

Victor José de Almeida e Sousa Lobo

SHIP NOISE CLASSIFICATION

A contribution to prototype based classifier design

Dissertation presented to obtain the degree

of Doctor in Informatics by the New

University of Lisbon, College of Science and

Technology.

Supervisor: Prof.Dr. Fernando Moura Pires

Co-supervisor: Prof.Dr. Roman Swiniarski

Lisbon

2002

to Beatriz

Deo Omnis Gloria

 v

Acknowledgments

Although a PhD program is supposed to be a personal accomplishment, I feel that this one was

really a team effort of many people.

I would like to express my great gratitude, admiration, and friendship towards my supervisor,

Prof.Dr. Fernando Moura Pires. He was extremely patient, spending long hours discussing and

working with me, sometimes showing more faith than myself in the success of the project. I am

also in dept towards my co-supervisor Prof.Dr. Roman Swiniarski. Thanks to him I spent several

months at San Diego State University, opening my eyes to a New World, that changed me

forever. His attention to detail and the many discussions and corrections of the manuscript had an

enormous impact on the final text of the thesis.

I must also give a very special acknowledgement to Commander Paulo Mónica de Oliveira and

Eng.Nuno Bandeira, who had a very direct impact on my thesis and could be considered my

unofficial co-supervisors. Having done his PhD on signal processing, Commander Mónica de

Oliveira helped me with all signal processing aspects of my work, and being head of department

at the Naval Academy gave me all the support possible. More than that, his advice as a very dear

friend changed the way I work and think about many things. Eng. Nuno Bandeira is, besides the

author, the person that spent more time working on problems related to this thesis, having written

most of the code of DSOM. As such, he was one of the first persons to fully understand the

concepts of Q-set simplifications. My many discussions with him were a wonderful experience

by themselves and an invaluable help to this thesis.

The support of all my family, both directly and indirectly was the basis for all my work. I must

thank my wife Sara for all the extra work she has had so that I could finish this thesis, and my

daughter Beatriz for being so understanding. My father has always given me an example of true

academic spirit, and personally reviewed my thesis. My mother gave all the support that only a

mother can give. And my brothers and sisters- in- law, as well as my parents- in-law always

supported my work with their friendship and help. Almost like family I must also thank Carol

Bourke, that “took care” of me and gave me an excellent working environment while I stayed in

San Diego. Her enthusiasm and support were a wonderful, if unexpected, blessing.

vi Acknowlegments

I am in dept to San Diego State University that received me as a visitor, and the faculty from the

Computer Science and Mathematics Departments that welcomed and helped me. In particular, I

would like to thank with all my heart Marko Vuskovic and his wife Anna, Marie Roch, Roxana

Smarandache, Sara Baase and Keith, John Elwin, and Renee Caprice.

During these last 6 years, there were many contributions by colleagues and professors from

Universidade Nova de Lisboa, from Instituto Superior Técnico, and from other researchers that I

met at conferences. Of these, I must mention Doctor João Paulo Marques da Silva, who

introduced me to the satisfiability problem, and gave me most of the references I used in that

area.

Most of my work was carried out while working at the Naval Academy. Besides thanking those

that have been in charge of this century old school for all their support, I must explicitly thank

Professors Cruz Serra, Afonso Barbosa, Alves Moreira and Pedro Girão, Commanders Ferreira

Neto, Sadanha Carreira and Miguel Policarpo, Sargents Natario, Gaspar, Nicolau, Mateus,

Paulino, and Gertrutes, and more recently Lieutenant Veloso for their support. I must also thank

the personnel from the acoustic tank, namely Mr. Rêgo, Brás e Silva, Ferreira da Costa, Victor

Santos, and Tito Matias.

I must also thank INVOTAN for giving financial support for my first visits to San Diego State

University, Fundação Gulbenkian for financing one of my trips to a conference, and very

specially FLAD for it’s very generous support, available despite very short notice.

Finally, I would like to thank all my friends, particularly those from “AnTUNiA”, from the

University Choir, from the Department of Computer Science of FCT/UNL, and from the Naval

Academy, for the relaxing moments that I enjoyed with them.

 vii

Table of contents
LIST OF FIGURES ...XI

LIST OF TABLES ... XVII

LIST OF ALGORITHMS... XVIII

GLOSSARY ... XIX

ABSTRACT ... XXIII

PART I – STATE OF THE ART..1

1 - GENERAL OVERVIEW...3

2 - FEATURE EXTRACTION ...9

2.1 – INTRODUCTION..9

2.2 - FOURIER TRANSFORMS...11

2.3 - OTHER FREQUENCY BASED TECHNIQUES ..13

2.4 - PRINCIPAL COMPONENT ANALYSIS AND RELATED TECHNIQUES ..15

3 - FEATURE SELECTION...19

3.1 – INTRODUCTION..19

3.2 - SCATTER MATRICES ..21

3.3 - ROUGH SETS ..23

4 - EXPLORATORY DATA ANALYSIS..31

4.1 – INTRODUCTION..31

4.2 – K-MEANS CLUSTERING..34

4.3 – SELF ORGANIZING MAPS (SOM) ..37

5 - CLASSIFIER DESIGN ..77

5.1 – INTRODUCTION..77

5.2 - CLASSIFIERS ..79

5.3 - NEAREST NEIGHBOR CLASSIFIERS ...80

5.4 – VARIATIONS ON NEAREST NEIGHBOR OR PROTOTYPE BASED SYSTEMS................................82

5.5 – OTHER RESEARCH ON NEA REST NEIGHBOR RELATED PROBLEMS...88

5.6 - PROTOTYPE MINIMIZATION..89

6 - VALIDATION ..113

viii Table of contents

6.1 – INTRODUCTION..113

6.2 – KNOWN SETS, TRAINING SETS, VALIDATION SETS, AND TEST SETS.....................................114

6.3 – ERROR RATE ESTIMATES ...116

6.4 – CONFUSION MATRICES ..119

PART II – ORIGINAL CONTRIBUTIONS ...121

1 - Q-SETS: A BOOLEAN FORMALIZATION FOR MINIMIZING PROTOTYPE-

BASED CLASSIFIERS...123

1.1 - INTRODUCTION ..123

1.2 - INFORMAL PRESENTATION OF THE THEORY..124

1.3 - THEORETICAL FRAMEWORK...127

1.4 - POSITIVE-ONLY Q-FUNCTIONS..133

1.5 – GENERAL CASE..138

1.6 - COMPARISON WITH OTHER METHODS...143

1.7 – EXTENSIONS AND APPLICATIONS OF Q-SET THEORY..151

2 - BINARY SELF-ORGANIZING MAP - BSOM ..161

2.1 – INTRODUCTION..161

2.2 - BINARY SOM ALGORITHM ..162

2.3 – RESULTS OBTAINED WITH BSOM ...165

2.4 – OTHER WORK ..166

3 - PARALLEL IMPLEMENTATION OF SOM OVER PVM ..169

3.1 – INTRODUCTION..169

3.2 - DISTRIBUTED SOM ALGORITHM ..170

3.3 - EXPERIMENTAL RESULTS ...173

3.4 - CONCLUSIONS..175

PART III - APPLICATION..177

1 - SHIP NOISE AND TARGET IDENTIFICATION...179

1.1 – INTRODUCTION..179

1.2 – THE BASIC PROBLEM ...180

1.3 - SOUND GENERATED BY SHIPS...184

1.4 - TRANSMISSION OF SOUND TO THE SONAR EQUIPMENT ...190

Table of contents ix

1.5 – PREVIOUS WORK IN THIS AREA ..195

2 - THE SOFTWARE USED ..203

2.1 – INTRODUCTION..203

2.2 – THE DSOM PROGRAM ..204

2.3 – MATLAB ROUTINES ..214

2.4 - OTHER SOFTWARE ...218

3 - THE SUBMARINE DATA ..221

3.1 - FIRST EXPERIMENTS...222

3.2 – USE OF DSOM AND DISTRIBUTED PROCESSING...223

3.3 – BROADBAND VS TONAL IDENTIFICATION ..224

3.4 – CLUSTERING ON A LARGE DATASET ..228

4 - ACOUSTIC TANK DATA ..233

4.1 - INTRODUCTION ..233

4.2 - DATASETS AND EXPERIMENTS ...242

APPENDIX A - EXPERIMENTS WITH HART’S DOUBLE F PROBLEM253

APPENDIX B - EXPERIMENTS WITH THE STRAIGHT LINE PROBLEM.................263

APPENDIX C - LIST OF DATA RECORDED IN THE ACOUSTICAL TANK...............277

APPENDIX D - OVERVIEW OF THE SIGNALS RECORDED IN THE ACOUSTIC

TANK..283

APPENDIX E - MATLAB ROUTINES ..291

REFERENCES...339

 xi

List of figures

Figure 1 - General overview of the classification problem. Spiked shapes represent data in

various forms. ..5

Figure 2 - Feature extraction/selection that produce data with these distributions will lead to

a good neural network classifier, but a bad decision tree classifier, since these have

decision boundaries parallel to the axis...6

Figure 3 - Example of a universe U partitioned by a set of attributes Q, and by a subset A of

these attributes. The set X (known as concept or class), that was am exact set using Q,

becomes a rough set using A. ..26

Figure 4 - Example of possible pitfalls of the k-means algorithm. In the situation presented

on the left, the sum of square distances criteria will correctly position the centroids at

the center of the clusters. However in the situation presented on the right, that criteria

does not provide satisfactory results. ..36

Figure 5 - Basic structure of a Self-Organizing Map (SOM) ..38

Figure 6 - Example of a 2-dimensional SOM mapping 3-dimensional patterns. On the top,

patterns are represented by "-", and are distributed around some of the vertices of the

cube. The SOM units are represented in the input space by black balls, with lines

showing their neighbors in the output space. On the bottom, we can see the layout of

units in the output space, forming a regular grid. On the left, a 2x2 SOM was used,

while a 4x4 was used on the right. ..39

Figure 7 - Example of the unfolding of a 1-dimensional SOM (a line) (Kohonen 1995), to fit

a set of points uniformly distributed within a triangular area. The small numbers

represent the number of the iteration at which the snapsho t was taken.40

Figure 8 - Example of a 2D to 2D mapping of a uniform distrinbution of points in a sqare

(Mathworks 2001), (Kohonen 1995). Note that after training the units of the SOM are a

faithfull representation of the original distribution. This is possible because it was

uniform, and its dimensionality was the same as the SOM’s..41

Figure 9 - Example of an unfolded SOM. This map represents the same problem as the one

in Figure 4, but due to a bad choice of initial radius and learning rate, the map did not

unfold smoothly, and got stuck in a local minima. ...41

Figure 10 - Positions of the SOM units and U-Mat units in the ouput space. On the left, it is

shown how the U-Mat values are computed for the 3 types of units: those that are

located between SOM units, on SOM units, and on the diagonals. ..48

xii List of figures

Figure 11 - Example of a 3D represenation of a U-Mat, taken from (Guimarães and Urfer

2000). The central cluster is clearly separated from the rest of the map by a high ridge,

and the white line represents a succession of states present in a certain patients data..............48

Figure 12 - Example of cluster identification with a U-Matrix. 360 3-dimensonal data

points, centered at 6 corners of a unit cube (on the left) are mapped into 6 distinct areas

separated by dark dividing lines (on the right)..49

Figure 13 - A possible taxonomy for temporal SOMs...50

Figure 14 - Temporal Sequence processing with a tapped delay as input for a SOM.....................52

Figure 15 - Temporal sequence processing using time-related transformations as pre-

processing for the SOM...52

Figure 16 - Structure of a trajectory based SOM...54

Figure 17 - Structure of the Kangas Map...61

Figure 18 - Structure of each unit in a Temporal Kohonen Map (TKM) ..64

Figure 19 - Structure of each unit in a recurrent SOM..65

Figure 20 - Structure of the Recursive SOM...66

Figure 21 - Structure of each unit in a SOMTAD based map ...67

Figure 22 - Structure of a Hierarchical SOM...69

Figure 23 – Hart’s problem: two classes, each with 200 patterns, with uniform distribution

in the "F" shapes given..95

Figure 24 - Comparison of NN and CNN for Hart’s problem. In the right figure, only 47 of

the original 400 patterns were selected as classifiers. ...96

Figure 25 - Comparison of NN and RNN for Hart’s problem. In the right figure, only 29 of

the original 400 pattern were selected as classifiers. ..97

Figure 26 - Example of a Voronoi tesselation, defined by a set of 2-dimentional prototypes

represented by points...102

Figure 27 - Different data sets involved in the classification process ...115

Figure 28 - Example of a Q-set for a 2-dimensional problem. The center cross represents the

patterns for which the Q-set is being calculated. Crosses represent prototypes with the

same class as the pattern, and circles represent prototypes with a different class. The

white area represents the Q-set, containing 3 prototypes..125

Figure 29 - Example of a Q and R sets for a 2-dimensional problem. The center cross

represents the patterns for which the sets are being calculated. Crosses represent

prototypes with the same class as the pattern, and circles represent prototypes with a

different class. The white areas represent the Q-sets, while the gray represent the R-sets.130

List of figures xiii

Figure 30 - Hart's Double F problem. Class 1 has a uniform distribution in the rightmost F

shape, while class 2 has the same type of distribution in the leftmost, inverted, F shape.144

Figure 31 - Number of prototypes used for Hart's double F problem..145

Figure 32 - Error rate for Hart's double F problem. ...145

Figure 33 - Training time required for Hart's double F problem. ..146

Figure 34 - Number of prototypes used for the straight line problem...150

Figure 35 - Error rate for the straight line problem ...150

Figure 36 - Training times for the straight line problem. Note that the time axis uses a

logarithmic scale to be able to show very different training times. Due to this, when the

training time is too close to zero (as is the case for QSET-BB, CNN, RNN and QSET-P

when the training set has fewer than 16 patterns), the value is not represented in this

graph. ...151

Figure 37 - Same data used for prototypes and for selection...152

Figure 38 - Separate data for prototypes and selection..153

Figure 39 - Q-sets used a prunning technique ...154

Figure 40 - Q-sets as pre-processing..155

Figure 41 - The 10x5 unit SOM trained with binary data. Each shade corresponds to a

different type of ship ...165

Figure 42 - Message exchange in distributed SOM...172

Figure 43 - Diagonal distribution of units amongst different processors174

Figure 44 - Absolute execution times ..174

Figure 45 -Relative execution time (1=time on a single machine) ..175

Figure 46 - General description of the process of noise generation, transmission, and capture

by a passive sonar..181

Figure 47 - Typical frequency ranges of different sources of ship noise (Collier 1998).184

Figure 48 - Acoustic power radiated by a ship (Urick 1982) ..185

Figure 49 - Propulsion and auxiliary systems, and the fundamental frequency of noise

generated by them (Collier 1998)..186

Figure 50 - Typical power spectra of ship generated noise, and its change with speed.189

Figure 51 - Typical ambient noise levels (NATO 1993) ...191

Figure 52 - Typical bathythermic profiles (Apel 1990) ...192

Figure 53 - Main window of the DSOM program. ..208

Figure 54 - The main Pattern Window ..211

Figure 55 - Spectra visualization from the Pattern Window..212

xiv List of figures

Figure 56 - Training dialog box...213

Figure 57 - Example of a SOM obtained with the first experiments with the submarine data.

