
Application of Self-Organizing Maps to the Maritime
Environment

Victor J.A.S. Lobo1,

1 Portuguese Naval Academy,
Alfeite, 2810-001 Almada, Portugal

vlobo@isegi.unl.pt

Abstract. Self-Organizing Maps, or Kohonen networks, are a widely used
neural network architecture. This paper starts with a brief overview of how self-
organizing maps can be used in different types of problems. A simple and
intuitive explanation of how a self-organizing map is trained is provided,
together with a formal explanation of the algorithm, and some of the more
important parameters are discussed. Finally an overview of different
applications of SOMs in maritime problems is presented.

Keywords: Self-Organizing Maps, SOM, Kohonen Networks.

1 Introduction

Although the term “Self-Organizing Map” has been used to designate a number of
different entities, it generally refers to Kohonen’s Self Organizing Map [1], or SOM
for short. These maps are also referred to as “Kohonen Neural Networks”[2],
“Topological Neural Networks”[3], “Self-organizing Feature Maps-SOFM”, or
“Topology preserving feature maps” [1], or some variant of these names.

Professor Kohonen worked on auto-associative memory during the 70’s and early
80’s, and presented his self-organizing map algorithm in 1982 [4]. However, it was
not until the publication of the second edition of his book “Self-Organization and
Associative Memory” in 1988 [5], and his paper named “The Neural Phonetic
Typewriter” on IEEE Computer [5] that his work became widely known. Since then
there have been many excellent papers and books on SOM, but his 2001 book [1]is
generally regarded as the main reference on the subject. This book has had very
flattering reviews, presenting a thorough covering of the mathematical background for
SOM, it’s physiological interpretation, the basic SOM, developments and
applications.

Although Professor Kohonen has retired, his research group maintains a very good
web-site at Helsinki’s Technical University at “http://www.cis.hut.fi/research”. That
site contains public domain software, various manuals, papers, technical reports, and a
very thorough and searchable list of papers dealing with SOM (available at
“http://www.cis.hut.fi/research/som-bibl” and containing a total of 7718 references in
December 2008). The som_pak programs, that are available with source code, and the
Somtoolbox for Matlab are of particular interest to anyone wanting to experiment
with SOM. We strongly recommend a visit to these sites.

Kohonen himself describes SOM as a “visualization and analysis tool for high
dimensional data”. These are indeed the two most attractive characteristics of SOM,
but, as we shall see, it can be used many other applications.

1.1 - What can a SOM do?

Despite de simplicity of the SOM algorithm, it can and has been used to perform
many different tasks, the most common of which are:

1. Clustering (k-means type clustering) – This is probably the most common

application of SOM, albeit probably not the best. In this context, the SOM is
used as an alternative to k-means clustering [6-8], i.e., given a fixed number k of
clusters, the SOM will partition the available data into k different groups. As an
example, we may want to divide customers into 4 different groups according to
their characteristics, for marketing purposes. The main advantage of o SOM in
this case is that it is less prone to local minima than the traditional k-means
clustering algorithm, and thus can act as a good initialization algorithm for that
method. In fact, it can substitute k-means altogether, for as noted in [9], the final
stages of the SOM training algorithm are exactly the same as the k-means
algorithm. An extra bonus of the SOM algorithm is that the clusters obtained are
topologically ordered, i.e., similar clusters are (usually) grouped together.

2. Exploratory data analysis and visualization – This is, arguably, the most

important application of SOM. In this case, the SOM is used as a non-linear
projection algorithm, mapping n-dimensional data onto a 1 or 2 dimensional
grid. The SOM can thus be an alternative to PCA projections, Principal curves,
or Multi-dimensional Scaling (MDS) algorithms such as Sammon Mappings
[10]. Different projection algorithms perform different trade-offs when mapping
from high to low dimension, since in all but the most trivial cases some
information will be lost. The main advantage of projecting multidimensional
data onto 1 or 2 dimensions is that we can easily visualize the data in these
dimensions. From this visualization we can identify outliers (data points that are
far from other data), identify data that is similar to a given reference, or
generally compare different data. If we project data onto 1 dimension, we may
then plot histograms, and thus identify “natural” clusters of data. A similar
result may be obtained with a technique closely related to SOM called U-Matrix
[11] that can be extended to visualize what can loosely be interpreted as a 2-
dimensional histogram.

3. Ordering of multidimensional data – This type of application makes use of the

topological ordering of the SOM to organize a given set of data vectors
according to some criteria. As an example, a 1-dimensional SOM can be used to
solve the well-known travelling salesman or related problems [12]. Another
interesting use of this ordering capacity of a SOM is to create colour palettes
from pictures.

4. Supervised data classification – The SOM is not meant to be a classifier, and a

related technique called LVQ-Linear Vector Quantization [1] is best suited for
this task. However, just like the centroids obtained by a k-means algorithm, a
SOM may also be used supervised classification by labeling the neurons (or
units) with the classes of the data that are mapped to it.

