

1

Contexto

- Existem um conjunto de dados conhecidos
 - □ Conjunto de treino
- Queremos prever o que vai ocorrer noutros casos
- Exemplo
 - □ Empresa de seguros de saúde quer estimar custos com um novo cliente

Conjunto de treino (dados históricos)

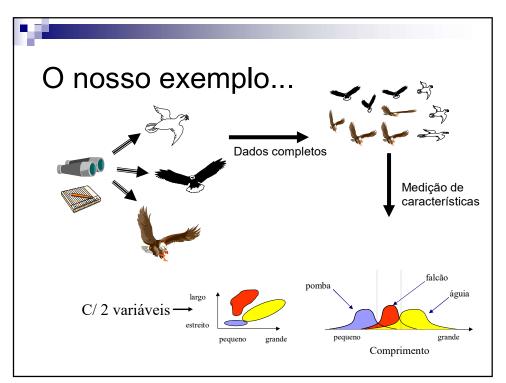
Altura	Peso	Sexo	Idade	Ordenado	Usa ginásio	Encargos para seguradora
1.60	79	М	41	3000	S	N
1.72	82	М	32	4000	S	N
1.66	65	F	28	2500	N	N
1.82	87	М	35	2000	N	S
1.71	66	F	42	3500	Ν	S

E o Manel? Altura=1.73 Peso=85 Idade=31 Ordenado=2800 Ginásio=N Terá encargos

para a seguradora?

Tema central:

- Existe alguma maneira ÓPTIMA de fazer a classificação de um padrão de dados ?
 - ☐ Sim: classificação Bayesiana (óptima segundo um dado critério...)
- Conseguimos usar sempre esse método ?
 - □ Não: geralmente é impossível obter o classificador de Bayes
- É útil conhecê-lo?
 - □ Sim: Dá um limite e um termo de comparação



V 3.3, V.Lobo, EN / NOVA IMS, 2021

Noção de Classificação Bayesiana

- Escolhe a classe mais provável, dado um padrão de dados
 - \square max $P(C_i|x)$
- É sempre a escolha óptima!
- Problema:
 - \square Estimar $P(C_i|x)$
 - □ Solução: dado um dado, eu posso não saber à priori a classe, mas dado uma classe, eu talvez saiba à priori como são dos dados dessa classe...

5

Teorema de Bayes

- Formulação do teorema de Bayes
 - P(C,x) = P(C|x)P(x) = P(x|C)P(C)

logo.. P(C|x) = P(x|C)P(C) / P(x)

- □ Dado um x, P(x) é constante, o classificador Bayesiano escolhe a classe que maximiza P(x|C)P(C)
- Classificador que maximiza P(C|x) é conhecido como classificador MAP (*maximum a posterioi*)

V 3.3, V.Lobo, EN / NOVA IMS, 2021

Custos variáveis

- A escolha óptima da classe tem que ter em conta os custos de cometer erros
 - □ Exemplos: detectar aviões num radar, detectar fraudes ou defeitos em peças
- Custo: ct(c_i,c_j) = custo de escolher c_j dado que a classe é de facto c_j
- Matriz de custos
 - ☐ Matriz com todos os custos de classificação
- Determinação dos custos

7

Classificador de Bayes

- Custo de uma decisão:
 - $\Box \operatorname{ct}_{i}(x) = \Sigma \operatorname{ct}(c_{i}, c_{i}) \operatorname{P}(c_{i}, x)$
 - Custo de escolher A é a soma dos custos de escolher as OUTRAS classes vezes a probabilidade de ocorrerem as OUTRAS classes
- Classificador de Bayes
 - □ Escolhe a classe que minimiza o custo de classificação
 - $\Box c = c_k : k = arg min ct_i(x)$

V 3.3, V.Lobo, EN / NOVA IMS, 2021

Classificador de máxima verosimilhança

- Maximum Likelihood (ML)
 - ☐ Muitas vezes podemos admitir que, à partida, todas as classes são equiprováveis
 - □ Nesse caso, o classificador MAP simplifica para:

$$P(C|x) = P(x|C)P(C) / P(x) \propto P(x|C)$$

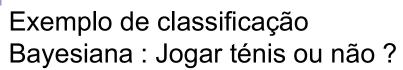
- Ou seja a classe mais provável é a que com maior probabilidade gera esse dado!
- □ Na prática, um bom critério!