Each name (alfa to echo) corresponds to a different ship or class of ships. Echo and

Foxtrot are two very similar types of torpedoes..223

Figure 58 - Binary patterns obtained ...225

Figure 59 - A 10x5 unit SOM trained with binary data. Each shade corresponds to a

different type of ship ...227

Figure 60 - The U-Matrix obtained after clustering the 33 ship dataset with a SOM.229

Figure 61 - Various aspects of the acoustic tank. Note the sliding bridge and the outboard

motor fixation on the top photographs, and in the bottom ones, the acoustical isolation

visible when the tank was emptied..235

Figure 62 - Bruel & Kjaer 8104 passive omnidirectional hydrophone ..236

Figure 63 - Bruel 2636 amplifier ...236

Figure 64 - Motor 1, a 4.5 hp Mercury ..238

Figure 65 - Motor 4, a 3.6 hp Mercury ..238

Figure 66 - Motor 3, a 3.6 hp Yamaha ...238

Figure 67 _ Various aspects of the electric model boat (motor 5) ...238

Figure 68 – Transients c and d: hitting metal tubes ...240

Figure 69 - Transient a: bursts of compressed air..240

Figure 70 - Transient b: splashing water..241

Figure 71 - SOM with 20x15 units trained with all the patterns of dataset 1, and the

corresponding U-matrix. For the unfolding phase we used α=0.2, rinit=18, and 10

iterations through the dataset. For the second, we used α=0.05, rinit=8, and 100 iterations

through the dataset. ...244

Figure 72 - SOM with 40x30 units trained with all the patterns of dataset 1, and the

corresponding U-matrix. For the unfolding phase we used a=0.2, rinit=38, and 10

iterations through the dataset. For the second, we used a=0.05, rinit=12, and 100

iterations through the dataset...244

Figure 73 - SOM with 20x15 units trained with all the patterns of dataset 1 using reduced

features, and the corresponding U-matrix. For the unfolding phase we used α=0.2,

rinit=18, and 10 iterations through the dataset. For the second, we used α=0.05, rinit=8,

and 100 iterations through the dataset...247

List of figures xv

Figure 74 - SOM with 20x15 units trained with all the patterns of dataset 2, and

corresponding U-matrix. For the unfolding phase we used a=0.2, rinit=18, and 10

iterations through the dataset. For the second, we used a=0.05, rinit=8, and 100 iterations

through the dataset ..248

Figure 75 - SOM with 40x30 units trained with all the patterns of dataset 2, and

corresponding U-matrix. For the unfolding phase we used a=0.2, rinit=38, and 10

iterations through the dataset. For the second, we used a=0.05, rinit=12, and 100

iterations through the dataset...248

Figure 76 - Hart's Double F problem. Class 1 has a uniform distribution in the rightmost F

shape, while class 2 has the same type of distribution in the lefmost, inverted, F shape........254

Figure 77 - Borders between classes in the double F problem using 100 training patterns255

Figure 78 – Borders between classes in the double F problem using 200 training patterns a256

Figure 79 – Borders between classes in the double F problem using 400 training patterns257

Figure 80 – Borders between classes in the double F problem using 800 training patterns258

Figure 81 – Borders between classes in the double F problem using 1600 training patterns259

Figure 82 - Borders between classes in the double F problem, using 1600 patterns260

Figure 83 - Borders between classes in the double F problem, using 3200 patterns261

Figure 84 - The straight line problem. Patterns belonging to class 1 are represented by "+",

and patterns belonging to class 2 by “x” ...264

Figure 85 – Borders for the straight line problem, with a training set of 4 prototypes..................265

Figure 86 – Borders for the straight line problem, with a training set of 8 prototypes..................266

Figure 87 – Borders for the straight line problem, with a training set of 16 prototypes................267

Figure 88 – Borders for the straight line problem, with a training set of 24 prototypes................268

Figure 89 – Borders for the straight line problem, with a training set of 32 prototypes................269

Figure 90 – Borders for the straight line problem, with a training set of 40 prototypes................270

Figure 91 – Borders for the straight line problem, with a training set of 48 prototypes................271

Figure 92 – Borders for the straight line problem, with a training set of 56 prototypes................272

Figure 93 – Borders for the straight line problem, with a training set of 64 prototypes................273

Figure 94 – Borders for the straight line problem, with a training set of 96 prototypes................274

Figure 95 – Borders for the straight line problem, with a training set of 128 prototypes..............275

Figure 96 – Borders for the straight line problem, with a training set of 256 prototypes..............276

xvi List of figures

Figure 97 - Spectra of Motor 1. The black line represents the average, the dark gray area

represents the region of average ± standard deviation, and the light gray area

encompasses all observed signals (from maximum to minimum values)285

Figure 98 -Spectra of Motor 2. The black line represents the average, the dark gray area

represents the region of average ± standard deviation, and the light gray area

encompasses all observed signals (from maximum to minimum values).286

Figure 99 -Spectra of Motor 3. The black line represents the average, the dark gray area

represents the region of average ± standard deviation, and the light gray area

encompasses all observed signals (from maximum to minimum values).287

Figure 100 - Spectra of Motor 4. The black line represents the average, the dark gray area

represents the region of average ± standard deviation, and the light gray area

encompasses all observed signals (from maximum to minimum va lues).288

Figure 101 - Spectra of background noise (or motor 5). The black line represents the

average, the dark gray area represents the region of average ± standard deviation, and

the light gray area encompasses all observed signals (from maximum to minimum

values). ..289

 xvii

List of tables

Table 1 - General conventions .. xix

Table 2 - Names of techniques, sets, and algorithms.. xix

Table 3- Overview of the approaches used in 68 different papers...75

Table 4- List of some papers that compare prototype minimization techniques111

Table 5 - Smallest size of consistent subsets obtained for the Iris data111

Table 6- Example of a confusion matrix. Numbers on the diagonal correspond to correctly

classified patterns. In this case, it clear that class C is correctly classified, but there are

errors in distinguishing class A from class B. ...120

Table 7 - Leave-one-out cross-validation for the Iris Dataset. Together with the error rate,

the actual number of errors is shown in parenthesis ...148

Table 8 - Proposed solutions ..165

Table 9 - Execution times (in seconds) ..175

Table 10- Error rates in the training sets..226

Table 11 - Error rates in the test sets..226

Table 12 - General information about the Acustic Tank data. The number of patterns

correspond to 3s segments of the original signal. These will later be subject to different

feature extraction techniques, to produce the final patterns. ...242

Table 13 - Results of cross-validation on dataset 1. ..245

Table 14 - Results of cross-validation on dataset 1, using small training sets.............................246

Table 15 - Features selected from dataset 1, using scatter matrices. ...246

Table 16 - Results of cross-validation on dataset 1 with reduced features.247

Table 17 - Results of cross-validation on dataset 1 with reduced features, using small

training sets. ..247

Table 18 - Results of cross-validation on dataset 2. ..249

Table 19 - Results of cross-validation on dataset 2, using small training sets.............................250

Table 20 - Reducts for dataset 2 produced by Roughsetlab, using 10 levels of disretization.251

Table 21- Results of cross-validation on the reduced dataset 2. ..251

Table 22- Results of cross-validation on the reduced dataset 2, using small training sets252

Table 23 - General information about the Acustic Tank data. The number of patterns

correspond to 3 s segments of the original signal. These will later be subject to different

feature extraction techniques, to produce the final patterns. ...284

 xviii

List of algorithms

Algorithm 1 - Original k-means clustering ..35

Algorithm 2 - Batch k-means clustering ...35

Algorithm 3 - SOM training algorithm (for a 2-dimensional map) ...42

Algorithm 4 - Nearest Neighbor Classification Rule...80

Algorithm 5 - Building Condensed Nearest Neighbors set (CNN) ...94

Algorithm 6 - Building the Reduced Nearest Neighbor set (RNN)...97

Algorithm 7 – Chang’s Algorithn ..99

Algorithm 8 – Selective Nearest Neighbors ..101

Algorithm 9- Computing Positive-only Q-sets ..136

Algorithm 10 - Qset Heuristic for selecting prototypes ...137

Algorithm 11 - Computing the complete Q-sets ..141

Algorithm 12 - G2P - General to Positive ...142

Algorithm 13 - Algorithm 13 - The distributed SOM algorithm. ..171

 xix

Glossary

Throughout the thesis we have tried to use a coherent nomenclature that is summarized in Table

1 and

Table 2. Generally, italic is used when referring to variables, and they will be in bold if they are

vectors or sets, and normal if they are scalar

Table 1 - General conventions

Sets of patterns are in italic and start with uppercase. Example_set

Members of Sets of patterns are in italic, and have indexes in

parenthesis.

Example_set(3)

Patterns are in bold italic, and start with lowercase. example_pattern

Components of individual patterns are represented by their index

number in superscript.

example_pattern4

Component planes (i.e. the same component of all individual

patterns) of a set of patterns, are represented by their index

number in superscript over the name of the set.

Example_set3

Table 2 - Names of techniques, sets, and algorithms

|A_set| Cardinality of “A_set”.

a priori

error

Maximum error that might occur when using the positive only Q-set

approach.

AMER Acceptable maximum error rate – Maximum a priori error rate we are

willing to accept when using the general case Q-set heuristic.

CB Cost/Benefit ratio of a pattern used in the general case Q-set heuristic.

CNN Condensed Nearest Neighbor (Hart 1968) – A prototype minimization

technique, , for prototype based classifiers.

CNF Conjunctive Normal Form - A representation of a Boolean function as

product of sums.

DNF Disjunctive Normal Form – A representation of a Boolean function as sum

of products.

xx Glossary

DMCNN Devi modified CNN - Prototype selection method, for prototype based

classifiers (Devi and Murty 2002).

DSM Decision Surface Mapping – A method that finds prototypes close to

interclass borders (Geva and Sitte 1991).

DYNAGEN Prototype selection method, for prototype based classifiers (Laha and Pal).

G2P General to positive only – algorithm used to convert a general case

complete Q-set to a positive only Q-set.

GA Genetic Algorithm (Fogel 1999) - An optimization technique. It can be used

to for prototype minimization, for prototype based classifiers.

GLVQ Generalized LVQ – A variation on the LVQ neural network.

GLVQ-F Fuzzy generalized LVQ (Karayiannis, Bezdek et al. 1996) – A variation on

the LVQ neural network.

Hastie-

Stuetzle

Algorithm

Algorithm for finding principal curves (Hastie and Stuetzle 1989) (Chang

and Ghosh 2001). Related to PCA and SOM..

ICA Iterative Condensation Algorithm – Prototype minimization technique

(Swonger 1972).

ICA Independent Component Analysis – Data transformation technique, e.g.

(Hyvarinen and Oja)

LVQ Linear Vector Quantization (Kohonen 2001) – A type of neural network.

LVQ-H Huang’s modified LVQ (Huang, Chiang et al. 2002) – A variation on the

LVQ neural network

MCS Minimal Consistent Subset

MNV Mutual Neighborhood Value – A prototype minimization technique, for

prototype based classifiers (Gowda and Krishna 1979).

MSS Minimal Selective Subset

MultiEdit A data editing technique, used to improve the performance of prototype-

based classifiers (Devijver and Kittler 1982).

RCNN Reduced Complexity Nearest Neighbor -An algorithm for building fast

nearest neighbor classifiers (Lee and Chae 1998).

RISE Rule Induction from a Set of Exemplars - A case-based reasoning system

that unifies instance based learning with rule induction (Domingos 1995).

RNN Reduced Nearest Neighbor (Gates 1972) – A prototype minimization

Glossary xxi

technique, , for prototype based classifiers.

RS Random Selection – A technique based on random selection of entities. It

can be used to for prototype minimization, for prototype based classifiers

(Kuncheva and Bezdek 1998).

SA Simulated Annealing (Kirkpatrick, Gelatt Jr. et al. 1983) – An optimization

technique. It can be used to for prototype minimization, for prototype based

classifiers.

SNN Selective Nearest Neighbors (Ritter, Woodruff et al. 1975) – A prototype

minimization technique, , for prototype based classifiers

SOM Self Organizing Map (Kohonen 2001). A data visualization, quantization,

and mapping algorithm.

SVM Support Vector Machines – A classifier design technique (Vapnik 2000).

TS Tabu search (Glover and Laguna 1997) – An optimization technique. It can

be used to for prototype minimization, for prototype based classifiers.

XCNN CNN classification set

XRNN RNN classification Set

Xtrain Training Set (of patterns)

 22

 xxiii

Abstract

The main objective of this thesis is to construct a system that can identify ships using the noise

they produce underwater. In the process, a few contributions are made to prototype based

classifier design.

This thesis is divided into three parts. We begin by presenting a state of the art of relevant topics,

then we propose a few original contributions, and finish by presenting the results of the

application of previously discussed techniques to a specific problem.

Part I contains an overview and state of the art on pattern classification. Particular emphasis is

given to techniques that were applied during our experimental phase and to issues more closely

related to our contributions. A brief introduction to the global problem is presented in Chapter 1,

where relations among various phases of classifier design are laid out. Chapter 2 overviews some

of the most common techniques used for feature extraction, such as frequency based transforms

and principal component analysis. Chapter 3 deals with feature selection techniques, including

the use of scatter matrices, and the use of Rough Sets. In Chapter 4 we review the use of k-means

clustering and Self-Organizing Maps for exploratory data analysis. Chapter 5 is the largest as it

addresses the main issue which is classifier design. While other classification methods are

mentioned, most of the chapter covers nearest neighbor classifiers and a thorough review of

prototype minimization techniques is presented. Finally, Chapter 6 reviews the issue of cross-

validation and clarifies the meaning of training, test, and validation sets. The review of two very

specific issues (the use of Self Organizing Maps for binary patterns, and the parallelization of the

Self Organizing Map algorithm) is postponed to the last chapters of Part II.

Part II contains the core of this thesis describing its original contributions. The first chapter deals

with the main contribution, which is a method for minimizing the number of prototypes

necessary for a nearest neighbor classifier. A framework is proposed, named Q-set theory, which

relies on a Boolean function formalization of the classifier minimization problem. Two distinct

algorithms are presented, that use Q-set concepts and heuristics to achieve that minimization. An

example of how Q-set theory allows the problem to be solved exactly with existing optimization

algorithms it is also shown. A comparison with other algorithms is performed, with standard

benchmark datasets, and possible extensions proposed. The next two chapters contain two minor

xxiv Abstract

original contributions. Chapter 2 presents an adaptation of the Self-Organizing Map algorithm for

clustering binary valued data. The problems associated with that adaptation are presented,

solutions are proposed, and a brief description of its performance is done. Chapter 3 presents a

parallel implementation of Self-Organizing Maps using common networked PC computers.

Part III describes the application of the classifier techniques developed here to the specific

problem of this thesis: the classification of underwater sound. Chapter 1 overviews the issues

that, while not directly related to computer science, are relevant to the problem. Chapter 2

describes the software tools developed. Chapter 3 describes the classification of data obtained by

operational submarines. Chapter 4 describes the classification of acoustic data obtained under

controlled conditions in an acoustic tank. The process of data gathering is described in detail and

processing results are presented.