5. Sampling – The units of a SOM have a probability distribution that is a function

of the probability distribution of the data used for training. Generally, the SOM
will over represent regions of the input space that have a low density, but that is
many times an advantage since it helps detect outliers and novel data patterns.

6. Feature extraction – Since the SOM performs a mapping from a high-

dimensional space to a low dimensional one, it may be used for feature
extraction. In the simpler case, the new features are simply the coordinates of
the mapped data point. This is one of the few cases where SOMs with a
dimension greater than 2 are easy to use.

7. Control and/or data sensitive processing – A SOM can be used to select, based

on available data, the best model, controller, or data processor for a given
situation. The main idea behind this type of application is that instead of
designing a rather complex controller, multiple simple controllers may be used,
each one tuned to a particular type of situation. During the training of the SOM
the input data is partitioned into various Voronoi regions, and each of these is
used to train or define the parameters of a different controller.

8. Data interpolation – When using the SOM to interpolate data, the output space

of the SOM will have the same dimension as the input space, but since the units
are ordered on a regular grid, that grid provides a locally linear interpolator for
the data.

Beyond these more typical applications of SOM, there have been many others, and

a complete list is not practical or indeed interesting. An example of an unexpected
application is the use of SOM to draw cartograms [13].

2 Basic Principles

A SOM is single layer neural network. The name neural network, or more correctly
artificial neural network, is due to the historical fact that they were originally inspired
by the way biological neurons where believed to work. Although this analogy is,
generally speaking, still valid, developments in artificial neural networks and in our
knowledge of how biological neurons actually work, have let many researchers to
refer to the basic computing units of artificial neural networks not as “neurons”, but as
“units”. In this paper, to stress the difference between the mathematical model of a
biological neuron and our computational units, we will follow the more recent
conventions, and refer to them simply as “units”.

There are also many terms used to designate the data that is used to train the
network, or later to use it. In this paper we will follow the term most used in the
pattern recognition community, which is simply “pattern” or “data pattern”. Different
communities will call it “sample”, “instance”, “point”, or “entity”.

In a SOM, the units are set along an n-dimensional grid. In most applications this
grid is 2-dimensional and rectangular, though many applications use hexagonal grids,
and 1, 3, or more dimensional spaces. In this grid we can define neighborhoods in
what we call the output space, as opposed to the input space of the data patterns.

Input space
Input patterns (n-dimensional)

and units

Output space
Grid of SOM units

y

z

x
xn1 xn1 xn3 xn1

xn Input space
Input patterns (n-dimensional)

and units

Output space
Grid of SOM units

y

z

x
xn1 xn1 xn3 xn1

xn

Fig. 1 - Basic SOM architecture. On the bottom, the input patterns are shown as a 4
dimensional vector (left) or 3 dimensional point (right). The units are also points in this input
space. On the top, the grid of units is shown (left) together with a U-matrix coloring of a SOM.

Each unit, being an input layer unit, has as many weights or coefficients as the
input patterns, and can thus be regarded as a vector in the same space as the patterns.
When we train or use a SOM with a given input pattern, we calculate the distance
between that pattern and every unit in the network. We then select the unit that is
closest as the winning unit (or Best Matching Unit – BMU), and say that the pattern is
mapped onto that unit. If the SOM has been trained successfully, then patterns that are
close in the input space will be mapped to units that are close (or the same) in the
output space and, hopefully, vice-versa. Thus, SOM is “topology preserving” in the
sense that (as far as possible) neighborhoods are preserved through the mapping
process.

Generally, no matter how much we train the network, there will always be some
difference between any given input pattern and the unit it is mapped to. This is a
situation identical to vector quantization, where there is some difference between a
pattern and its code-book vector representation. This difference is called quantization
error, and is used as a measure of how well map units represent the input patterns.

We can look at a SOM as a “rubber surface” that is stretched and bent all over the
input space, so as to be close to all the training points in that space. In this sense, a
SOM is similar to the input layer of a Radial Basis Function neural network (e.g.
[14]), a neural gas model [15], or a k-means algorithm. The big difference is that
while in these methods there is no notion of “output space” neighborhood (all units
are “independent” from each other), in a SOM the units are “tied together” in the
output space. It thus imposes an ordering of the units that is not present in the other
methods. These ties are equivalent to a strong lateral feedback, common in other
competitive learning algorithms.

 Let us imagine a very simple example, where we have 4 clusters of 3 dimensional
training patterns, centered at four of the vertices of the unit cubre: (0,0,0), (0,0,1),
(1,1,0), and (1,1,1). If we trained a 2 dimensional, 4 node map, we would expect to
obtain units centered at those vertices. If we use a larger map, with 16 nodes, for
example, we would expect to obtain a map where the units are grouped in clusters of
4 nodes on each of the vertices (see Fig. 2).

Fig. 2. Left: a 4 unit 2D SOM clustering some vertices of a 3D unit cube. On the far left we can
see the units in the input (data) space, and center left in the output (grid) space. Right: a 16 unit
SOM clustering the same data.