9

Problemas em estimar P(x,C)

- Desconhece-se geralmente a forma analítica de P(x,C)
- Estimação de P(x,C) a partir dos dados
 - □ Problema central em classificação !!!
 - □ Estimação paramétrica
 - Assumir que P(x,C) tem uma distribuição "conhecida" (gausseana, uniforme, etc), e estimar os parâmetros dessa distribuição
 - □ Estimação não paramétrica
 - Calcular P(x,C) directamente a partir dos dados

V 3.3, V.Lobo, EN / NOVA IMS, 2021

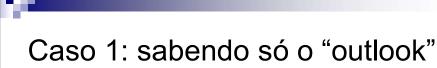


Outlook	Temperature	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Overcast	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

11

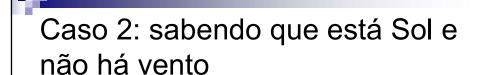
Caso 1: sabendo só o "outlook"

- Queremos saber P(jogo|outlook), em concreto, se outlook = "sunny"
 - ☐ Classificador MAP:
 - P(jogo|outlook) ∞ P(outlook|jogo)P(jogo)
 - P(jogo=sim)=9/14=0.64 P(jogo=não)=5/14=0.36
 - P(outlook="sunny"|jogo=sim)=2/9=0.22
 - P(outlook="sunny" |jogo=não)=3/5=0.60
 - P(jogo=sim|outlook="sunny") ∞ 0.22 x 0.64 = 0.14



- ☐ Classificador ML:
 - P(jogo|outlook) ∞ P(outlook|jogo)
 - P(outlook="sunny"|jogo=sim)=2/9=0.22
 - P(outlook="sunny" |jogo=não)=3/5=0.60

13



- Classificador MAP:
 - □ P(jogo|sol e ñ vento) ∞ P(sol e ñ vento |jogo)P(jogo)
- Score(joga|($sol \land \tilde{n}$ -vento) = P(($sol \land \tilde{n}$ -vento)|joga)P(joga)

=0,166x0,642=<mark>0,107</mark>

• Score(\tilde{n} -joga|(sol \wedge \tilde{n} -vento) = P((sol \wedge \tilde{n} -vento)| \tilde{n} -joga)P(joga)

 $= 0.333 \times 0.357 = 0.119$

■ Logo: *Não vai jogar*

Caso 3: sabendo que está Sol, frio e vento

- Não temos observações com essas 3 condições!
 - □ Não conseguimos calcular ...
- Mas temos sempre uma probabilidade "à priori", e temos observações de dias de sol, dias de frio, e dias de vento!

15

Problema quando x tem dimensão grande

- Se a dimensão de *x* é muito grande, devido à praga da dimensionalidade, é difícil calcular P(x,C)
- Solução:
 - ☐ Assumir independência entre atributos
 - □ Exemplo:
 - Classificação de texto

V 3.3, V.Lobo, EN / NOVA IMS, 2021

Classificador naive de Bayes

Assume independência dos atributos:

$$P(x,C) = \prod P(x^m,C)$$

- Na prática tem bons resultados
 - □ Evitar que $P(x^m,C)$ seja 0:
 - Estimativa m:
 - \Box P=(n_c+ m x p) / (n + m)

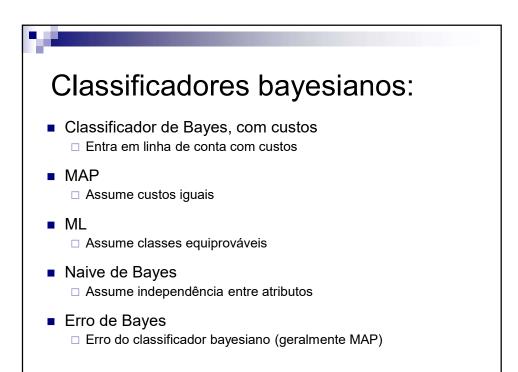
n_c= exemplos de c m= ponderação (+/-prioi) n= total de exemplos

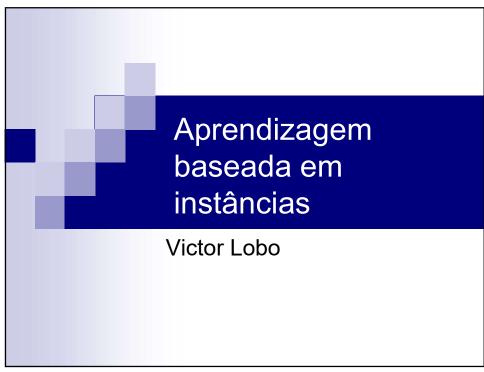
p= estimativa à priori (equiprovável ?)