PART I

State of the art

 3

PART I

CHAPTER 1

General Overview

The main problem that originated this thesis was how to enable a submarine to identify the ships

that are near it by hearing the underwater sound they produce. This is a crucial problem for

submarine operation, and as we progressed in our work we found many other areas of application

where the same techniques could be used, both for military and for civilian purposes. In all those

applications, underwater sound must be recorded, pre-processed, and classified into one of a

series of possible classes.

Classification of underwater sound, also referred to as hydrophonic effects, can be seen as a very

particular case of the more general classification problem, or pattern recognition problem. In this

4 Part I, Chapter 1

part of the thesis we shall overview the general problem of classification, with particular

emphasis on the approaches and techniques that will be improved as original contributions in part

II, and those that will be used to process our data in part III.

Classification of data is a very well studied problem in statistics, computer science, and

engineering in general, and many excellent textbooks have been written on the subject, e.g.,

(Fukunaga 1990; Bishop 1995; Duda, Hart et al. 2001). As a whole, the problem encompasses

much more than the strict classifier design problems that shall be overviewed in Chapter 5, and

includes problems such as gathering the data, choosing what aspects of that data are relevant,

validating the results, etc.

Generally, the whole classification task can be divided into the following steps, shown

graphically in Figure 1:

a) Obtain the raw data.

b) Extract features from that data.

c) Perform some exploratory data analysis, and gain insight on the problem, if necessary.

d) Select the features most relevant for classification.

e) Design a classifier.

f) Validate the classifier to obtain an estimate on its reliability, i.e., on how much

confidence should be given to the classification it performs on new data.

General overview 5

This division into separate and more or less independent tasks is a simplification that is necessary

to tackle the problem effectively. In reality all tasks are strongly interconnected. As an example,

a feature extraction/selection technique that produces 2-dimensional features with a diagonal

distribution as shown in Figure 2, may be optimal for a neural network based classifier (say a

MLP (Rumelhart, Hinton et al. 1986)), but will certainly lead to a poor Decision Tree based

classifier, such as those proposed by (Breiman, Friedman et al. 1984).

Physical
phenomena

Experimental
measurements

Feature
extraction

Features

Raw
data

Feature
selection

Fundamental
featuresClassifier

Exploratory
data

analysis

Insight

Validation

Streamlined
feature
extraction

Useful information

Classifier
design

Physical
phenomena

Experimental
measurements

Feature
extraction

Features

Raw
data

Feature
selection

Fundamental
featuresClassifier

Exploratory
data

analysis

Insight

Validation

Streamlined
feature
extraction

Useful information

Classifier
design

Figure 1 - General overview of the classification problem. Spiked shapes represent data in various forms.

6 Part I, Chapter 1

It can also be argued that if the right parameters are measured and the feature extraction

technique is “optimal”, it will be possible to map the raw data directly into the “class space”,

rendering all following steps unnecessary. The exact opposite may happen if the raw data

available can be used directly to design a good classifier in an efficient manner. The notions of

“pre-processing”, “feature extraction” and

“classifier” become blurred and almost

undistinguishable. Naturally, since these cases

constitute trivial problems that are infrequent in

practice, no more attention will be given to them.

The only useful point to retain is that good

feature extraction techniques can lead to simpler

classifiers, and powerful classifiers can make up

for poor feature extraction. The choice of where

to invest time and effort is problem and user

dependant.

Although there has been a lot of work choosing the best combinations of techniques for specific

problems, a general unifying approach that can be applied to any generic problem is not

foreseeable. Therefore, we will follow the traditional approach and look at each step in the

classification problem separately.

Some of these steps are very problem dependant, such as the measurements to be made of the

phenomena, while others are almost problem independent, such as the design of a classifier given

the fundamental features.

The phenomenon to be classified is many times a physical one, such as the noise produced by a

ship moving in the ocean studied in this thesis. However, it could be anything, such as a web

page that we may want to categorize or information about bank transactions. When attempting to

obtain a classifier, the choice of data to use and the process of gathering them is crucial to the

success of the process. When the data can be obtained via controlled experiments, the design of

those experiments is very important. It should guarantee that the data obtained are representative

of the problem at hand and are not biased or contaminated in any way. The design of experiments

is one of the most ancient arts of science, perfected by generations of chemists, physicists or

biologists. It is extremely problem dependent, requiring careful planning, execution, and note

Class
1

Class
2

x1

x2 Class
1

Class
2

x1

x2

Figure 2 - Feature extraction/selection that
produce data with these distributions will lead
to a good neural network classifier, but a bad
decision tree classifier, since these have decision
boundaries par allel to the axis.

General overview 7

taking. When experimental data generation is not possible, such as when we want to classify

stock exchange fluctuations, care must be taken in selecting representative data, and

characterizing the conditions under which they were obtained. Once again, it is an extremely

problem dependant issue, for which no general recipes can be given. Thus, we will not attempt to

overview this topic, but will characterize our data gathering efforts in part III of this thesis.

Feature extraction is also highly problem dependant, so in chapter 2 we will only overview the

techniques used in this thesis.

When overviewing feature selection techniques in chapter 3, we will give particular attention to

Rough Sets (Pawlak 1988) since it is a relatively recent technique that we find particularly

attractive.

The overview on exploratory data analysis given in chapter 4, although not strictly necessary for

the pure classification problem, can be very useful. When dealing with a difficult and possibly

ill-understood problem, exploratory data analysis can provide us with clues as to what is

happening in the available data, how to improve the various steps of the process, and what to

expect from the final classifier.

In chapter 5, we will overview the main research area of this thesis, namely nearest neighbor or

prototype based classifier design. We will position this type of classifiers within the much

broader scenario of classifier design techniques but will not discuss them individually.

Closing the classifier design cycle, we will overview validation techniques in chapter 6.

Finally, it must be pointed out that in a practical situation, all the steps discussed will probably be

iterated in closed loop, until a satisfactory result is obtained.

 9

PART I

CHAPTER 2

Feature Extraction

2.1 – Introduction

By feature extraction, we mean the process that transforms the raw data into data that can be used

by a classifier. By feature, we mean a component of the multidimensional vector used to

represent those data.

Feature extraction is a separate task from feature selection that will be overviewed in chapter 3,

since while feature extraction generates new data from operations performed on the raw data,

10 Part I, Chapter 2 – Feature extraction

feature selection will only choose some components of this data (the most relevant) to be used by

the classifier.

Usually, one generates more features than the ones that will be used. The reason for this is that,

when designing a classifier, we usually do not know a priori what features are best for

classification. The best solution is then is to generate all features that, for some reason, are felt to

be useful, and then choose the best.

The choice of feature extraction techniques is extremely problem dependent. All a priori

knowledge about the problem should be used at this stage. For example, if we have the

measurements of width and length of wooden boards, and know that their area may be important

for the classification task (say their distribution amongst different warehouses), then an obvious

feature extraction technique would be to simply multiply those two parameters and obtain the

area of the boards.

Most classifier design techniques require the data to be presented in sets of small units called

patterns, pattern vectors, samples, examples or simply data vectors. In this thesis we have

adopted the term pattern, for it is both more general and less ambiguous than the others. When

the raw data are obtained, many times they are already in the form of something to which we can

call patterns, but other times they are not. In this latter case, and if required by the classifier

technique we want to use, the feature extraction technique must divide the data into patterns. For

example, when classifying sound pitch, we may have a continuous recording obtained by a

microphone. This continuous sound signal must then be broken down into small fragments,

where the pitch is assumed more or less constant, so that the classifier can determine that pitch.

 A common concern of feature extraction techniques is to obtain features that are invariant to

irrelevant aspects of the data, as far as the classification is concerned. When classifying letters,

their orientation may be irrelevant, or when classifying weapons by their sound, the instant in

time when the shot occurs may be irrelevant. Without trying to be all encompassing, we can say

that it is common to whish for properties such as time- invariance, rotation- invariance, position-

invariance, or scale- invariance.

Feature extraction can also be viewed as a data or knowledge representation problem, and is

treated as such by some authors, such as (Anzai 1992).

Feature extraction 11

Feature extraction will many times require the use of signal processing. We shall briefly review

some of the most popular techniques.

2.2 - Fourier transforms

The original work that let to the Fourier transform is due to Jean Baptiste Joseph Fourier who, in

the beginning of the 19th century, used sinusoidal decomposition techniques to solve heat transfer

problems. It has been widely used in science and engineering ever since. It decomposes a

complex valued signal (of which a real valued signal is just a particular case) into a sum of sine

and cosine signals. This effectively maps the original signal into a different domain, called the

frequency domain. The representation of the signal in the frequency domain is called the

spectrum of the signal. If the phase of the sinusoidal functions is ignored and only their

amplitude is used, this mapping is time-invariant, thus achieving one of the usual goals of feature

extraction. The frequency domain has a very intuitive physical meaning of “cycles per second”

(even if sometimes misleading (Oliveira and Barroso 1998)), that is a useful feature by itself in

many problems. The square modulus of the spectrum is usually referred to as the “power spectral

density” or “energy spectral density” for power or energy signals respectively, and also has a

very useful meaning, since it allows us to determine original signal’s power (or energy)

contained in any given frequency band.

By definition, the Fourier transform X(ω) of a signal x(t) is given by

 ∫
+∞

∞−

−= dtetxX tjωω)()(. (1)

For discrete signals, such as those available for processing by a digital computer, the Discrete-

time Fourier transform is defined as (e.g. (Oppenheim and Shafer 1989))

 ,)()(∑
+∞=

−∞=

−=
n

n

njenxX ωω (2)

where ω, known as normalized angular frequency, is given in radians per sample, and is related

to the more traditional notion of frequency f in Hertz (cycles per second) by f= (ω × fs) /2π , where

fs is the sampling frequency (in samples per second). From the formula given above, it is obvious

that the Discrete-time Fourier transform at frequencies that differ by 2π will be exactly the same.

12 Part I, Chapter 2 – Feature extraction

Thus, we only need to compute the transform for a 2π interval. In what follows we will refer to

the Discrete-time Fourier transform simply as Fourier transform.

When choosing the time interval between two consecutive values of x, known of sampling period

(the inverse of the sampling frequency), care must be taken to guarantee that information is not

lost. The minimum sampling frequency must be greater than twice the highest frequency

component in the original signal. This is known as Nyquist’s theorem (e.g. (Oppenheim and

Shafer 1989)), and if care is not taken to respect it, aliasing will occur, i.e., the obtained spectra

of the signal will be affected by “phantom components” resulting from high frequency

components of the signal. A common way to avoid this is to filter the original (analog) signal

before it is sampled. These filters are known as anti-aliasing filters.

The Fourier transform, as defined above, would require complete knowledge of the original

signal from n=-∞ to +∞. This is obviously not possible for a finite digital system, so the Short

Time Fourier Transform (e.g. (Bendat and Piersol 1993)) is used, defined as

 ∑
=

=

−=
Nn

n

njenxX
0

)()(ωω , (3)

where N is the number of samples (data points) considered.

Unfortunately, considering just a time-limited portion of the original signal is equivalent to us ing

that original signal multiplied by a square pulse with width equal to the observation time

considered. It is well known (Oppenheim and Shafer 1989) that multiplication in the time domain

is equivalent to convolution in the frequency domain. The final effect is that the spectrum of the

original signal is blurred by the convolution with the spectrum of the square pulse. To minimize

this effect, the sampled signal is usually multiplied by a window function (Harris 1978), that has

more desirable features than the square pulse function. Each different window function has its

own specific advantages and disadvantages, balancing the width of the main lobe (which will

reduce the actual frequency resolution), the amplitude of the side lobes, the power contained in

those lobes (to minimize power leakage), etc. One of the first windows to be proposed, the

Hamming window (Harris 1978) is probably the most used for its balance of characteristics since

its highest side lobe is 43 dB lower than the main lobe and the main lobe has an equivalent noise

bandwidth of only 1.36 bins (e.g. (Poularikas 1998)).

Feature extraction 13

To be able to reconstruct the original discrete signal from its spectrum, this spectrum must be

calculated in at least as many points as were present in the signal. Failure to do that will result in

time aliasing (Oppenheim and Shafer 1989).

The computation of the Short Time Discrete Fourier Transform directly from its definition is

very time consuming. A computationally very efficient technique was developed and named Fast

Fourier Transform (FFT) (Cooley and Tukey 1965). It computes the Discrete Time Fourier

Transform in N equally spaced points in the frequency domain, where N is the number of points

in the time domain, and required to be a power of 2. Other efficient algorithms to compute the

Fourier transform have since been developed (Poularikas 1998). In practice, almost all

engineering applications of the Fourier Transform use a FFT procedure to calculate it.

For most practical problems, the original signal is real-valued and, in this case, its Fourier

transform will possess Hermitian symmetry (i.e. complex conjugate symmetry) around zero

frequency. Thus, for a discrete real signal, we need only keep the values of its Fourier transform

from 0 to π .

The signals for which we want to compute the Fourier transform are many times contaminated

with noise, which is frequently assumed white and Gaussian. One way of canceling out this

noise, is to compute the Fourier transform of different portions of the signal and then compute

their averages. If the noise contained in the different portions is not correlated, the averaged

transform will be less affected by it. Even if there is some correlation between the noise in the

two portions (for example, if we use overlapping portions), there will still be some gains.

Averages of successive Fourier transforms of overlapping parts of a signal are known as Welsh

periodograms. It has been proved that, assuming white Gaussian noise, the unbiased estimator

with minimum variance due to noise is obtained using a 50% overlap of the base portions of the

signal (e.g. (Kay 1988)).

2.3 - Other frequency based techniques

Despite its wide application, the Fourier Transform has a few drawbacks. One is that when

representing the signal in the frequency domain, all information about the location in time is lost.

For stationary signals, this presents no problem, but it is not appropriate for analyzing signals that

have some time-varying dynamics, such as in the analysis of transients. One common solution is

14 Part I, Chapter 2 – Feature extraction

to use short time Fourier Transforms, assuming that the signal is quasi-stationary in that short

time, and then use a sequence of these Fourier Transforms in what is known as a spectrogram.

The quasi-stationary assumption is not always verified. Even then, the spectrogram may

constitute a very useful and practical tool. For the non-stationary case other tools have been

developed, such as bilinear time-frequency distributions and wavelet transforms.

One of the first and best known time-frequency distributions is the Wigner-Ville transform

(Wigner 1932; Qian 2002), known as WVD. It is defined as

 τ
ττ

ω ωτ detststWVD j
s

−
+∞

∞−

−+= ∫)
2

()
2

(),(* , (4)

where

 s(•) is the function in the time domain,

 s*(•) is its conjugate,

 t is an instant in time,

ω is a given frequency.