Before training, the units may be initialized randomly. During the first part of
training, they are “spread out”, and pulled towards the general area (in the input
space) where they will stay. This is usually called the unfolding phase of training.
After this phase, the general shape of the network in the input space is defined, and
we can then proceed to the fine tuning phase, where we will match the units as far as
possible to the input patterns, thus decreasing the quantization error.

To visualize the training process, let us follow a 2-dimensional to 1-dimensional
mapping presented in [1]. In this problem, 2-dimensional data points are uniformly
distributed in a triangle, and a 1-dimensional SOM is trained with these patterns.
Figure 4 represents the evolution of the units in the input space. As training proceeds,
the line first unfolds (steps 1 to 100), and then fine-tunes itself to cover the input
space.

Fig. 3 -2D to 1D mapping by a SOM, from [1]. The number of iterations used increases from
the left to right, from 0 to 25000.

3 - Description of the training algorithm

3.1 - The algorithm

Let xk (with k=1 to the number of training patterns N) be the n-dimensional training
patterns. Let wij be the unit in position (i,j). Let 0 ≤ α ≤ 1 be the learning rate
(sometimes referred to as η), and h(wij,wmn,r) be the neighborhood function
(sometimes referred to as Λ or Nc). This neighborhood function has values in [0,1]
and is high for units that are close in the output space, and small (or 0) for units far
away. It is usual to select a function that is 1 if wij=wmn , monotonically decreases as
the distance in the grid between them increases up to a radius r (called neighborhood
radius) and is zero from there onwards. Let wbmu be the best matching unit for a given
input pattern.

The algorithm for training the network is then:

For each input pattern xk:
1. Calculate the distances between the pattern xk and all units wij: dij = || xk - wij ||
2. Select the nearest unit wij as best matching unit wbmu = wij : dij = min(dmn)
3. Update each unit wij according to the rule wij = wij + α h(wbmu,wij,r) || xk – wij ||
4. Repeat the process until a certain stopping criterion is met. Usually, the

stopping criterion is a fixed number of iterations. To guarantee convergence
and stability of the map, the learning rate α and neighborhood radius r are
decreased in each iteration, thus converging to zero.

The distance measure between the vectors is usually the Euclidean distance, but

many others can and are used, such as norm based Minkowski metrics, dot products,
director cosines, Tanimoto measures, or Hausdorff distances.

3.2 - Neighborhood functions

The neighborhood function provides a bond between a unit and its neighbors, and is
responsible for the topological ordering of the map. In fact, without this neighborhood
function (or when it’s radius is zero), the SOM training algorithm is exactly the same
as the incremental k-means algorithm [6]. The two most common neighborhood
functions are the Gaussian and the square (or bubble) functions:

2
22)()(

2
1

),,(
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −+−
−

=
r

mjni

mnijg erwwh

⎪⎩

⎪
⎨
⎧

>−+−⇐

≤−+−⇐
=

rmjni
rmjnirwwh mnijs 22

22

)()(0
)()(1),,(

In both cases, r decreases to 0 or 1 during training. If r→ 0 the final quantization
error will be minimized, but the topological ordering may be lost, since the algorithm
is performing a k-means clustering. On the other hand, forcing r→ 1 will preserve the
ordering of the units, but the quantization error will not be minimized. Moreover, in
this case there will be a boarder effect, by which units close to the border will be
dragged to the center, and present higher quantization errors.

The algorithm is surprisingly robust to changes in the neighborhood function, and

our experience is that it will usually converge to approximately the same final map,
whatever our choice, providing the radius and learning rate decrease to 0. The
Gaussian neighborhood tends to be more reliable (different initializations tend to
converge to the same map), while the bubble neighborhood leads to smaller
quantization errors, and is computationally much faster. A theoretic discussion of the
effect of neighborhood functions (although only for the 1-dimensional case) can be
found in [17], and a less rigorous but more general one in [18].

3.3 – Other parameters and training options

As mentioned before, training is usually done in two phases: the unfolding phase, and
the fine-tuning phase. The algorithm is exactly the same in both cases, but while in
the first phase the neighborhood radius and learning rate have rather high values (to
allow for a general orientation of the map), in the second phase they will have
smaller values, to perform only fine adjustments on the unit’s positions. As a rule of
thumb, the initial radius for the first phase should be roughly the length of the smaller
side of the map, while for the second it should be the radius of the expected size of
clusters in the output space.

The size of the map will depend a lot on the particular problem at hand and on the
data available. If the SOM is to be used as alternative to k-means, one unit per desired
cluster should be used. For that type of application, a 1-dimensional SOM will usually
provide the best results [9]. For exploratory data analysis, a larger map should be
used. These are sometimes called Emergent-SOM or ESOM [19]. Depending on the
amount and variability of available data, a rule of thumb could be to use one unit for
each 4 to 20 or more data patterns, but in some cases one might use more units than
data patterns (to obtain very clear cut U-Matrices).

