliminary stage, and more and more powerful uses will be 
given to SOM. It is many times used simply for k-means type clustering and 
supervised classification. While those types of applications are useful, I think that the 
greatest potential of SOM is its ability do project and visualize multidimensional data. 
Many authors have criticized clustering through visualization as too subjective for 
engineering purposes. I would argue that clustering is intrinsically a subjective 
problem, and that the human eye and judgment are the best tools available for that 
task. The computer algorithms should only present the data in a suitable way, which is 
exactly what a SOM does. I also believe that there is still a lot of potential for using 
SOM in non-linear control and routing or piping problems aboard ships. As SOMs 
become more mainstream, and software for their use becomes more widespread, they 
will probably be used in creative ways in even more problems. 
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