This allows us to estimate the spectrum of a non-stationary signal at any point in time. However,

there are limits to the time-frequency resolution that is achievable, as described in (Oliveira and

Barroso 1998). One of the main disadvantages of WVD is that it produces severe cross-term

interferences, which tend to contribute to time-frequency descriptions that are many times

difficult to interpret. This has spurred a vast array of alternative distributions (Qian 2002), most

of them belonging to what is called Cohen’s class. In some of the experiments performed by us,

we used one such variant, developed in (Hippenstiel and Oliveira 1988; Hippenstiel and Oliveira

1990) known as IPS, and defined as:

 ∫
+∞

∞−

−++−= τττ τπ detstststsftIPS fj 2**)]()()()([
2
1

),(. (5)

Another major alternative is the use of Wavelet transforms. These transforms have their roots in

the work of Gabor (Gabor 1946), but only reached widespread use with the developments of

Daubechies (Daubechies 1990). The main idea behind wavelet transforms is to decompose the

original signal not into sinusoids, but into other base functions. These functions can be scaled

into longer or shorter versions, in a manner that matches frequency variations in sinusoids. They

may also be “positioned” anywhere in time, making it possible to localize short duration

Feature extraction 15

transients in signals. Although almost any base function could in theory be used, it is important

that the decomposition yield a transformed signal that accurately represents the original function,

and that the process can be inverted to reconstruct that signal. This implies that the basis

functions constitute what is known as a compact base. The most used base function is due to

Daubechies, and efficient implementations of a wavelet transform based on it are widely

available (e.g. (Mathworks 2001)). It has been found that wavelet transforms, not only allow

good time-frequency localization of transient signals, but can also produce very compact

representations of these signals. They are fast becoming as commonplace as Fourier transforms,

and being used in everyday applications such as JPEG 2000 image compression (Skodras,

Christopoulos et al. 2000).

Another family of frequency based techniques for signal analysis comes from using higher-order

statistics of the signal. These are very well reviewed in (Nikias and Petropulu 1993). One of the

most used is the cepstrum analysis, originally due to (Bogert, Healy et al. 1963), and studied in

detail in e.g. (Oppenheim and Shafer 1989). The complex cepstrum of a discrete signal is defined

as the inverse Z transform of the logarithm of the function’s Z transform, but can be obtained

using the Fourier transform by using

 ωω
π

ω
π

π

deSmc jm
s))(log(

2
1

)(∫
+

−

= , (6)

where S(ω) is the Fourier transform of signal s.

The cepstrum has many interesting properties, and is frequently used to detect harmonically

related components of a signal.

2.4 - Principal Component Analysis and related techniques

Principal Component Analysis (PCA) is an axis transformation technique that finds orthogonal

axes where the covariance between features is zero, and ranks those axes according to their own

variance. It was first proposed by Karl Pearson in 1901 (Jolliffe 1986; Flury 1988; Child), and

has since been improved and widely used for statistical analysis and dimensionality reduction.

Although not the process followed by the more efficient algorithms, the basic idea is to find the

direction where variance is maximum, take it as an axis, also known as principal component or

16 Part I, Chapter 2 – Feature extraction

most relevant feature. This feature, which is a linear combination of the original ones,

corresponds to the direction in space along which the data is most spread, and thus must contain

more information about what distinguishes one pattern from another. We then repeat the process

to find an axis perpendicular to this one that maximizes the remaining variance, and iterate until

there is no more variance in the data. If the original data can be represented in a space with lower

dimensionality than the original one, there will be fewer principal components than original

features. In most applications, the importance of successive principal components, although

rarely reaching zero, decreases to very small values that may be ignored without substantial

information loss. The PCA can thus be used to reduce the dimensionality of the data.

After PCA has been performed on a given dataset, the covariance matrix obtained can be used as

a linear transformation to map any new data into the principal component space, or any of its

subspaces. This is known as the Karhunen-Loeve transform1, and is frequently used in

telecommunication problems.

It must be noted tha t PCA is not necessarily a good preprocessing step for classification,

especially if we consider only the most relevant components. An elegant example is given in

(Bishop 1995) showing a situation similar to that depicted in Part1 - Chapter 1 of this thesis. In

that example, the first principal component, although explaining most of the variance in the data,

is irrelevant for classification, while the second principal component is the ideal feature for

classification. Therefore, PCA must be used with caution when attempting classification.

It must also be noted that Principal Component Analysis will perform a linear mapping onto

straight axis. If the data are distributed along a spherical cap or any other curvilinear surface, it

would be more convenient to use some sort of curved axis. To a certain extent, this can be

achieved with principal curves (Hastie and Stuetzle 1989; Kégl 2000, Krzyzak et al.1996)

(Chang and Ghosh 2001), namely with the incremental Hastie-Stuetzle Algorithm. The mapping

performed by these principal curves resembles the one performed by the SOM discussed in

chapter 4. Unfortunately, the methods available require a lot of prior knowledge about the data.

1 Karhunen published his groundbreaking paper in German, with the name “Uber lineare

methoden in der Wahrscheinichkeitsrechnung”, in Annales Academiae Scientiarum Fennicae,

Series A1: Mathematica-Physica, vol 37, pages 3-79.

Feature extraction 17

As far as we know, a general purpose algorithm that performs efficiently and reliably for any

given data has not yet been developed.

There has been a lot of interest recently in another pre-processing technique, called Independent

Component Analysis (Hyvarinen and Oja 2000), but we shall not use it in this thesis.

18 Part I, Chapter 2 – Feature extraction

 19

PART I

CHAPTER 3

Feature Selection

3.1 – Introduction

After obtaining a number of features that form the patterns to classify, we should try to select

only those that can indeed improve the performance of the classifier. This process is known as

feature selection.

Feature selection will generally lead to loss of information, and is many times based on singular

transformations. This would be undesirable if we were attempting to describe data, such as is the

goal of principal component or factor analysis. However, when we want to perform supervised

20 Part I, Chapter 3

classification, or when we want to focus on a particular aspect of those data, we do want to get

rid of any information that would distract us from our goal.

There are a few different reasons why we consider that this step should be taken:

a) Reduce noise generated by irrelevant features. Many classifiers are sensitive to irrelevant

features, and will degrade their performance when these features are included. Distance

based classifiers, such as the ones used in this thesis, are particularly sensitive to this. If a

random feature is included, it will contribute to the distance measure just as much as any

other feature. If the features were not scaled (or whitened), they may contribute even

more than a relevant feature. Thus, due to this distortion, a pattern may end up being

closer to patterns of a different class, even if originally the classes were well clustered by

classes.

b) Reduce the risk of overfitting the training data. The more features are used, the more

detailed the classifier can be. As we shall see later, if a classifier has too many degrees of

freedom it may adjust itself perfectly to the training data, but perform poorly when used

with other data. Reducing the number of features, and thus the degrees of freedom of the

classifier, will usually improve generalization.

c) Make the classifier computationally feasible. Too many features will require not only a

lot of computing power to obtain them, but even more computing power when training

and using the classifier. Fewer features will lead to a faster, thus more useful classifier.

As pointed out earlier, the best features for one type of classifier are not necessarily the best

features for another. Therefore, it is frequent to perform feature selection and classifier testing at

the same time in what is called closed loop (Cios, Pedrycz et al. 1998). The basic idea is to

choose a given set of features, train the classifier with them, and assess the performance. If the

performance is not satisfactory, another set of features will be selected, and the process repeated.

Since closed loop feature selection requires training many different classifiers, it can be a lengthy

process. To abbreviate it, a simplified version of the classifier design process may be used. Since,

in this step, we are mainly concerned with the relative merit of different sets of features, we can

try them with a under-trained or over-simplified classifier that has the same basic properties of

Feature selection 21

the final classifier. When a final set of features is selected, the final classifier can then be fine-

tuned. While this procedure cannot guarantee optimality, it generally produces good results.

If we do not want to iterate the classifier design phase in closed loop with feature selection, we

may attempt to select features based on their capacity to separate the different classes regardless

of the specific classifier used. This is called open loop selection. It can be argued that the criteria

used to measure the separability capacity of the set of features is implicitly considering a certain

type of classifier, but we shall not consider that effect. A number of different techniques have

been proposed and used to perform open loop feature extraction. We shall now overview a few of

them.

3.2 - Scatter Matrices

Intuitively, the best features for classification are those that have similar values within each class

and different values between classes. This can be measured using scatter matrices (Fukunaga

1990).

For feature selection 3 scatter matrices are considered: the within-class scatter matrix Sw, the

between-class scatter matrix Sb, and the mixture scatter matrix Sm.

The within-class scatter matrix Sw measures the dispersion of each class of pattern vectors around

that class’s expected value, and is defined as

 ∑∑
==

Σ=∈−−=
C

i
iii

T
C

i
iw PcEPS

11

)|)()((xmxmx ii , (7)

where

 mi is the expected value of patterns of class i,

 Pi is the prior probability of class i,

 ci is the class i,

 Σi is covariance matrix for class i.

As shown, Sw is simply a weighted average of the covariance matrices of each class.

22 Part I, Chapter 3

The between-class scatter matrix Sb measures the dispersion of the class’s expected values

around the global expected value, and is defined as

 T
C

i
ib PS)()(

1
0i0i mmmm −−= ∑

=

, (8)

where mo is the expected value of patterns of all classes.

The mixture scatter matrix measures the dispersion of all patterns around the global expected

valued, and is simply the sum of Sw and Sb :

 bw
T

m SSES +=−−=))((00 mxmx . (9)

These matrices contain a lot of information about the discriminatory power of each feature, of

relations between those features, and discriminatory power of groups of features. Unfortunately,

it is not easy to make use of that information. The most common technique relies on considering

each feature independently, and selecting those that have greatest ratio of within-class variance to

between-class variance. This can be done by calculating a diagona l matrix J that is the quotient

of Sb and Sw, and choosing the features that have greatest value in that matrix:

)(1
bw SStrJ −= . (10)

As discussed in detail in (Fukunaga 1990), many other choices for J are possible, and can be

summarized as follows.

)(1
1

21 SStrJ −= , (11)

 ||log||log)log(211
1

22 SSSSJ −== − , (12)

))(()1(23 cStrStrJ −−= µ , (13)

)(/)(214 StrStrJ = , (14)

where S1 and S2 can be {Sb,Sw}, {Sb,Sm}, or {S w,Sm}.

These scatter matrices can also be used to help design feature extraction techniques that

maximize their values.

Feature selection 23

3.3 - Rough Sets

Rough set theory was originally developed by Zdzislae Pawlak, in articles published within the

Institute of Computer Science of the Polish Academy of Science, and was presented in English in

(Pawlak 1982), as an alternative to Fuzzy Set theory and tolerance theory.

In a broad overview, it describes sets, which correspond to classes or concepts, based on their

upper and lower approximations. These upper and lower approximations are obtained using the

available features, which are called attributes in Rough Set literature, and available patterns, here

called objects. Contrary to fuzzy sets, nothing is said about the membership of patterns that lie

between the lower approximation (under which we are sure the object belongs to the given set),

and the upper approximation (above which we are sure the object does not belong to the given

class).

Rough set theory has proved to be particularly useful when dealing with imprecise data. It can be

used to find relationships in those data, remove redundancies, generate decision rules, reduce

databases, and select features for classification, which is our purpose.

Extensive work has been done in this area. For the basic foundations of Rough Set theory we

would recommend (Pawlak and Slowinski 1994). A good collection of papers and other

resourced related to Rough Set theory can found at “http://www.roughsets.org”. It must however

be noted that Rough Set theory is only a framework for the description and resolution of

problems. In that framework, goals and cost functions are defined, but Rough Set theory relies on

traditional optimization techniques to achieve many of its goals, namely finding the best features

for classification (known as finding the relative reducts).

Since Rough set theory is not yet widely known, and the concepts used are important to

understand some of the software used in this thesis, we shall provide a short introduction to the

main concepts of roughest theory. It must be pointed out that this introduction, while enabling the

reader to understand the language used by the Rough set community, does not cover many of the

aspects of Rough set theory, namely the actual techniques used to solve the problems stated.

24 Part I, Chapter 3

3.3.1. Basic concepts

The framework of Rough Set theory assumes an Information System, composed of a 4-tuple as

follows

 S = < U, Q, V, f >, (15)

where

S is the information system,

U the universe, defined as a nonempty finite set of objects {x1, x2, x3, … xn},

Q a nonempty finite set of attributes,

V the domain of values Vq∈Q for each attribute,

F the decision function, also called information function, defined as

 f: U × Q →V : f(x,q) ∈Vq , ∀q∈Q, ∀x∈U. (16)

The information system my be represented by a finite data table, in which the columns are

labeled by attributes q (or features), the rows by objects x (or patterns), and each entry in the

table has the value of f(x,q).

3.3.1.1 – The indiscernability relation

Two objects are said to be indiscernible by a set of attributes A if and only if the values of those

attributes are the same:

 x Ã y (read “x is indiscenable to y by A”) ⇔ f(x,a) = f(y,a) ∀a∈A. (17)

Any subset A⊂Q with lead to a equivalence relation on the universe U, called the indiscernability

relation, denoted IND(A), that can be defined as follows:

 IND(A)={ (x,y)∈U : ∀a∈A f(x,a)=f(y,a) }. (18)

The indiscernability relation IND(A), as a equivalence relation, splits the universe into a family of

equivalence classes {X1, X2, … Xr}. The family of all equivalence classes defined generates a

partition of U, and is denoted by A*. Alternatively, this partition is also referred to as

classification, and denoted by U/IND(A). Each of equivalence classes Xi is thus seen as a certain

type of class, called an A-elementary set. Each of these sets can be defined from a object x as

 [x]A = { y∈U : ∀a∈A f(x,a)=f(y,a) }. (19)

Feature selection 25

These A-elementary sets form the smallest discernible groups of objects, and thus the maximum

granularity achievable. These A-elementary sets constitute the A-basic knowledge, that is the

maximum amount of knowledge we may get using the set of attributes A. If we consider all the

attributes of the information system S, we will obtain the Q-elementary sets, which are called

atoms, since there is no way of distinguishing objects within them, whatever attributes are

considered. A union of one or more Q-elementary sets constitute a concept, X, definable in the

information system, which corresponds to the usual notion of class in classification problems.

3.3.1.2 – Decision tables

For classification problems, each object will have an assigned label, or class. Within Rough set

theory this is done by dividing the attribute set Q into two disjoint sets, called the condition

attribute set C, and the decision attribute set D, so that C ∪ D = Q ∧ C∩D = ∅.

In this case, instead of and information system S, we consider a decision table defined as

 DT = < U, C ∪ D, V, f >. (20)

Like the information system, the decision table can be represented by a table, but now the

columns are separated into condition attributes (corresponding to features), and decision

attributes (corresponding to class labels).

3.3.1.3 – Upper and Lower Approximation of sets

Once we select a given set of attributes, we no longer have the original space with its fine

granularity, but an approximation space, denoted AS = (U,IND(A)), which will have a coarser

granularity. Concepts, unions of Q-elementary sets defined by the original information system,

may no longer correspond to unions of the A-elementary sets of the approximation space.

Instead, in the new approximation space we may define upper (XA) and lower (AX)

approximations to the concept X as

 }:*{}][:{ XYAYXxUxXA A ⊆∈=⊆∈= U , (21)

 }:*{}][:{ ∅≠∈=∅≠∈= XYAYXxUxXA A IUI . (22)

26 Part I, Chapter 3

In plain English, the lower approximation contains only the objects that certainly belong to the

concept, but not necessarily all, while the upper approximation contains all the objects that

belong to the concept, and possibly some more that do not. A graphical example of upper and

lower approximations is given in Figure 3.