3.4 – U-Matrices

U-Matrices where introduced by Ultsch [11], and are one of the most popular and
useful ways of visualizing clusters with a SOM. A U-Matrix is obtained by computing
the distance in the input space of units that are neighbors in the output space. If these
differences are small, it means that the units are close together, and thus there is a
cluster of similar data in that region of the input space. On the other hand, if the
distances are large, the units are far apart, and there isn’t much data in that region of
the input space. The U-Matrix can thus be seen as a sort of extension of an inverted
histogram for multidimensional data projected on a lower dimensional space: low

values indicate large concentrations of data, and high values indicate sparse regions.
U-Matrices are usually presented as color-coded maps: white regions indicate low
values (and thus clusters), while dark regions indicate separations between clusters.

4 - SOM variants

Many different variants of the basic SOM algorithm have been proposed, and a
complete review of these is beyond the scope of this paper. Some reviews of these
variants have been published [20, 21], and we will overview some of them to show
how the basic algorithm can be adapted to different problems.

The original SOM algorithm and most of its variants deal with vector data only.
Some variants for non-vector data have also been proposed namely the Dissimilarity
SOM [22], the Kohonen Multiple Correspondence Analysis and the Kohonen
algorithm on Disjuctive Table [23]. For the simpler case of binary valued data, both
the original algorithm using 0 and 1 as real numbers, and binary variants of SOM
produce good results [24, 25].

SOMs have frequently been used to analyze temporal data, such as EEG or Stock
Exchange data. In most cases time can be imbedded into the data vector, and a
standard SOM algorithm is used, treating that vector as a simple input pattern. More
interesting uses of SOM have been made by changing the learning rule or by
changing the topology or structure of the network so as to explicitly take time into
consideration. In the former case, the learning rule may, for example, consider only
the neighbors of the last BMU as candidates for the next input pattern, or separate the
time variable from the rest when computing the similarity. As for changes in topology
and structure, some approaches use hierarchical SOMs with different time frames, or
include time delay memories in the units. A review of the different ways in which this
has been done, together with a proposal for a taxonomy of temporal SOMs is
available in [26].

Geographical information science problems also have a special variable (special
location) that should, like time, be treated in a different way. To this end a variant
called GeoSOM has also been developed [21, 27, 28].

Hierarchical SOMs [29, 30] combine several SOMs to process data a low level,
and then use their outputs as inputs to a high level SOM that fuses the results.

In some applications, the notion of output grid is substituted by a more general
graph, such as happens in the Minimum Spanning Tree SOM [20], Tree-Structured
SOM [29], or Growing Cells [31, 32]. The links and concept of output space may
even disappear, as happens in the Neural Gas model [15, 33, 34].

Another important type of variants on the basic SOM algorithm are those that try
and overcome the theoretical obstacles raised by the fact that the SOM does not
minimize a global energy function. One solution is to change the learning rule
slightly, as was done in [35]. Another solution is to use a variation of Gaussian
Mixture Models to derive a topologically ordered map, as is done with the Generative
Topographic Mapping [36]. However, despite the theoretical soundness of these
methods, they do not provide significantly better results and are computationally more
complex than the original algorithm.

5 - Applications in maritime environment

Given the wide range of capabilities of the SOM there have been many
applications of this technique on maritime problems.

SOMs have been used quite frequently to cluster and classify satellite images [3,
37-41]. In most cases, the SOM is basically used as a classifier, and each pixel of the
satellite image forms a data pattern. When analyzing satellite images, the ground truth
(i.e., the real class of a given pixel) is usually established by an expert, and is rather
slow, expensive, and prone to errors. Therefore not many classified pixels are
available. One advantage of the SOM in this case is that it may be trained with all the
data, including non-classified pixels, and then labeled with only the classified ones.
This labeling may then be extended to other units that belong to the same cluster,
improving the classification capabilities of the system. Very similar approaches have
been made with data that combines satellite images with other data [42], data obtained
by radars [43], data obtained by meteorological stations [44], airborne lasers [45], or
even data obtained by simulators. The common factor in all these cases is that a 2-
dimensional map with pixels that are multidimensional vectors is presented to a SOM
for clustering and classification. Let us see one of these with a little more detail, and
then overview the problems where these approaches were successfully applied.

One application of SOM to satellite images, that concerns reflectance spectra of
ocean waters, is presented in [3]. In this case, a 20x20 unit probabilistic SOM (or
more precisely PSOM) is trained with 43000 6-dimensional vectors. Each of these
corresponds to sampled pixels of a satellite image with 5 pre-processed frequency
bands, and an extra value corresponding to the spatial standard deviation of one of
those measurements. A human expert will then label some of the pixels, and these are
used to label the SOM units, either directly or indirectly after these are clustered with
a hierarchical clustering algorithm. The authors point out that the method used
provides a good overall classification of the data, in part due to the fact that that the
probabilistic nature of PSOM allows for a confidence level to be assigned to each
classification. The PSOM is also considered useful by showing that a lot of resources
are dedicated to separating clouds from other pixels, thus leading to the suggestion
that the images be pre-processed to remove these clouds. The author’s main interest is
in the characterization of Sahara dust, clouds, and other aerosols present over the
ocean, and they do not go into great detail on the parameterization of the PSOM. It
could be argued that a non-square map would lead to a better stabilization of the
training process, and that the use of a U-Matrix would help define larger clusters
(instead of using hierarchical clustering), but the authors did not follow that path.