17

Algumas considerações...

- Aprendizagem incremental
 - ☐ Um classificador Bayesiano pode ir actualizando as suas estimativas
- Separababilide
 - $\square P(x,c_i) > 0 \Rightarrow P(x,c_j) = 0 \ \forall x \ \forall j \neq i$
 - ☐ Erro de Bayes = 0
- Não separabilidade
 - □ Inconsistência (com os atributos conhecidos):
 - lacktriangle Um mesmo x, tanto pode pertencer a c_i como c_i
 - ☐ Erro de Bayes > 0



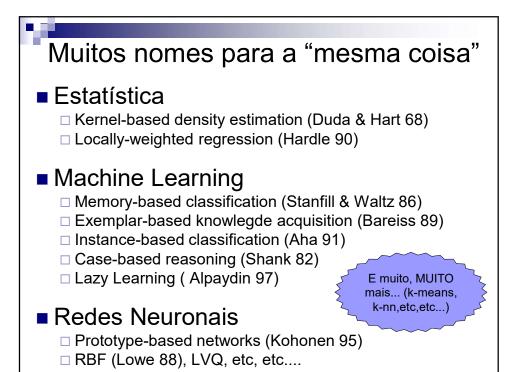


V 3.3, V.Lobo, EN / NOVA IMS, 2021

Tema central

- Sistemas de aprendizagem que guardam "exemplos" dos dados
 - □ Ex: Guardar a "pomba típica" ou "som característico"
- A classificação (ou decisão) é feita comparando a nova instância com os exemplos guardados
 - □ Exemplos ≈ protótipos ≈ instâncias ≈ neurónios

21



Fundamentos:

- Classificador óptimo escolhe classe mais provável:
 - $\square P(C|x) = P(x|C)P(C) / P(x)$
 - \square No caso de um classificador MAP, basta saber P(x|C)
- **Estimação** de P(x|C) quando os atributos de x têm valores contínuos:
 - \square P(x|C)=0, mas podemos calcular p(x|C) (densidade)
 - □ No limite temos

$$p(x \mid C) = \frac{k/n}{\Delta V}$$

 $p(x \mid C) = \frac{k/n}{\Lambda V} \qquad \substack{k=\text{n}^{\text{o}} \text{ de dados da classe (em} \Delta V)} \\ n=\text{n}^{\text{a}} \text{ total de dados (em} \Delta V)}$ △V=Volume considerado

23

Fundamentos

■ Para que $p(x \mid C) = \frac{kc/k}{\Delta V}$

 ΔV = um dado volume em torno da nova instância k= nº total de exemplos nesse kc=nº de exemplos que pertencem à classe C

...é necessário que k $\rightarrow \infty$, e $\lim \Delta V = 0$

(em princípio teremos também $\lim kc = \infty$)

- ☐ Mas isso é impossível...
- Duas grandes famílias
 - $k = c^{te} k$ -vizinhos, vizinho mais próximo, etc
 - △V =c^{te} Janelas de Parzen

k-vizinhos e vizinho mais próximo (k=1)

- Todos os exemplos são memorizados e usados na fase de aprendizagem.
- A classificação de um exemplo X consiste em encontrar os *k* elementos do conjunto de treino mais próximos e decidir por um critério de maioria. 000

Gasta muita memória!!!

V 3.3. V.Lobo, EN / NOVA IMS, 2021

Algoritmo de treino

Para cada exemplo de treino (x, c(x)) adicionar à lista de exemplos de treino.

Retorna lista de exemplos de treino.

27

Classificação por k-vizinhos

k-NearestNeighbor(x, Exemplos de treino)
Sejam y₁, ..., y_k, pertencentes à lista de exemplos de treino, os k vizinhos mais próximos de x.