The lower approximation of a set, AX, is also known as the A-positive region of X in S, denoted

POSA(X). The area outside the upper approximation, XAU − , known as the A-negative region of

X in S, is denoted NEGA(X). The region between the two approximations, XAXA − , known as the

A-boundary region, is denoted BNA(X). Contrary to fuzzy set theory, that assigns a degree of

membership to the objects in this area, rough set theory will just consider that it is undecidable

whether these objects belong to X or not, given only the attributes A. This stems from a major

philosophical difference between rough set theory and fuzzy set theory. While the latter assumes

that the uncertainty about the class is an inherent characteristic of the object, the former assumes

that that uncertainty is only due to our incomplete knowledge about its attributes.

X concept
(diagonal squares)

A-boundaries
(thick dotted lines)

Q-boundaries
(thin lines)

Lower approximation of X: AX
(dark gray area)

Upper approximation of X: AX
(light gray area)

A-indiscernible areas
(limited by dotted lines)

Q-indiscernible areas
(limited by thin lines)

X concept
(diagonal squares)

A-boundaries
(thick dotted lines)

Q-boundaries
(thin lines)

Lower approximation of X: AX
(dark gray area)

Upper approximation of X: AX
(light gray area)

A-indiscernible areas
(limited by dotted lines)

Q-indiscernible areas
(limited by thin lines)

Figure 3 - Example of a universe U partitioned by a set of attributes Q, and by a subset A of these
attributes. The set X (known as concept or class), that was am exact set using Q, becomes a rough

set using A.

Feature selection 27

The relation between the upper and lower approximations of a set will determine its roughness. If

both sets are equal, ∅=− XAXA , the set X is said to be A-definable, and no uncertainty exists.

Otherwise it is set do be A-non-definable, and may fall into one of 4 categories:

a) A set is roughly A-definabe if and only if ∅≠∧≠ XAUXA . This will be the most

common case, where given a set of attributes, we know for certain that some objects do

belong to X and some do not.

b) A set is externally A-non-definable if and only if ∅≠∧= XAUXA . This is the case

when we cannot be sure that a given object does not belong to X.

c) A set is internally A-non-definable if and only if ∅=∧≠ XAUXA . This is the case

when we cannot be sure that a given object does belong to X.

d) A set is totally A-non-definable if and only if ∅=∧= XAUXA . In this case, the

attributes A are completely useless in defining X, for we cannot be sure of anything.

When a set is roughly A-definable, it is important to have an idea “how rough” it is. To that end,

the notion of accuracy of an approximation and quality of an approximation are used.

The accuracy of an approximation is defined as:

)(
)(

)(
XAcard
XAcard

XA =α . (23)

This is a value between 0 and 1, and gives a good idea about how well we can define a concept

with a given set of attributes. A value of 1 would mean that the selected attributes could define

the concept perfectly, while a value of 0 would mean that those attributes were a poor choice.

The notion of accuracy can easily be extended to a group of concepts, forming what is known as

the accuracy of the approximate classification γ, defined as:

)(

)(
)(

1

1

i

n

i

i

n

i
A

XAcard

XAcard

∑

∑

=

==γα . (24)

A similar notion, called quality of the approximation classification γ is defined as:

28 Part I, Chapter 3

)(

)(
)(1

Ucard

XAcard i

n

i
∑

==γρ . (25)

If the concepts are disjoint, the quality will have a value between 0 and 1, but otherwise it may

have a higher value.

3.3.1.4 - Classification and reduction of an information system

Some of the attributes of an information system may be redundant, i.e., the information they

contain is also contained by other attributes. These attributes are said to be dispensable, In Rough

set theory, the process of finding and eliminating these attributes is called attribute reduction, and

it is tightly correlated with our notion of feature selection.

Formally, an attribute a is dispensable from a set of attributes A if and only if IND(A)=INF(A-

{a}), i.e., if the original indiscernability relations generated by the set of all available attributes

are the same as the indescernability relations generated without it.

When deciding if a given attribute is redundant or not, one must have in mind what goal is sought

from the information system. Absolute redundancy of an attribute is a rare occurrence, but if

want to define a concept (perform a classification), then some attributes may be redundant

relatively to that objective. If we remove all redundant attributes, we will have a set of attributes

called a reduct. If we remove all attributes that are redundant relative to a given classification, we

will have a set of attributes called a relative reduct.

There may be (and usually are) many different relative reducts for any given problem. If there are

any attributes that are part of all the relative reducts, they form what is called the relative core.

Attributes that belong to the core cannot be discarded without loosing discernability. Attributes

which are part of a reduct but not of its core can be “traded” by other attributes.

3.3.1.5 – Using Rough sets for practical classification problems

Rough set theory does not require that the domain for each attribute be finite. However, if it is

not, then the granularity of the partitions defines will be infinitesimal, upper and lower

Feature selection 29

approximations will tend to converge, it will very hard to find reducts, and when used for

classification, the results will probably overfit the training data and generalize poorly.

Thus, in practical applications, it is necessary to discretize the data, obtaining finite domains for

each attribute. This discretization process can be critical, and many methods for doing it are

possible (Stockdale 1998). While not discussing here the details on how to perform this step, we

just want to mention that it is a necessary step, and most rough set programs provide means for

doing so.

After obtaining a discretized representation of our problem, we must define which features are

available, and designate them as condition attributes, and which are our classes or labels, and

designate them decision attributes. We may then proceed to compute the relative reducts, which

will be sets of indispensable features. We will usually choose the relative reduct with smallest

cardinality as the features to use in our classifier. However, we may be interested in finding the

core, i.e., the most important features, and then go back to the feature extraction process and

obtain better features. Rough sets can thus be an important part of the interactive feature

extraction/selection/exploratory data ana lysis process.

30 Part I, Chapter 3

 31

PART I

CHAPTER 4

Exploratory data analysis

4.1 – Introduction

Before choosing and designing a classifier, it is useful to have some insight on the data available.

This insight is important both to validate the data gathering/feature extraction/feature selection

process, and to decide which classifier is more appropriate. As has been mentioned before for

other steps in the classification process, isolating this step is an artificial contraption, since it can

be omitted, merged with the feature extraction/selection, or merged with the classifier itself. In

any case, it will be more efficient if it is iterated in close loop with the other steps. This insight

can be given by what are generally known as exploratory data analysis techniques. In recent

32 Part I, Chapter 4

years, exploratory data analysis techniques have been the subject of intense research for data

mining and knowledge discovery, and a lot of bibliography is available on that subject, e.g.

(Sarker, Abbass et al. 2002).

The purpose of exploratory data analysis, as the name suggests, is to find relationships within the

data, estimate its probability density distribution, and gain insight into the classification problem.

Many different techniques may be used to this end, including:

a) descriptive statistics, such as means, variances, measures of inter-distribution

distances;

b) statistical clustering techniques, such as k-means or Gaussian Mixture Models

(Bishop 1995);

c) factor analysis, such as Principal Component Analysis;

d) projection pursuit techniques such as Sammon mapping (Sammon 1969) or

Generative Topographic Mapping (GTM) (Bishop, Svensén et al. 1996);

e) artificial intelligence clustering techniques, such as Self-Organizing Maps

(Kohonen 2001), fuzzy C-means (Bezdek, Keller et al. 1999), Hierarchical

clustering (Everitt, Landau et al. 2001), or dendograms (Sokal and Sneath

1963; Vesanto and Alhoniemi 2000).

A basic statistic description of data is taught in any introductory course in statistics, and allows

us to estimate if the data follow a well known distribution (such as Gaussian or Poisson), or if the

classes are well separated (by comparing the class means and higher moments). A lot of work has

been developed in variance analysis but, since it is not crucial to the development of this thesis,

we will review it no further, and only mention a few good references, such as (Damon 1987).

Principal Component Analysis has already been mentioned in chapter 3, and so will not discuss it

here.

Projection pursuit techniques, such as Sammon mapping (Sammon 1969), try to map high

dimensional data onto low dimensional spaces where they can be visualized. This visualization

will allow human inspection of the data, and consequently a direct perception of the

separation/distribution of the data. Some data clustering techniques (such as SOM (Kohonen

2001)), will also perform a low dimensional mapping of the data, and as we sha ll see later, the

Exploratory data analysis 33

visualization process is also important for these techniques. Unfortunately, data that is

intrinsically high-dimensional cannot be projected into a low dimensional space without heavy

distortion, that may lead to unreliable results. Estimating the true dimension of a dataset has been

the object of intense research for a long time (Trunk 1968; Fukunaga and Olsen 1971;

Schwartzmann and Vidal 1975; Urquhart 1983).

An important part of exploratory data analysis is clustering, also known as unsupervised

classification, unsupervised learning, or data-driven learning, and excellently reviewed in (Jain

and Dubes 1988; Fasulo; Everitt, Landau et al. 2001). Contrary to supervised learning

(overviewed in the next chapter), where we want to obtain a pre-defined partition of the data, in

unsupervised learning we want the data to be partitioned according to their “natural” structure. In

supervised learning, a label is “pre-assigned” to each pattern of a known dataset. This assignment

may be due to a human classification of the pattern (such when a human operation identifies the

vehicle present in a series of photographs), or may be due to the data gathering process (such as

when we take photographs of a known vehicle). In unsupervised learning, no such labels are

necessary, and the data will be clustered together according to its own characteristics (for

example, photographs of vehicle with a common characteristic may be clustered together).

These techniques will group the data patterns in clusters that can then be analyzed by the

designer. If these clusters contain a strong mixture of the desired classes, that will probably mean

that the previous steps were not appropriate for the task at hand. A bad clustering will probably

mean that the classifier will have a hard time performing the desired separation of classes,

resulting in a complex classifier, and one that will probably overfit the training data. In this case,

it is probably better to try different feature extraction techniques, so as to find truly significant

features.

After a reasonable clustering is achieved, we may sometimes use clustering technique as a

classifier by itself. This will require assigning a label to each of the clusters obtained, and then

finding a way of assigning each new data pattern to one of those clusters. The labeling is usually

done by assigning to each cluster the label that occurs most in the data patterns that belong to it.

When a new pattern is presented it is assigned to one of the existing clusters (for example using a

distance measure), and given the same label as that cluster.

34 Part I, Chapter 4

Clustering techniques are sometimes divided into two broad categories: partitioning techniques,

and hierarchical clustering. Partitioning techniques, also known as k-clustering techniques, will

try to partition the data into a predefined number k of clusters. Hierarchical clustering techniques,

on the other hand, assume no pre-defined number of clusters, and present ever more detailed sub-

clusters of data, so that the user may select the level of granularity desired. It would be out of the

scope of this thesis to review all the most relevant clustering technique, so we shall now review

only two of the most common ones, namely k-means clustering, and Kohonens Self Organizing

Maps.

4.2 – K-means clustering

The k-means clustering technique consists in pre-selecting a certain number k of centroids, or

means, and then finding the positions in the input space of these centroids, so that some measure

of dispersion is minimized. In the original and most widely used version, the measure to be

minimized is the sum of square distances between the data patterns and the centroids they are

assigned to.

The k-means algorithm was originally proposed by (MacQueen 1967) as a stochastic on- line

process, and reformulated as a batch process by (Loyd 1982). Computationally efficient

implementations of this algorithm are available, such as (Kanungo, Mount et al. 2002). There has

been a shift in name from the original term “k-means”, to the term “c-means”(Bezdek,

Reichherzer et al. 1998; Duda, Hart et al. 2001). While the original name focused on the fact that

one must choose “k” points thus forcing k clusters, some authors feel that the letter c is more

appropriate since it is the first letter for centroid, cluster, and class. While acknowledging the

new trend, being traditionalist we will use the old term.

The original k-means algorithm (MacQueen 1967) can be described as follows.

Exploratory data analysis 35

This original version requires that a learning parameter η be set to a certain initial value, and that

a certain decreasing function be used to make it converge to 0. The number of steps used to make

it converge to 0 can be critical for the convergence of the centroids to locations where they do

minimize the sum of square distances. With the advent of computers with more memory, another

algorithm was devised: the batch k-means clustering (Loyd, 1982). It is now the most commonly

used algorithm for k-means clustering, since it is faster and it will converge more reliably to the

global minimum.

The batch k-means algorithm is a form a stochastic hill climbing and can be described as follows.

As noted in (Bishop 1995), the k-means algorithm can be seen as a special case of a Expectation-

Maximization (EM) (Dempster, Laird et al. 1977) technique for a Guassian mixture model. In a

 Let
 k be the predefined number of centroids
 n be the number of training patterns
 X be the set of training patterns x1, x2,..xn
 P be the set of k initial centroids µ1, µ2,… µk taken from X
 η be the learning rate, initialized to a value in]0,1[

1 Repeat
2 For i=1 to n
3 Find centroid µj∈P that is closer to xi
4 Update µj by adding to it ∆µj = η(xi - µj)
5 Decrease η
6 Until η reaches 0

Algorithm 1 - Original k-means clustering

 Let
 k be the predefined number of centroids
 P be the set of k initial centroids µ1, µ2,… µk that are
 randomly generated (or may be taken from X)
 X be the set of training patterns x1, x2,..xn

1 Repeat
2 For i=1 to k
3 Find the set of patterns xj∈X that have each µi as their

 nearest neighbor in P
4 Let µi be the average of those xj points
5 Until there are no more changes in the values of µi .

Algorithm 2 - Batch k-means clustering

36 Part I, Chapter 4

Guassian mixture model, the data distribution is modeled by a sum (or mixture) of Gaussian

distributions, centered at different points. By using expectation-maximization (EM) learning, the

optima locations for the centers of those Guassian distributions can be determined. If we assume

that the covariance within each of those distributions is 0 (i.e., they are localized “spikes”) the

EM technique will lead to the well known k-means algorithm.

The k-means clustering technique has a few major drawbacks. The first is that it requires the user

to pre-select the desired number of clusters. In many applications it is not obvious at the start

how many clusters do exist, and so the user is forced to select an artificially big value of k to

guarantee that no clusters are missed. It will thus be more appropriate to use this algorithm when

we know with certainty how many clusters exist in the data. When this is not the case, we may

use the final value of the sum of square distances as a measure of how well the data may be

represented by a certain number of centroids. By repeating the k-means algorithm with increasing

values of k we may search for a value of k that produces a sharp decrease in the sum of square

distances, and use it as the best number of clusters.

The second drawback, is that

since k-means minimizes square

distances to the centroids, it will

now cluster correctly data that

have certain “long shaped”

distributions, such as that

presented in Figure 4. This effect

can be minimized by selecting a

larger k, so that each real cluster is

represented by many smaller

clusters, or to a certain extent by

whitening the data.