The SOM has been used in a similar way (i.e. for clustering and classifying data
contained in 2-dimensional maps or images), in many applications of environmental
science, climatology, geology, and oceanography. These include analyzing sea
surface temperature [46-49], plankton [50, 51], ocean current patterns [43, 52],
estuary and basin dynamics [53], sediment structure [54], atmospheric pressure [55,
56], wind patterns [39], storm systems [41], the El Niño weather conditions [42],
clouds [57], ice [53, 58, 59], rainfall [44, 60, 61], oil spills [45], the influence of
ocean conditions in droughts [62], and the relationship between sardine abundance
and upwelling phenomena [40].

Data concerning fisheries was analyzed in different perspectives using a SOM in
[63]. The use of SOM in this case clearly shows the existence of well defined changes
in fisheries along time, and relationships between different species.

A more creative use of SOM in shown in [64], where the SOM is used to segment
maps of the seafloor obtained with multibeam sonars. The segmented data is then
classified with specialized classifiers for each segment. The SOM is thus used to pre-
process the data so that multiple simpler or more precise classifiers can be used to
obtain the desired results.

Although classical harmonical methods can provide good sea level predictions in
most cases, those predictions can have rather large errors in basins, estuaries, or
regions where weather conditions have a large influence. In those cases, SOMs have
been used to predict sea levels with greater accuracy in [65].

Following an approach common in several problems in robotics [66], the SOM has
been used to control a Underwater Autonomous Vehicle (AUV) [67-69]. The basic
idea in this type of application is that the SOM receives the sensor inputs, and based
on that chooses a unit that will provide the guidance for the AUV. The main
advantage of the SOM in this case is that each of the units has a quite simple control
law (as opposed to a complicated non-linear controller), and the topological ordering
of the SOM makes it relatively robust to noise in the inputs.

With the increase in maritme traffic, the consequences of accidents, and the
availability of Vessel Traffic Sytems (VTS), the automatic detection of anomalous
behavious of ships became a pressing problem. This problem was addressed, in [70],
where track data (heading, speed, etc) from navy exercises was used to train a SOM.
Clusters where then identified on that SOM, and both suspicious behavior clusters and
outliers where flagged as potential threats. The same problem was tackled in a similar
way in [71]. In this case the emphasis in more on visualization of the data, and on
estimating the probability of a given situation occurring in the dataset.

Also related with ship trajectories, SOMs have been used to plan patrol trajectories
of naval vessels in [72]. The approach followed was basically the one used to solve
the traveling salesman problem with a SOM (e.g. [12]). In this case, the geographical
locations of “incidents” (accidents and illegal fishing) where used as training patterns,
and the trajectory obtained tries to maximize the probability of passing in the area
where there were “incidents” in the past.

In underwater acoustics SOMs have been used extensively to analyze passive sonar
recordings [73-76]. Although ship noise or transient recognition is basically a
supervised task, it is very important to detect novelties, and to relate those novelties
with known causes. The SOM can provide this by using large maps which will have
many unlabeled units. Additionally it provides an easy to use and understand interface
for the operators.

Also concerning fluids, although not directly applied to the maritime environment,
an interesting use of SOM is given in [77, 78] for analyzing movement in fluids by
tracking particles in suspension. The idea is to use successive images of the fluid for
training a map, and then infer the movement by observing how the units change from
one step to the next.

6 - Conclusions

An introduction to how a Self-Organizing Map (SOM) works and how it can be used
was presented. Despite its simplicity, the SOM can be used for a wide variety of
applications. Some of its shortcomings where also pointed out, as well as the main
issues that must be taken into consideration when using them.

An overview of applications in the marine environment was given, showing that it
has successfully been used in many real maritime problems. I believe that its use in
this field is still at a preliminary stage, and more and more powerful uses will be
given to SOM. It is many times used simply for k-means type clustering and
supervised classification. While those types of applications are useful, I think that the
greatest potential of SOM is its ability do project and visualize multidimensional data.
Many authors have criticized clustering through visualization as too subjective for
engineering purposes. I would argue that clustering is intrinsically a subjective
problem, and that the human eye and judgment are the best tools available for that
task. The computer algorithms should only present the data in a suitable way, which is
exactly what a SOM does. I also believe that there is still a lot of potential for using
SOM in non-linear control and routing or piping problems aboard ships. As SOMs
become more mainstream, and software for their use becomes more widespread, they
will probably be used in creative ways in even more problems.

References

1. Kohonen, T., Self-Organizing Maps. 3rd ed. Information Sciences. 2001, Berlin-
Heidelberg: Springer. 501.

2. Fu, L., Neural Networks in Computer Intelligence. 1994, Singapore: McGraw
Hill. 460.

3. Niang, A., et al., Automatic neural classification of ocean color reflectance
spectra at the top of the atmosfphere with introduction of expert knowledge.
Remote Sensing of Environment, 2003(86): p. 257-271.