Retorna

$$\hat{c}(x) \leftarrow \underset{v \in V}{\operatorname{arg\,max}} \sum_{i=1}^{k} \delta(v, c(y_i))$$

em que V é o conjunto das classes, v é uma classe em particular, c(y) é a classe de y, e

$$\delta(x,y) = \begin{cases} 0 & \text{se } x \neq y \\ 1 & \text{se } x = y \end{cases}$$

V 3.3, V.Lobo, EN / NOVA IMS, 2021

Regressão por k-vizinhos

Algoritmo de regressão

k-NearestNeighbor(x, exemplos de treino)

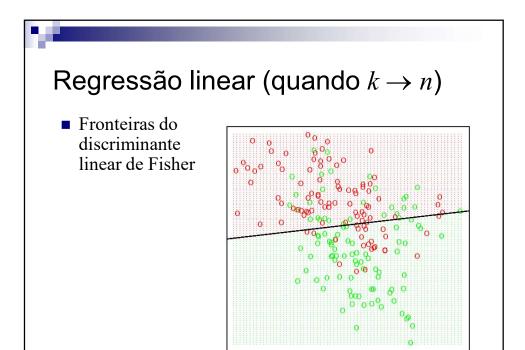
Sejam $y_1, ..., y_k$, pertencentes à lista de exemplos de treino, os k vizinhos mais próximos de x.

Retorna

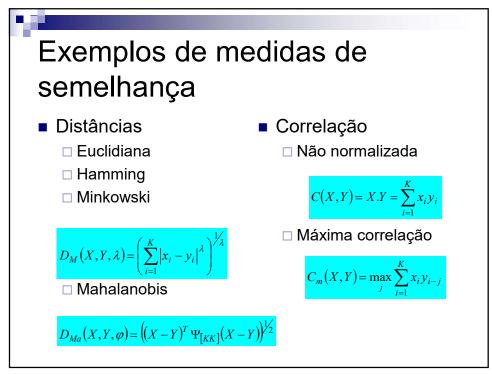
29

Fronteiras definidas pelo k-nn

- *k* grande
 - ☐ Fronteiras suaves, "ponderadas"
 - □ Estimador razoável da densidade de probabilidade
 - □ Perde definição quando há variações pequenas
- *k* pequeno
 - ☐ Fronteiras mais rugosas, sensíveis a outliers
 - ☐ Mau estimador de densidade de probabilidade
- Margens de segurança
 - □ Pode-se exigir uma diferença mínima para tomar uma decisão







Classificação por k-vizinhos ponderados

 Algoritmo de classificação *k*-NearestNeighbor(*x*, Exemplos de treino) Sejam $y_1, ..., y_k$, pertencentes à lista de exemplos de treino, os k vizinhos mais próximos de x.

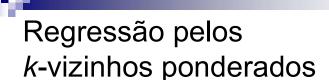
Retorna

$$\hat{c}(x) \leftarrow \underset{v \in V}{\operatorname{arg max}} \sum_{i=1}^{k} \varpi_{i} \delta(v, c(y_{i}))$$

em que

$$\varpi_i = \frac{1}{D(x, y)}$$

35



 Algoritmo de classificação *k*-NearestNeighbor(*x*, Exemplos de treino) Sejam $y_1, ..., y_k$, pertencentes à lista de exemplos de treino, os k vizinhos mais próximos de x.

Retorna

$$\hat{c}(x) \leftarrow \frac{\sum_{i=1}^{k} \varpi_{i} c(y_{i})}{\sum_{i=1}^{k} \varpi_{i}}$$

Vizinho mais próximo (k=1)

- É simples e eficaz
- Está muito bem estudado
- Erro assimptótico (quando n $\rightarrow \infty$)
 - □Zero, se as classes forem separáveis
 - □ 2x erro de Bayes, se não o forem
 - (Cover 67; Ripley 96; Krishna 00)

37

Erro do vizinho mais próximo

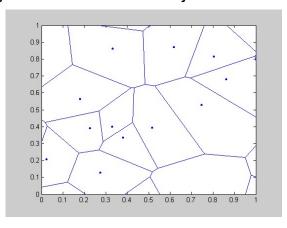
■ Com *n* finito,e *c* classes

$$E_{bayes} \le E_{nneighbour} \le 2E_{bayes} - \frac{c}{c-1}E_{bayes}^2 + \sup_{x \in X} \hat{\sigma}_{mx}(x)(1 - \frac{cE_{bayes}}{c-1})$$

• $\delta(x)$ é a função de semelhança (Drakopoulos 95), que pode ser estimada, e tem geralmente um valor baixo

Fronteiras do vizinho mais próximo

■ Partição de Voronoi do conjunto de treino



39

Problemas com k-nn

- Exigem MUITA memória para guardar o conjunto de treino
- Exigem MUITO tempo na fase de classificação
- São muito sensíveis a outliers
- São muito sensíveis à função de distância escolhida
 - □ Só de pode resolver com conhecimento à priori...