Several changes and improvements have been proposed to the basic k-means clustering

algorithm, but the most important is probably fuzzy c-means (Bezdek, Keller et al. 1999), around

which many papers have been written, with many variations and improvements, e.g. (Kong,

Wang et al. 2002). In that approach, instead of assigning each data pattern to its nearest centroid,

a fuzzy membership to that centroid is assigned each pattern. That fuzzy membership will depend

x

y

x

y

Clusters of data (in gray)

Pairs of centroids that minimize
the sum of square distances

x

y

x

y

Clusters of data (in gray)

Pairs of centroids that minimize
the sum of square distances

Figure 4 - Example of possible pitfalls of the k-means
algorithm. In the situation presented on the left, the sum of

square distances criteria will correctly position the centroids
at the center of the clusters. However in the situation
presented on the right, that criteria does not provide

satisfactory results.

Exploratory data analysis 37

on the distances between that pattern and the various centroids. A brief yet detailed explanation

of fuzzy c-means can be found in (Duda, Hart et al. 2001).

4.3 – Self Organizing Maps (SOM)

Although the term “Self-Organizing Map” could be applied to a number of different approaches,

we shall always use it as a synonym of Kohonen’s Self Organizing Map, or SOM for short.

These maps are also referred to as “Kohonen Neural Networks”(Fu 1994), “Self Organizing

Feature Maps-SOFM”, “Topology preserving feature maps” (Kohonen 1995), or some variant of

these names.

Self Organizing Maps (SOM) were first proposed by Tuevo Kohonen in the beginning of the

1980s (Kohonen 1982), and stemmed from his work on associative memory and vector

quantization. However, it was not until the publication of the second edition of his book “Self-

Organization and Associative Memory” in 1988, and his paper named “The Neural Phonetic

Typewriter” on IEEE Computer (Kohonen 1988) that his work became widely known. Since then

there have been many excellent papers and books on SOM, but his book Self Organizing Maps

(edited originally as (Kohonen 1995), and later revised in 1997 and 2001 (Kohonen 2001)) is

generally regarded as the main reference on the subject. This book has had very flattering

reviews, presenting a thorough covering of the mathematical background for SOM; its

physiological interpretation; the basic SOM; and recent developments and applications. A

thorough bibliography of SOM related issues (at http://www.cis.hut.fi/research/som-bibl) is

maintained by the Neural Network Research Group (http://www.cis.hut.fi/research) that Kohonen

created at Helsinki’s Technical University, and of which he, as professor emeritus, is still an

active member. By July 2002, 4310 papers and books were referenced. Of these, for a

comprehensive overview of SOM for clustering and visualization of data, we would recommend

(Vesanto 1999) and (Vesanto and Alhoniemi 2000). A simple to follow tutorial, with illustrative

examples, is available in (Lobo, Swiniarski et al. 1998).

There are several public-domain implementations of SOM, of which we must mention the SOM-

PAK developed by Kohonen’s group and discussed in chapter 2 of part III of this thesis, and the

excellent Matlab SOM Toolbox, also developed by that group. It is currently in version 2.0 beta,

and publicly available at http://www.cis.hut.fi/projects/somtoolbox . The SOM toolbox has,

besides the Matlab routines, an excellent graphic-based user interface, that makes it very simple

38 Part I, Chapter 4

to experiment with SOMs. Unfortunately, it was not available in time to be used extensively

during this thesis.

Kohonen himself describes SOM as a “visualization and analysis tool for high dimensional data”,

but they have used for clustering (Vesanto and Alhoniemi 2000), dimensionality reduction,

classification, sampling, vector quantization, and data-mining (Kohonen 2001).

4.3.1 General and simplified overview

The basic idea of a SOM is to map the data patterns onto a n-dimensional grid of neurons or

units. That grid forms what is known as the output space, as opposed to the input space that is

the original space where the data patterns are, as seen in Figure 5. This mapping tries to preserve

topological relations, i.e., patterns that are close in the input space will be mapped to units that

are close in the output space, and vice-versa. The output space will usually be 2-dimensional, and

most of the implementations of SOM use a rectangular grid of units. So as to provide even

distances between the units in the output space, hexagonal grids are sometimes used (Kohonen,

Hynninen et al. 1995). Single-dimensional SOMs are common (e.g. for solving the traveling

salesman problem), and some authors have used 3-dimensional SOMs. Using higher dimensional

SOMs, although posing no theoretical obstacle, is rare, since it is not possible to easily visualize

the output space.

Each unit, being an input layer unit, has as many weights or coefficients as the input patterns, and

can thus be regarded as a vector in the same space as the patterns . When we train or use a

OUTPUT SPACE
2-dimensional grid
of units (or neurons)

n-dimensional INPUT PATTERN…

All units are connected to
the input pattern

Units have the same dimensionality
as the Input patterns

OUTPUT SPACE
2-dimensional grid
of units (or neurons)

n-dimensional INPUT PATTERN………

All units are connected to
the input pattern

Units have the same dimensionality
as the Input patterns

Figure 5 - Basic structure of a Self-Organizing Map (SOM)

Exploratory data analysis 39

SOM with a given input pattern, we calculate the distance between that pattern and every unit in

the network. We then select the unit that is closest as the winning unit, and say that the pattern is

mapped onto that unit. If the SOM has been trained successfully, then patterns that are close in

the input space will be mapped to neurons that are close (or the same) in the output space, and

vice-versa. Thus, SOM is “topology preserving” in the sense that (as far as possible)

neighborhoods are preserved through the mapping process.

Generally, no matter how much we train the network, there will always be some difference

between any given input pattern and the unit it is mapped to. This is a situation identical to vector

quantization, where there is some difference between a pattern and its code-book vector

representation. Thus, we refer to this difference as the quantization error, and use it as a

measure of how well our units represent the input patterns.

We can look at a SOM as a “rubber surface” that is stretched and bent all over the input space, so

as to be close to all the training points in that space. In this sense, a SOM is similar to the input

Figure 6 - Example of a 2-dimensional SOM mapping 3-dimensional patterns. On the top, patterns are
represented by "-", and are distributed around some of the vertices of the cube. The SOM units are
represented in the input space by black balls, with lines showing their neighbors in the output space.

On the bottom, we can see the layout of units in the output space, forming a regular grid. On the left, a
2x2 SOM was used, while a 4x4 was used on the right.

40 Part I, Chapter 4

layer of a Radial Basis Function (RBF) neural net, a neural gas model, or a K-means algorithm.

The big difference is that while in these methods there is no notion of “output space”

neighborhood (all units are “independent” from each other), in a SOM the units are “tied

together” in the output space. It thus imposes an ordering of the neurons, that is not present in the

other methods. These ties are equivalent to a strong lateral feedback, common in other

competitive learning algorithms (Haykin 1999).

Let us imagine a very simple example, where

we have 4 clusters of 3 dimensional training

patterns, centered at four of the vertices of the

unit cube: (0,0,0), (0,0,1), (1,1,0), and (1,1,1).

If we trained a 2 dimensional, 4 node map, we

would expect to obtain units centered at those

vertices. If we use a larger map, with 16 nodes,

for example, we would expect to obtain a map

where the units are grouped in clusters of 4

nodes on each of the vertices (see Figure 6).

Before training, the neurons may be initialized

randomly. During the first part of training, they

are “spread out”, and pulled towards the general area (in the input space) where they will stay.

This is usually called the unfolding phase of training. After this phase, the general shape of the

network in the input space is defined, and we can then proceed to the fine tuning phase , where

we will match the neurons as far as possible to the input patterns, thus decreasing the

quantization error.

Figure 7 - Example of the unfolding of a 1-
dimensional SOM (a line) (Kohonen 1995), to
fit a set of points uniformly distributed within

a triangular area. The small numbers
represent the number of the iteration at

which the snapshot was taken.

Exploratory data analysis 41

To visualize the training process, let

us follow a 2-dimensional to 1-

dimensional mapping presented in

(Kohonen 1995). In this problem, 2-

dimensional data points are uniformly

distributed in a triangle, and a 1-

dimensional SOM is trained with

these patterns. Figure 7 represents the

evolution of the units in the input

space. As training proceeds, the line

first unfolds (steps 1 to 100), and then

fine-tunes itself to cover the input

space.

Another very common example of a SOM mapping, that is used

by the standard MATLAB demo of its neural network toolbox,

is presented in Figure 8. There, a 2D map is trained on a

collection of 2D points uniformly distributed in a square area.

The position of the units in the input space is then tracked. This

example is also useful to illustrate a rather annoying problem

that may arise: local minima. In Figure 9 we can see a

representation in the input space of a SOM that got stuck in

local minima. In that case the map did not unfold properly, and

fine adjustments to the positions of the units will not lead to a

better mapping, just like when a rope gets tangled. Although it is

not easy to identify unfolded maps of very high dimensional data, a good choice of learning

parameters can greatly reduce the risk that they will occur.

4.3.2 - The basic learning algorithm

The basic SOM learning algorithm may be described as follows.

Figure 8 - Example of a 2D to 2D mapping of a
uniform distribution of points in a square (Mathworks

2001), (Kohonen 1995). Note that after training the
units of the SOM are a faithful representation of the
original distribution. This is possible because it was
uniform, and its dimensionality was the same as the

SOM’s.

Figure 9 - Example of an
unfolded SOM. This map

represents the same problem
as the one in Figure 4, but

due to a bad choice of initial
radius and learning rate, the

map did not unfold
smoothly, and got stuck in a

local minima.

42 Part I, Chapter 4

This algorithm can be applied to a SOM with any dimension, making the necessary adjustments

to the indexes of the units. The learning rate α, sometimes referred to as η, must converge to 0 so

as to guarantee convergence and stability for the SOM. For the same reasons, the radius of the

neighborhood function should also converge to 0. The decrease from the initial values of these

parameters to 0 is usually done linearly, but any function may be used. The update of these two

parameters may also be done after each training pattern is processed (as happens in SOM-PAK),

instead of after the whole training set is processed, as described above and implemented in

DSOM (see Part III).

Step 3, where the distances between a given training pattern and all units is calculated, is called

the calculation phase. The distance measure between the vectors is usually the Euclidean

distance, but many others can and are used, such as norm based Minkowski metrics, dot

products, director cosines and Tanimoto measures (Garavaglia, 1996).

Step 4, where the closest unit is selected as winner is called the voting phase. Finally, step 5,

where the units are actually changed is called the updating phase. The winner is sometimes also

called the best matching unit, or BMU for short.

Algorithm 3 - SOM training algorithm (for a 2-dimensional map)

 Let

 X be the set of n training patterns x1, x2,..xn
 W be a p×q grid of units wij where i and j are their
 coordinates on that grid
 α be the learning rate, assuming values in]0,1[,

initialized
 to a given initial learning rate
 r be the radius of the neighborhood function h(wij,wmn,r),
 initialized to a given initial radius

1 Repeat
2 For k=1 to n
3 For all wij∈W, calculate dij = || xk - wij ||
4 Select the unit that minimizes dij as the winner wwinner
5 Update each unit wij∈W: wij = wij + α h(wwinner,wij,r) || xk –

wij ||
6 Decrease the value of α and r
7 Until α reaches 0

Exploratory data analysis 43

To stress the simplicity of the algorithm and its three important steps, the algorithm for training

the network is can informally be stated as:

For each input pattern:

a) Calculate the distance between the pattern and all units of the SOM (dij = || xk - wij ||)

This is what we call the calculation phase.

b) Select the nearest unit as winner wwinner (wij : dij = min(dmn)).

This is what we call the voting phase.

c) Update each unit of the SOM according to the update function

 wij = wij + α h(wwinner,wij) || xk – wij || (26)

This is what we call the updating phase.

d) Repeat the steps a) to c), and update the learning parameters, until a certain stopping

criterion is met. Usually, the stopping criterion is a fixed number of iterations. To

guarantee convergence and stability of the map, the learning rate and neighborhood radius

are decreased in each iteration, thus converging to zero.

4.3.3 - Neighborhood functions

The neighborhood function, sometimes referred to as Λ or Nc, assumes values in [0,1], and is a

function of the position of two units (a winner unit, and another unit), and radius. It large for

units that are close in the output space, and small (or 0) for units far away. Usually, it is a

function that has a maximum at the center, monotonically decreases up to a radius r (sometimes

called the neighborhood radius) and is zero from there onwards. For the sake of simplicity, this

radius is sometimes omitted as an explicit parameter.

The two most common neighborhood functions are the bell-shaped (Gaussian- like) and the

square (or bubble):

2
22)()(

2
1

),(

 −+−
−

=
r

mjni

mnijg ewwh , (27)

and

44 Part I, Chapter 4

>−+−⇐

≤−+−⇐
=

rmjni

rmjni
wwh mnijs 22

22

)()(0

)()(1
),(. (28)

In both cases, we force r→ 0 during training to guarantee convergence and stability.

It must be noted that the neighborhood function depends only on the distance in the output space,

i.e., the relative position of the units in the grid. This neighborhood function is responsible for the

coupling between units, since when one is updated, its neighbors are updated too. This coupling

in turn gives SOM its topological properties.

The algorithm is surprisingly robust to changes in the neighborhood function, and our experience

is that it will usually converge to approximately the same final map, whatever our choice,

providing the radius and learning rate decrease to 0. The Gaussian neighborhood tends to be

more reliable (all our runs would converge to almost exactly the same map), while the bubble

neighborhood leads to smaller quantization errors. A theoretic discussion of the effect of

neighborhood functions (although only for the 1-dimensional case) can be found in (Erwin,

Obermeyer et al. 1991), and a less rigorous but more general one in (Ritter, Martinetz et al.

1992).

4.3.4 – Theoretical aspects

A general and thorough theoretical description of the behavior of SOM has proved to be

extremely difficult. There has been a lot of research in that area, excellently summarized in

(Cottrell, Fort et al. 1998).

One of the central points of that research is to find a relationship between the underlying

probability distribution of the data and the distribution of the units on a SOM. Generally, that

work, together with a lot of experimental evidence, points to the fact the probability density of

units on a SOM is proportional to a power of the underlying probability density of the data

patterns. This power, known as a magnification factor, sometimes estimated at d/(d+2), d being

the dimensionality of the problem, will cause the SOM to under-represent areas where the

probability density of the data is very high, and over represent areas where it is lower. In many

applications, such as the one discussed in part III of this thesis, this scaling is a very desirable

result, since areas with a very high probability density will be well represented anyway.

Exploratory data analysis 45

Another important aspect of theoretical research is to determine exactly what the learning rule is

minimizing. Most neural networks have an energy function that is minimized during the training

process, and it would be important to identify that function for a SOM. Assuming that Kohonen’s

original learning function is a gradient descent method, then by finding the primitive of that

function and summing over all the network (Hertz, Krogh et al. 1991) we have

 ()∑∑∑∑∑∑ −=−=
i

j
jkxx i

winnerwinner ijkx wxkihMwxiihwV 22
),(

2
1

),(
2
1

)(,
rr

, (29)

where V(x) is the global energy function, and M is the cluster membership matrix, that

encompasses the information about the neighborhood between each data pattern and the SOM

units. This energy equation really does not help much, because of the difficulty in dealing with

the concept of a winning unit that varies from pattern to pattern, and iteration to iteration. The

cluster membership matrix can thus only be computed for a very particular instance, and will

change during the training process.

If we consider the neighborhood function to be a discreet delta function, which means

considering that the neighborhood radius is zero, then the energy function simplifies to

2

2
1

)(∑∑ −=
x i

winnerwxwV
rr

. (30)

As noted by (Kaski 1997), if we consider the winning unit for each data pattern to be the centroid

of the cluster it belongs to, this is exactly the function minimized by the k-means algorithm

described earlier. Thus, a SOM with a fixed and zero radius is equivalent to k-means clustering.