4. Kohonen, T. Clustering, Taxonomy, and Topological Maps of Patterns. in
Proceedings of the 6th International Conference on Pattern Recognition. 1982.

5. Kohonen, T., The 'neural' phonetic typewriter. IEEE Computer, 1988. 21(3): p.
11-22.

6. MacQueen, J. Some methods for classification and analysis of multivariate
observation. in 5th Berkeley Symposium on Mathematical Statistics and
Probability. 1967: University of California Press.

7. Loyd, S.P., Least Squares quantization in PCM. IEEE Transactions on
Information Theory, 1982. 28(2): p. 129-137.

8. Selim, S.Z. and M.A. Ismail, k-means type algorithms: a generalized convergence
theorem and characterization of local optimality. IEEE Trans. Pattern Analysis
and Machine Intelligence, 1984. 6: p. 81-87.

9. Bacao, F., V. Lobo, and M. Painho, Self-organizing Maps as Substitutes for K-
Means Clustering, in Lecture Notes in Computer Science,, V.S. Sunderam, et al.,
Editors. 2005, Springer-Verlag: Berlin Heidelberg. p. 476-483.

10. Sammon, J.W.J., A Nonlinear Mapping for Data Structure Analysis. IEEE
Transactions on Computers, 1969. C-18(5): p. 401-409.

11. Ultsch, A. and H.P. Siemon. Kohonen´s Self-Organizing Neural Networks for
Exploratory Data Analysis. in Intl. Neural Network Conf. INNC90. 1990. Paris.

12. Altinel, I.K., N. Aras, and B.J. Oommen, Fast, Efficiente and accurate solutions
to the Hamiltonian path problem using neural approaches. Computers &
Operations Research, 2000. 27: p. 461-494.

13. Henriques, R., Cartogram creation using self-organizing maps, in ISEGI. 2006,
New University of Lisbon: Lisbon. p. 144.

14. Haykin, S., Neural Networks: A Comprehensive Foundation. 2 ed. 1999.
15. Martinetz, T.M., S.G. Berkovich, and K.J. Schulten, Neural-Gas network for

vector quantization and its application to time-series prediction. IEEE
Transactions on Neural Networks, 1993. 4(4): p. 558-569.

16. Kohonen, T., Self-Organizing Maps. 1st ed. 1995, Berlin-Heidelberg: Springer.
362.

17. Erwin, E., K. Obermeyer, and K. Schulten, Convergence properties of self-
organizing maps, in Artificial Neural Networks, T. Kohonen, et al., Editors. 1991,
Elsevier. p. 409-414.

18. Ritter, H., T.M. Martinetz, and K. Schulten, Neural Computation and Self-
Organizing Maps: an introduction. 1992: Addison-Wesley.

19. Ultsch, A. Clustering with SOM: U*C. in WSOM 2005. 2005. Paris.
20. Kangas, J.A., T.K. Kohonen, and J.T. Laaksonem, Variants of Self-Organizing

Maps. IEEE Transactions on Neural Networks, 1990. 1(1): p. 93-99.
21. Bação, F., V. Lobo, and M. Painho, The Self-Organizing Map, the Geo-SOM,

and relevant variants for geosciences. Computers and Geosciences, 2005. 31(2):
p. 155-163.

22. Ambroise, C., et al. Analyzing dissimilarity matrices via Kohonen maps. in 5th
Conference of the International Federation of Classification Societies (IFCS
1996). 1996. Kobe (Japan).

23. Cottrell, M., S. Ibbou, and P. Letremy, SOM-based algorithms for qualitative
variables. Neural Networks, 2004. 17(8-9): p. 1149-1167.

24. Lobo, V., N. Bandeira, and F. Moura-Pires. Distributed Kohonen networks for
Passive Sonar Based Classification. in FUSION 98. 1998. Las Vegas, NV, USA.

25. Lourenço, F., V. Lobo, and F. Bação. Binary-based similarity measures for
categorical data and their application in Self-Organizing Maps. in JOCLAD 2004
- XI Jornadas de Classificação e Análise de Dados. 2004. Lisbon.

26. Guimarães, G., V. Lobo, and F. Moura-Pires, A taxonomy of Self-organizing
Maps for temporal sequence processing. Intelligent Data Analysis, 2002. 7(4).

27. Bacao, F., V. Lobo, and M. Painho, Applications of Different Self-Organizing
Map Variants to Geographical Information Science Problems, in Self-Organizing
Maps - Applications in Geographic Information Science, P. Agarwal and A.
Skupin, Editors. 2008, John Wiley & Sons: Chichester. p. 205.

28. Bação, F., V. Lobo, and M. Painho. Geo-SOM and its integration with geographic
information systems. in WSOM 05, 5th Workshop On Self-Organizing Maps.
2005. Paris.

29. Koikkalainen, P. and E. Oja. Self-organizing hierarchical feature maps in
IJCNN'90 - International Joint Conference on Neural Networks. 1990.
Washington, DC, USA.

30. Kemke, C. and A. Wichert. Hierarchical Self-Organizing Feature Maps for
Speech Recognition. in WCNN'93 - World Conference on Neural Networks.
1993: Lawrence Erlbaum, Hillsdale.