41

Edited Nearest Neighbors

- Remover os outliers, e os exemplos demasiado próximos da fronteira
- Usar a regra de classificação (k-nn) sobre o próprio conjunto de treino, e eliminar os exemplos mal classificados
 - $\Box k$ =3 já produz bons resultados

V 3.3, V.Lobo, EN / NOVA IMS, 2021

Minimização do nº de protótipos

- Reduzir o nº de protótipos resolve os 2 primeiros problemas !
- Deixa de ser possível estimar p(x)
- Enquadramento formal
 - □ Q-Sets
- Heurísticas
 - □ Condensed Nearest Neighbors (= IB2, RIBL, etc)

43

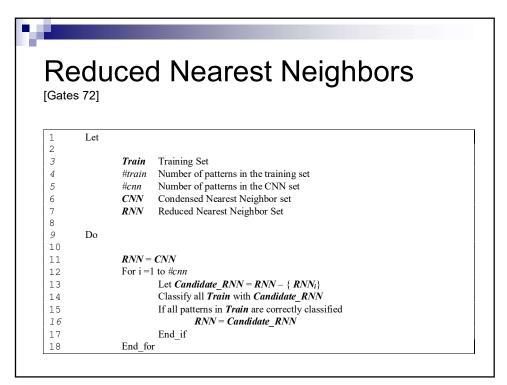
7

Condensed Nearest Neighbors

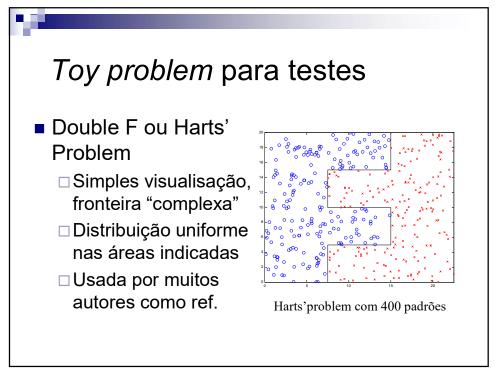
[Hart 68]

```
Train
                          Training Set
                          Number of patterns in the training set
                 #train
                 CNN
                         Condensed Nearest Neighbor set
                 CNN = \{ Train_1 \}
10
                 Repeat
11
                          Additions =FALSE
                          For i = 2 to #train
13
                                   Classify Train i with CNN
                                   If Train_i is incorrectly classified
15
                                            CNN = CNN \cap \{Train_i\}
                                            Additions =TRUE
17
                          End_for
18
                 Until Additions = FLASE
```

V 3.3, V.Lobo, EN / NOVA IMS, 2021



45



V 3.3, V.Lobo, EN / NOVA IMS, 2021

Avaliação experimental dos métodos

- 1 Gerar N pontos para conjunto de treino
- 2 Aplicar o método para obter um classificador
- 3 Gerar M pontos para conjunto de validação
- 4 Calcular o erro E no conjunto de validação
- 5 Repetir os passos 1-4 várias vezes, e calcular os valores médios e desvios padrões para: Erro, Nº de protótipos, Tempo de treino e classificação

47

Cálculo do erro

Qual o tamanho do conjunto de validação para estimar o erro ?

Para cada padrão
$$x = \begin{cases} 1(erro) & p \\ 0(certo) & 1-p \end{cases}$$

 $C/p \approx 1\%$ e N=10e6 $\sigma = 0.01\% \approx 0$

Erro médio $y = \frac{1}{N} \sum_{i=1}^{N} x_i$

$$E(y) = \overline{E}(x_i) = \hat{p} \quad \hat{\sigma}_y^2 = \frac{\hat{p}(1-\hat{p})}{N} \quad \text{(desde que } N \times p \times (1-p) > 5)$$

Rotinas Matlab (do Toolbox dos "Magos")

- Class_plot(x,y,class)
- [vx,vy]=Voronoi_boundary(x,y,class)
- [c,cp] = knn(t_data, t_label, x, k)
- [c] = knn_mat(t_data, t_label, x)
- [cnn,cnn_label]=Cnn(train, train_label)
- [rnn,rnn_label]=Rnn(train,train_label,cnn,cnn_label)
- outclass=SelfClassify(dataset,inclass)
- [data]=Remove col(data,index)

49