Such a neighborhood would also invalidate the topological ordering of the SOM for, as a k-

means algorithm, there would be no relation amongst neighboring units of the SOM. However,

this comparison can shed some light on the theoretical aspects of the SOM.

4.3.4 – Using SOM

The training of a SOM is more effective if it is done in two phases: the unfolding phase, and the

fine-tuning phase.

For the unfolding phase, the objective is to make the SOM cover the general area where the data

patterns are located, without any strong distortions or “folds”. To achieve this, the neighborhood

function should have a large initial radius, so that all units are adjusted in each learning step. A

46 Part I, Chapter 4

large initial learning rate should also be used, so that the map can quickly cover the input space

of the patterns. Our experience points to using an initial radius just slightly less than the smallest

side of the map, and an initial learning rate of 0.2.

For the fine tuning phase, the objective is to reduce the quantization error, and center the units in

the areas where the density of patterns is greatest. Whereas the general mapping of the patterns

does not change much during this phase, if we use it as a classifier (as we shall see later), the

error rate does decrease after this phase. Our experience points to using an initial radius of 3 to 5

units for this phase, and an initial learning rate of 0.05.

After obtaining the SOM, it is useful to calculate the quantization error for the training set. This

will allow us to have an idea how well the SOM represents the data. A high value for the

quantization error would indicate that we wither need more units, or if there are enough units,

need to perform more training steps.

When the training patterns have labels (or classes) associated with them, as is the case in

supervised learning problems, we may assign labels to the units of the SOM. This process is

called calibration by (Kohonen 1995), but the more generic term labeling will be used in this

thesis. To label a SOM, we map to it all the training set, and record for each unit the labels of

patterns that were mapped to it. Each unit can then be assigned the most occurring label. A SOM

thus labeled can be used as a classifier: simply map a new pattern to the map (i.e., find the unit

closest to it), and use the label of that unit as the assigned class.

The number of units in the SOM can vary a lot with what is required from it, and different

authors have radically different approaches. Most will use far less units than training patterns

available. This will lead to SOMs where each unit maps a large number of training patterns, and

thus covers a fair amount of input space. However, even in this case, if there is a clear separation

in the input space between the different clusters, there will be units that because they are “pulled”

both ways, will end up being positioned in the regions between the clusters, and may not map

any of the training patters.

Others authors, such as (Ultsch and Li 1993) and (Guimarães and Urfer 2000) actually use more

units than training patterns. This originates SOMs where a large number of units do not map any

training pattern. It can however provide a very detailed and smooth mapping of the training data,

Exploratory data analysis 47

allowing the identification of small clusters, and leading to very informative U-Matrices, that

shall be seen later in this chapter.

In any case, the number of units should be large enough to map each of the clusters with several

units. Using too few units per cluster will make it impossible to represent clusters that do not

have very regular and convex shaped distributions. One of the strong points of connectionist

models is precisely the ability do distribute the information about a certain class over a number of

units, and using too few of these defeats this purpose. The existence of units that do not map any

training patterns can also be very desirable. On one hand, these units clearly mark the boundaries

between the clusters. On the other hand, they can be useful for novelty detection. If when using a

SOM, a new pattern is mapped onto these units, we will know that is significantly different from

the patterns used to train the map. However, due to the topological mapping, we will be able to

have an idea how similar it is to which clusters. This is one of the characteristics that made the

use of SOM particularly suited to our problem of identifying ship noise, discussed in part III of

this thesis.

4.3.5 – U-Matrices

Viewing the output space of a SOM will show where the various data patterns are mapped, but

will give little information about how far they are from each other. The distance in the input

space between two neighboring units may vary widely amongst different areas of the SOM, so

we have little information about how close different patterns really are. Also, the identification of

clusters, specially when using unlabelled data patterns, can be very difficult. If there are

sufficient units so that many do not map any pattern, then the areas where we have these units

can be seen as borders between clusters. We will not, however, be able to say how separate those

clusters are, and if there is a strong overlap of the underlying probability distributions, that

separation will be impossible to see. A partial solution to this problem is to keep the count of

how many patterns are mapped to each unit. This however will mask clusters will small numbers

of patterns. A better solution is to use U-Matrices, or U-Mat for short.

48 Part I, Chapter 4

U-Matrices were

originally proposed in the

end of the 80s by Ultsch

(Ultsch and Simeon 1989;

Ultsch and Siemon 1990),

and Ultsch claims that the

U stands for “Unified-

distance” or “Unification”.

They are computed by

finding the distances, in

the input space, between

neighboring units in the

output space.

This initial concept of U-Matrix would define values only for points between the original units of

the SOM. To obtain a more usable matrix, it is usually extended to include the positions of the

original SOM units, as well as points in the centers of 4 neighboring points as shown in Figure

10.

A low value for a U-Mat unit means that the SOM

units are close together in the input space, and thus

probably form a cluster. A high value for a U-Mat

unit means that the SOM units, although neighbors

in the output space, are quite distant in the input

space, and thus there is a border between clusters

in this area.

The two commonly used ways of visualizing U-

Mats. The first is to represent it in a 3D plot, where

vertical dimension (the height) is given by the

magnitude of the U-Mat unit at each point. The

result will be a landscape where valleys represent

areas where clusters of SOM units are grouped,

a b d

e f g

SOM units
(circles)

U-Mat units
(squares)

u=|d-g|

u=(|b-g| + |d-f|)/2

h i j

u=(|b-f| + |g-f| + |i-f| + |e-f|)/4

a b d

e f g

SOM units
(circles)

U-Mat units
(squares)

u=|d-g|

u=(|b-g| + |d-f|)/2

h i j

u=(|b-f| + |g-f| + |i-f| + |e-f|)/4

Figure 10 - Positions of the SOM units and U-Mat units in
the output space. On the left, it is shown how the U-Mat

values are computed for the 3 types of units: those that are
located between SOM units, on SOM units, and on the

diagonals.

Figure 11 - Example of a 3D representation of a
U-Mat, taken from (Guimarães and Urfer

2000). The central cluster is clearly separated
from the rest of the map by a high ridge, and
the white line represents a succession of states

present in a certain patients data.

Exploratory data analysis 49

and ridges will represent separations between those clusters. An example of this representation is

given in Figure 11.

Another way to visualize U-Mats, and probably the most common, is to color-code the values of

the U-Mat. Usually a grayscale is used, with the highest value being represented by black and the

lowest by white. So as make distinctions between clusters clearer, some sort of compression may

be used, as is the case in the application described in Part III of this thesis.

To illustrate the power of U-Matrices and SOMs for cluster detection, we present a simple

example, where 3-dimensional points are mapped with a SOM, and the clusters identified with a

U-Matrix. The 360 data points have a Gaussian distribution centered at 6 of the vertices of a unit

cube. We first train a 9x7 unit SOM with the data, and then compute and visualize its

corresponding U-Matrix. To understand the mapping performed, we then labeled the SOM and

U-Mat.

-0.5
0

0.5
1

1.5

-0.5
0

0.5
1

1.5
-0.5

0

0.5

1

1.5

-0.5
0

0.5
1

1.5

-0.5
0

0.5
1

1.5
-0.5

0

0.5

1

1.5

Figure 12 - Example of cluster identification with a U-Matrix. 360 3-dimensonal data points,
centered at 6 corners of a unit cube (on the left) are mapped into 6 distinct areas separated by dark

dividing lines (on the right)

50 Part I, Chapter 4

4.3.6 - Temporal SOMs

The original SOM algorithm does not take time into consideration when analyzing the patterns.

However, many approaches have been used so that SOMs may process temporal data, and since

ship noise signals are temporal data, we will overview some of them. We conducted a survey of

temporal SOMs, and tried to define a taxonomy for them, together with Gabriela Guimarães. The

results are pending publication, and will be summarized here.

Any taxonomy for temporal SOMs will only be an orienting guideline, and not a rigid

classification. In fact the various ways of incorporating time are many times blended together in

actual applications so as to achieve the optimum results. Nevertheless, we can identify 3 main

approaches, with sub-variants:

a) Use a standard SOM, and incorporate time in the pre-processing of post-processing.

b) Modify the learning rule to reflect the time dependency of successive patterns.

c) Modify the topology of the SOM, either by introducing feedback or by using a hierarchy

of SOMs to deal with different time scales.

Our complete taxonomy is presented in Figure 13, and we shall now briefly discuss each

approach.

Temporal SOM

Unmodified
SOM

Modified
learning rule

Modified
topology

Tapped
delay

Transformation
based

Embedded
time

Trajectory
based

Hyper-
map

Kangas
map Feedback Hierarchical

Level 0

Level 2

Level 1

Level 3Temporal Recurrent Recursive SOMTAD

Temporal SOM

Unmodified
SOM

Modified
learning rule

Modified
topology

Tapped
delay

Transformation
based

Embedded
time

Trajectory
based

Hyper-
map

Kangas
map Feedback Hierarchical

Level 0

Level 2

Level 1

Level 3Temporal Recurrent Recursive SOMTADTemporal Recurrent Recursive SOMTAD

Figure 13 - A possible taxonomy for temporal SOMs

Exploratory data analysis 51

4.3.6.1 – Unmodified SOM

In this section we discuss two distinct approaches of SOMs for handling temporal sequences that

do not afford a modification of the original algorithm or network topology. One of the

approaches concerns the pre-processing of a temporal sequence before presenting it to the neural

network, and therefore embedding time into the pattern vector. The other approach is related to

some kind of post-processing of the network outputs, resulting in a time-related visualization (or

processing) of the data on the map with trajectories. In the following subsections both

approaches, and several related applications will be presented.

4.3.6.1.1 - SOMs with Embedded Time

Basic Idea

The common denominator of embedded time approaches is that some sort of pre-processing is

performed on the time series before it is presented to the SOM. Thus, the SOM receives an input

pattern that is treated in the standard manner, as if time was not an issue.

Variants

There are several ways to “hide“ time in the pattern vector, which may require more or less pre-

processing and knowledge of the underlying process. A simple tapped delay will provide the

easiest way of generating a pattern vector. On the other hand, a complex feature extraction

algorithm may be used to generate that vector.

Variant 1 - Tapped delay SOMs

The simplest pre-processing step used when applying SOMs to temporal sequences, is to use a

tapped-delay of the input as pattern vector (Chappelier and Grumbach 1995). The SOM is thus

presented with a pattern that is a vector of time-shifted samples of the temporal sequence, i.e. it

receives a "chunk" of the temporal sequence instead of just its last value, as is shown in Figure

14. This approach was followed by some of the early applications of SOM (Kangas, Kohonen et

al. 1990), and is still quite popular when feature extraction techniques (e.g. Fourier transforms,

envelopes, etc.) are not necessary (Príncipe and Wang 1995)). Some authors also name it Time-

Delay SOM (Kankas 1994), since the approach is basically the same as the popular

52 Part I, Chapter 4

backpropagation-based Time-Delay Neural Networks (TDNN) proposed by (Lang & Hinton,

1988) and (Waibel, Hanazawa et al. 1989).

This is a very intuitive and simple way of

introducing time into the SOM, and has

proved to give good results in many

situations. It does however have a few

known drawbacks.

On one hand, the length of the tapped

delay (the number of samples used) has to

be decided in advance, and the ideal

length may be quite difficult do

determine. If too few time points are used, the dynamics of the sequence will not be captured. If

too many are used, apart from having an unnecessarily complex system, it may be impossible to

isolate smaller length patterns. This problem also arises in other approaches, as discussed in

(Davey, Hunt et al. 1999; Principe, Euliano et al. 2000).

On the other hand, since the basic SOM is not sensitive to the order in which the different

dimensions of the input pattern are presented, it will not take into account the statistical

dependency between successive time points. It is interesting to note that using this approach, the

order of the successive time points in the final pattern vector is irrelevant (as long as that order is

kept constant).

Variant 2 - Time-related transformations

In many applications, there are

features of temporal sequences that

are better perceived in domains other

then time. The general structure of

this approach can be seen in Figure

15. The most commonly used domain is frequency, and the most used technique is to perform a

short-time Fourier transform on the data (Kohonen 1988). Many other transformations have been

used, such as cepstral features (Kangas, Tarkkola et al. 1992), wavelet transforms (Pesu,

Z-1

x(t-1)

x(t)

x(t-2)

Z-1

x(t-M) Z-1

X SOM

Figure 14 - Temporal Sequence processing with
a tapped delay as input for a SOM

x(t) X SOM
Time-related

transformation
(ex. FFT)

Figure 15 - Temporal sequence processing using time-
related transformations as pre-processing for the SOM

Exploratory data analysis 53

Ademovic et al. 1996; Moshou and Ramon 2000; Lakany 2001), and time-frequency

transformations (Atlas, Owsley et al. 1996; Jossa, Marschner et al. 2001). In fact, many of the

practical applications of temporal SOMs use some sort of time-related transformation as a first

step in the pre-processing of the data, even if time is taken into account at a later stage. The

success of these techniques is strongly dependent on the characteristics of problem at hand, and

has little to do with the inherent properties of the SOM.

Discussion

These types of approaches, where only pre-processing of the data is used to deal with time, have

the advantage that they preserve all the well-known characteristics of the SOM algorithm.

Moreover, from a purely engineering point of view, they allow a simple integration of standard

SOM software packages with the desired pre-processing software. These techniques of

embedding time into the pre-processing are quite universal, and can be used to adapt almost any

pattern-processing algorithm to temporal sequence processing.

Examples

One of the early papers on SOMs (Kohonen, Makisara et al. 1984) uses this technique. In this

paper, what would later be known as the “phonetic typewriter”, was prototyped.

In (Leinonen, J. et al. 1992), for example, where the objective was to detect dysphonia, the short

time power spectra of each 9.83 s chunk of signal (spoken Finnish) was calculated using 256

point FFT. The logarithms of that power spectra where then calculated, and smoothed with a low

pass filter. Finally 15 of the resulting bins were selected as features, and fed into a basic SOM.

The work presented in chapters 3 and 4 of part II of this thesis also embed time in the data

pattern.

54 Part I, Chapter 4

4.3.6.1.2 - Trajectory-based SOMs

Basic idea

Apart from pre-processing the inputs, we can also consider using a basic SOM, without

considering time during the learning process, and then post-process the results obtained during

the classification phase. The most popular of these methods are what we call Trajectory-based

SOMs. These consider temporal relations among succeeding best-match units. This means that at

each time point t=1,...,N, the best-match ut,,t ∈ {1,…,N}, representing the input vector is searched

and recorded on the map. Then, a representation of time-related input vectors on the map is made

by joining k succeeding best-matches ui,…,ui+k-1, i∈{1,...,N-k} connected forming a path, as can

be seen in. These paths are often named trajectories (hence the name of this technique), and a

graphical representation is given in Figure 16.