31. Fritzke, B. Let it Grow - Self-organizing Feature Maps With Problem Dependent
Cell Structure. in ICANN-91. 1991. Helsinki: Elsevier Science Publ.

32. Fritzke, B. Growing Self-organizing Networks - Why? in ESANN'96 European
Symposium on Artificial Neural Networks. 1996.

33. Fritzke, B., A growing neural gas network learns topologies, in Advances in
Neural Information Processing Systems, G. Tesauro, D.S. Touretzky, and T.K.
Leen, Editors. 1995, MIT Press: Cambridge MA. p. 625-632.

34. Hammer, B., A. Hasenfuss, and T. Villmann, Magnification control for batch
neural gas. Neurocomputing, 2007. 70(7-9): p. 1225-1234.

35. Heskes, T., Energy Functions for Self-Organizing Maps, in Kohonen Maps, E.
Oja and S. Kaski, Editors. 1999, Elsvier: Amsterdam. p. 303-316.

36. Bishop, C.M., M. Svensen, and C.K.I. Williams, GTM: The Generative
Topographic Mapping. Neural Computation, 1998. 10(1): p. 215-234.

37. Mather, P.M., B. Tso, and M. Koch, An evaluation of Landsat TM spectral data
and SAR-derived textural information for lithological discrimination in the Red
Sea Hills, Sudan. International Journal of Remote Sensing, 1998. 19(4): p. 587-
604.

38. Villmann, T., E. Merenyi, and B. Hammer, Neural maps in remote sensing image
analysis. Neural Networks, 2003. 16(3-4): p. 389-403.

39. Richardson, A.J., C. Risien, and F.A. Shillington, Using self-organizing maps to
identify patterns in satellite imagery. Progress in Oceanography, 2003. 59(2-3): p.
223-239.

40. Hardman-Mountford, N.J., et al., Relating sardine recruitment in the Northern
Benguela to satellite-derived sea surface height using a neural network pattern
recognition approach. Progress in Oceanography, 2003. 59(2-3): p. 241-255.

41. Parikh, J.A., et al., An evolutionary system for recognition and tracking of
synoptic-scale storm systems. Pattern Recognition Letters, 1999. 20(11-13): p.
1389-1396.

42. Leloup, J.A., et al., Detecting decadal changes in ENSO using neural networks.
Climate Dynamics, 2007. 28(2-3): p. 147-162.

43. Liu, Y., R.H. Weisberg, and L. Shay, Current Patterns on the West Florida Shelf
from Joint Self-Organizing Map Analyses of HF Radar and ADCP Data. Journal
of Atmospheric and Oceanic Technology, 2007. 24: p. 702-712.

44. Cavazos, T., Using self-organizing maps to investigate extreme climate events:
An application to wintertime precipitation in the Balkans. Journal of Climate,
2000. 13(10): p. 1718-1732.

45. Lin, B., et al. Neural networks in data analysis and modeling for detecting littoral
oil-spills by airborne laser fluorosensor remote sensing. in Conference on Ocean
Remote Sensing and Applications. 2002. Hangzhou, Peoples R China: Spie-Int
Soc Optical Engineering.

46. Liu, Y.G., R.H. Weisberg, and R.Y. He, Sea surface temperature patterns on the
West Florida Shelf using growing hierarchical self-organizing maps. Journal of
Atmospheric and Oceanic Technology, 2006. 23(2): p. 325-338.

47. Liu, Y.G., R.H. Weisberg, and Y.C. Yuan, Patterns of upper layer circulation
variability in the South China Sea from satellite altimetry using the self-
organizing map. Acta Oceanologica Sinica, 2008. 27: p. 129-144.

48. Tozuka, T., et al., Tropical Indian Ocean variability revealed by self-organizing
maps. Climate Dynamics, 2008. 31(2-3): p. 333-343.

49. Marques, N.C. and N. Chen. Border detection on remote sensing satellite data
using self-organizing maps. in 11th Portuguese Conference on Artificial
Intelligence. 2003. Beja, Portugal: Springer-Verlag Berlin.

50. Chazottes, A., et al., Statistical analysis of a database of absorption spectra of
phytoplankton and pigment concentrations using self-organizing maps. Applied
Optics, 2006. 45(31): p. 8102-8115.

51. Solidoro, C., et al., Understanding dynamic of biogeochemical properties in the
northern Adriatic Sea by using self-organizing maps and k-means clustering.
Journal of Geophysical Research-Oceans, 2007. 112(C7): p. 13.

52. Liu, Y.G. and R.H. Weisberg, Patterns of ocean current variability on the West
Florida Shelf using the self-organizing map. Journal of Geophysical Research-
Oceans, 2005. 110(C6): p. 12.

53. Reusch, D.B. and R.B. Alley. Antarctic sea ice: a self-organizing map-based
perspective. in International Symposium on Cryospheric Indicators of Global
Climate Change. 2006. Cambridge, ENGLAND: Int Glaciological Soc.

54. Kropp, J. and T. Klenke, Phenomenological pattern recognition in the dynamical
structures of tidal sediments from the German Wadden Sea. Ecological
Modelling, 1997. 103(2-3): p. 151-170.

55. Cassano, E.N., et al., Classification of synoptic patterns in the western Arctic
associated with extreme events at Barrow, Alaska, USA. Climate Research, 2006.
30(2): p. 83-97.

56. Hewitson, B.C. and R.G. Crane, Self-organizing maps: applications to synoptic
climatology. Climate Research, 2002. 22(1): p. 13-26.

57. Kubo, M., K. Muramoto, and Ieee. Classification of clouds in the Japan Sea area
using NOAA AVHRR satellite images and self-organizing map. in IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). 2007.
Barcelona, SPAIN: Ieee.

58. Reusch, D.B., R.B. Alley, and B.C. Hewitson, North Atlantic climate variability
from a self-organizing map perspective. Journal of Geophysical Research-
Atmospheres, 2007. 112(D2): p. 20.

59. Fukumi, M., et al. Drift ice detection using a self-organizing neural network. in
9th International Conference on Knowledge-Based Intelligent Information and
Engineering Systems. 2005. Melbourne, AUSTRALIA: Springer-Verlag Berlin.

60. Uotila, P., et al., Changes in Antarctic net precipitation in the 21st century based
on Intergovernmental Panel on Climate Change (IPCC) model scenarios. Journal
of Geophysical Research-Atmospheres, 2007. 112(D10): p. 19.

61. Chandrasekar, V. and ieee. SOM of space borne precipitation radar rain profiles
on global scale. in IEEE International Geoscience and Remote Sensing
Symposium. 2004. Anchorage, AK: Ieee.

62. Barros, A.P. and G.J. Bowden, Toward long-lead operational forecasts of
drought: An experimental study in the Murray-Darling River Basin. Journal of
Hydrology, 2008. 357(3-4): p. 349-367.

63. Hyun, K., et al., Using an artificial neural network to patternize long-term
fisheries data from South Korea. Aquatic Sciences, 2005. 67(3): p. 382-389.

64. Chakraborty, B., et al., Application of artificial neural networks to segmentation
and classification of topographic profiles of ridge-flank seafloor. Current Science,
2003. 85(3): p. 306-312.

65. Ultsch, A. and F. Roske, Self-organizing feature maps predicting sea levels.
Information Sciences, 2002. 144(1-4): p. 91-125.

66. Barreto, G.d.A., A.F.R. Araújo, and H.J. Ritter, Self-Organizing Feature Maps for
Modeling and Control of Robotic Manipulators. ááJournal of Intelligent and
Robotic Systems 2003. 36(4): p. 407-450.

67. Nishida, S., et al. Adaptive learning to environment using self-organizing map
and its application for underwater vehicles. in 4th International Symposium on
Underwater Technology. 2004. Taipei, TAIWAN: Ieee.

68. Ishii, K., et al. A self-organizing map based navigation system for an underwater
robot. in IEEE International Conference on Robotics and Automation. 2004. New
Orleans, LA: Ieee.

69. Nishida, S., et al. Self-organizing decision-making system for AUV. in 5th
International Symposium on Underwater Technology/5th Workshop on Scientific
Use of Submarine Cables and Related Technologies. 2007. Tokyo, JAPAN: Ieee.

70. Patton, R., M. Webb, and R. Gaj, Covert Operations Detection for maritime
applications. Canadian Journal of Remote Sensing, 2001. 27(4): p. 306-319.

71. Riveiro, M., G. Falkman, and T. Ziemke. Visual analytics for the detection of
anomalous maritime behavior. in 12th International Conference Information
Visualisation 2008. 2008. London, ENGLAND: Ieee Computer Soc.

72. Lobo, V. and F. Bacao. One dimensional Self-Organizing Maps to optimize
marine patrol activities. in Oceans 2005 Europe International Conference. 2005.
Brest, FRANCE: Ieee.

73. Lobo, V. and F. Moura-Pires. Ship noise classification using Kohonen Networks.
in EANN 95. 1995. Helsinki, Finland.

74. Lobo, V., N. Bandeira, and F. Moura-Pires. Ship Recognition using Distributed
Self Organizing Maps,. in EANN 98. 1998. Gibraltar.

75. Lobo, V., Ship noise classification: a contrinution to prototype based classifier
design, in Departamento de Informatica. 2002, Universidade Nova de Lisboa:
Lisbon.

76. Oliveira, P.M., et al. Detection and Classification of Underwater Transients with
Data Driven Methods Based on Time-Frequency Distributions and Non-
Parametric Classifiers. in MTS/IEEE Oceans'02. 2002. Biloxi, Mississipi, USA.

77. Labonté, G. A SOM neural network that reveals continuous displacement fields.
in IEEE World Congress on Computational Intelligence, 1998. 1998. Anchorage,
AK, USA.

78. Ohmia, K., SOM-Based particle matching algorithm for 3D particle tracking
velocimetry Applied Mathematics and Computation, 2008. 205(2): p. 890-898