Discussion

Trajectory-based SOMs, as opposed to the approaches presented before, constitute a genuinely

new way of dealing with time. It is impossible to use “trajectories” in methods such as feed-

forward neural networks or classical filters, because the topological information provided by

SOMs is missing. In fact, these trajectory-based methods are successful because they explore this

topological ordering, extrapolating it into the time domain.

b.m.u. t=1
(best-match for t=1)

SOM

b.m.u. t=2 b.m.u. t=3 b.m.u. t=4

trajectory

b.m.u. t=1
(best-match for t=1)

SOM

b.m.u. t=2 b.m.u. t=3 b.m.u. t=4

trajectory

Figure 16 - Structure of a trajectory based SOM

Exploratory data analysis 55

It is interesting to see that even though training is done ignoring any sort of time dependency

(and thus training data may be collected in any manner), temporal information can be recovered

during the classification phase, revealing structures of the underlying process.

Another interesting feature of these methods is that information can be obtained from the

direction of the path and not its exact location. Thus, for example, if we have a map trained with

faulty instances of a given process, we do not need to wait until that region of operation is

reached, i.e., if the winning unit moves towards that region, we can predict something is wrong

before it actually occurs (Tryba and Goser 1991; Ultsch 1993).

When processing the trajectories, it may also be important to determine the amount of successive

best matches to consider, i.e., the temporal length of the trajectory. This problem is similar to the

problem of determining the number of time points in a tapped delay, mentioned before.

Trajectories are often combined with other visualization techniques for the graphical

representation of the weights of a learned SOM. These are, for instance, component maps where

one of the components of the weights is projected onto a third dimension, as well as U-Matrices

(Ultsch and Siemon 1990), where the distances between neighboring units calculated in the

original space, i.e. the weights, are projected onto a third dimension. Often these additional

visualization techniques lead to an enhanced interpretation of the trajectory.

Other interesting visualization techniques for SOMs have also been proposed, such as the

agglomerative clustering where the SOM neighborhood relation can be used to construct a

dendograms on the map (Murtagh 1995; Vesanto and Alhoniemi 2000), and a hierarchical

clustering of the units on the map with a simple contraction model (Himberg 2000). Although

these approaches have not yet been used in the context of temporal sequence processing, they

would enable a richer perception of the significance of the trajectory, allowing varying levels of

detail in the analysis of the inputs.

For most applications trajectories have been directly displayed on a map without a visualization

of the network weights (Kohonen 1988; Leinonen, Hiltunen et al. 1993). In those cases a direct

interpretation of the trajectory is possible if a prior classification of the signal exists, as for

example, in different phoneme types in speech recognition (Kohonen 1988) or distinct sleep

stages in EEG signals (Kaski and Joutsiniemi 1993). However, if the SOM is used as a feature

56 Part I, Chapter 4

extractor, the trajectory itself, regardless of any labeling, can be used as a temporal feature of the

input, and fed to a higher level system (Srinivasa and Ahuja 1999). For example, if we train an

unlabeled SOM with phonemes, a given word will have a distinct path that would distinguish it

from other words. If we are using the SOM as a visualization tool and no prior information on the

classes is known, a combination of trajectories with other visualization techniques for SOMs

mentioned earlier (component maps, U-matrices, and hierarchical clustering visualizations), can

be very useful.

Component maps enable to track the trajectory along a single component. This can be

advantageous, if we are interested in evaluating the contribution of each of the components to the

system’s state changes. Notwithstanding, if a large number of variables have to be considered,

this approach can originate some confusion and unclearness to the observer. In order to overcome

these disadvantages, we will have to observe the development of a complex system or process on

a single map using, for instance, U-matrices.

The main advantage in visualizing trajectories on U-matrices lies in the identification of state

transitions. These transitions are clearly seen on a U-matrix, because when one such transition

occurs, the trajectory of the best-match unit has to overcome a “wall”. This means that in the

original space a large distance has to be traveled, if a trajectory jumps over a wall, even if the

distances on the map itself are small, i.e. they are neighboring units. This type of interpretations

is not possible if the trajectories are observed only on the SOM itself.

Examples

The visualization of trajectories on the map itself was first applied to speech recognition

(Kohonen 1988). Here a decomposition of a continuous speech signal is performed in order to

recognize phonetic units. Before presenting the data to the network, a transformation into the

frequency domain is made. A map, named here as phonotopic map, was generated with the input

vectors representing short-time spectra of speech waveform computed every 9.83 milliseconds.

One of the most striking results was that various units of the network became sensitized to

spectra of different phonemes based only on the spectral samples of the input. However, in this

approach samples only correspond to quasi-phonemes. Now, one of the problems lies in the

segmentation of quasi-phonemes into phonemes. For this purpose, the degree of stability of the

waveform, heuristic methods, and trajectories over a labeled map were calculated. Convergence

Exploratory data analysis 57

points of the speech waveform then may correspond to certain stationary phonemes. The main

advantage of phonotopic maps is that they can be used for speech training or therapy, since

people can obtain immediate feedback from their speech.

This approach was also widely applied at the early 90‘s to several medical applications, such as

the identification of co-articulation variation and voice disorder (Utela, Kangas et al. 1992), the

detection of fricative-vowel co-articulation (Leinonen, Hiltunen et al. 1993), the detection of

dysphonia (Leinonen, J. et al. 1992), the acoustic recognition of “/s/” missarticulation enabling a

distinction between normal, acceptable and unacceptable articulations (Mujunen, Leinonen et al.

1993), the recognition of topographic patterns in Electroencephalogram (EEG) spectra from 16

subjects having different sleep/awake stages (Joutsiniemi, Kaski et al. 1995), and the monitoring

of EEG signals enabling the identification of six typical EEG phenomena, such as well organized

alpha frequencies, eye movement artifacts and muscle activity (Kaski and Joutsiniemi 1993). All

these approaches have in common that a pre-classification of the original signal was already

made. In applications for speech processing such a pre-classification is always possible. Within

another approach for speech recognition trajectory-based SOMs have been used at different

hierarchical levels (discussed later in this paper), where each layer operates on a different time

scale and deals with higher units of speech, such as phonemes, syllables, and word parts (Behme,

Brandt et al. 1993). This means that the basic structure of all layers is similar, only the meaning

of the input and the time scale are different. This approach was used for the recognition of

normally spoken command sentences for robot controlling, whereat the system had to deal with

extra words and other insertions not part of a robot command. So, syntax and semantic modeling

also played here an important role. Trajectories have only been used at the first level. They

consist of stationary parts representing vowels that remain in a close neighborhood and

transitions paths with jumps to different and more distant parts of the map. In order to distinguish

between stationary and transition parts, a critical jump distance separating short and long

distances, as well as a minimum segment length was defined.

Trajectory-based SOMs have also been proposed to model low dimensional non- linear processes,

such as non- linear time series obtained from a Markey-Glass system (Príncipe and Wang 1995).

They followed three steps: the reconstruction of the state space from the input signal; the

embedding of the state space in the neural field; and the estimation of locally linear predictors.

Trajectories are then used to obtain a temporal representation of all 400 consecutive input

samples.

58 Part I, Chapter 4

Within another application, firing activities in monkey’s motor cortex have been measured and

presented to a SOM in order to predict the trajectory of the arm movement, especially while the

monkey was tracing spirals and doing center-out movements (Lin, Si et al. 1998). From the map,

three circle-shaped patterns representing the spiral trajectory have been identified through paths

on the map. The results showed that the monkey’s arm movement directions are clearly encoded

in firing patterns of the motor cortex.

In (Kasslin, Kangas et al. 1992), for instance, components maps are used for process state

monitoring where values for one parameter are visualized as gray values on a map. The lighter

the unit on the map, the higher the parameter value is. Their aim was to classify the system states

and detect faulty states for devices based on several device state parameters, such as temperature.

Faults in the system could be detected with trajectories, if a transition to a forbidden area on the

map marked with a very dark color occurred. This approach was also applied to process control

in chemistry for monitoring a distillation process (Tryba and Goser 1991).

Visualization of trajectories on U-matrices have been used for monitoring chemical processes

(Ultsch 1993), and have been applied to complex processes, such as the dynamic behavior of a

computer systems with regard to utilization rates and traffic volume (Simula, Alhoniemi et al.

1996), to industrial processes, such as a continuous pulp digester, steel production and pulp and

paper mills (Alhoniemi, Hollmén et al. 1999), and to different subjects with distinct sleep apnea

diseases (Guimarães, Peter et al. 2001). In order to enhance exploratory tasks with SOM-based

data visualization techniques, quantization error plots can be used using bars or circles on both,

component maps or U-matrices (Vesanto 1999).

4.3.6.2 - Modification of the Activation/Learning Rule

Another possibility for processing temporal data with SOMs lies in the adaptation of the original

Kohonen activation and/or learning rule. Here we distinguish between two distinct approaches. In

the first, the input vector is decomposed into two distinct parts, a past or context vector and a

future or pattern vector. Both parts are handled in different ways when choosing the best match

and when applying the learning rule. This approach, named Hypermap, was first introduced by

Kohonen (Kohonen 1991). The second approach, that we will call Kangas map, searches for the

best match in a neighborhood of the last best match.

Exploratory data analysis 59

4.3.6.2.1 -The Hypermap Architecture

Basic ideas

In this architecture the input vector is decomposed into two distinct parts, a “past” or “context”

vector and a “future” or “pattern” vector. The basic idea, now, lies treating both parts in different

ways. The most common way is to use the context part to select the best match or “best-match

region”, and then adapting the weights using both parts, separately or together. However many

variants exist, and will be discussed later.

For time series a Hypermap means that the future (prediction) is learned in the context of its past.

During the classification phase the prediction is made using only the “past” vector for the best-

match search. Thus, the SOM is used as an associative memory, and the “future” part of the

vector is then retrieved from the weights of the map associated with the best match.

Discussion

Originally the Kohonen algorithm is an unsupervised learning algorithm that can be used for

exploratory tasks. Approaches, however, that use some kind of Hypermap architecture, perform a

profound change in the interpretation of the original Kohonen algorithm towards a supervised

learning algorithm, since an output vector (the future or pattern vector) is added to the input (the

past or context vector). This makes sense in applications that require an extrapolation of the data

into the future as, for example, in time series prediction (Ultsch, Guimarães et al. 1996), or in

robot control (Ritter, Martinetz et al. 1992).

Examples

This approach was first introduced by Kohonen (Kohonen 1991) and named Hypermap

architecture. It was applied to the recognition of phonemes in the context of cepstral features.

Each phoneme is then formed as a concatenation of three parts of adjacent cepstral feature

vectors. The idea was to recognize a pattern that occurs in the context of other patterns, where

x(n) = [xpatt(n), xcont(n)]. A two-phase recognition algorithm for the best-match search was

proposed. In the first phase, we start by selecting a “context domain”. This is done by searching

for the good-matches of the context, i.e. all units that are within a given distance of the context

vector xcont(n). In the second phase, the best match is searched within the selected context

domain, using only the pattern xpatt(n). During learning we also have two phases. In the first

60 Part I, Chapter 4

phase, a context SOM is trained using only the context xcont(n) and the basic SOM algorithm.

After this SOM is trained, its weights are frozen (i.e. made constants). Next, we perform a

learning of the pattern weights of the Hypermap. This is done using the above described

algorithm for the best-match search, but performing the adaptation only on the unit weights that

are related to the pattern vector xpatt(n). Furthermore, for this particular application, an extra-

supervised learning step was used to associate the units with phonemes.

This architecture was generalized in (Bruckner, Franz et al. 1992) to perform hierarchical

relationships having n-1 levels defining the context for the classification of EEG signals from

acoustical and optically evoked potentials. This type of model was also studied for phoneme

recognition using the LASSO model (Midenet and Grumbach 1994), for simulating a sensory-

motor task (Ritter and Kohonen 1989), as well as for robot control (Ritter, Martinetz et al. 1992;

Walter and Schulten 1993; Ritter 1994; Walter 1998). In this latter application, the output is the

target position of the robot arm (for instance, given by the angles), while the input is given as a

four-dimensional vector describing the spatial position of the robot arm obtained by the images

of two cameras.

Hypermaps have also been used for prediction tasks, for instance, using SOMs for local models

in the prediction of chaotic time series (Koskela, Varsta et al. 1998). The time series is embedded

in a state space using delay coordinates x(n) = [x(n), x(n-1),…, x(n-(N-1))], where N is the order

of the embedding. The embedded vector is then used to predict the next value of the series

x(n+1). The following vector y(n) = [x(n), x(n+1)] is presented to the map during the learning

phase. However, when searching for the best match, the target value is left out. This means that

only the first part (past) of the whole vector is used for the determination of the best match.

During learning, the unit weights are adapted using the whole input vector, and the standard

Kohonen algorithm. Now, during the classification phase, only the first part of the vector is used

for the best-match search, and indeed it is the only part available, since we are trying to predict

the future. Thus this future part is obtained through an associative mapping with the past. In

(Ultsch, Guimarães et al. 1996) a two step implementation of this approach was used for the

prediction of hailstorm. First, it was used to identify distinct types of hailstorm developments.

After the classification part, prediction was made using the completed vector.

Exploratory data analysis 61

4.3.6.2.1 - Kangas Map

Basic ideas

Instead of considering explicitly the context as part of the pattern, as is done in the Hypermap,

we can also consider that the

context is given by the previous

best match, and use only the

neighboring units when

choosing the next one. This idea

was proposed by Kangas

(Kangas 1992), and so we

named this approach Kangas

Maps. In this approach, the

learning rule is exactly the same

as in the basic SOM. The

selection of the best-match is also the same, save for the fact that instead of considering all units

for the next iteration step, only those in the neighborhood of the last best-match are considered,

as can bee seen in Figure 17.

Discussion

This type of map has several interesting features, and can in certain cases have a behavior similar

to SOMs with feedback, e.g. SOMTAD (Euliano and Principe 1999), discussed later in this

paper.

From a purely engineering point of view, it can be considerably faster then a basic SOM when

dealing with large maps, since we only need to compute the distances to some of the units. It also

requires very little change in the basic SOM algorithm, and keeps its most important properties.

The area where the next best-matches are searched for acts as a “focus region”, where the

changes in the input are tracked. In a Kangas map, we may have various distinct areas with

almost the same information (relating to the same type of input signal), but with different

neighboring areas. Thus, the activation of the units will depend on the past history, i.e. on how

the signal reached that region of the map. Thus, this approach uses the core concepts of

neighborhood and topological ordering of SOMs, to code temporal dependency.

last best-match
units considered
for next iteration

SOM

last best-match
units considered
for next iteration

SOM

Figure 17 - Structure of the Kangas Map

62 Part I, Chapter 4

In the original paper (Kangas 1992) some variants of the basic idea are proposed, though not

explored in depth. One of them allows for multiple best matches, and thus multiple tracking of

characteristics of the input signal.

A similar approach, that also uses feedback (discussed later) was proposed in (Chandrasekaran

and Palaniswami 1995), and named Spatio-Temporal Feature Map (STFM). In a STFM, the units

that are used when searching for a best-match are selected according to a rule that includes more

than just the neighborhood (in the output space) to the last best-match. Two core concepts are

used in this selection: a so-called spatial grating function that basically defines a spatial area of

influence of each unit; and a gating function, that is a time-dependant function of past

activations, and determines the output of the units. Using these two concepts, a so-called

competition set of units is selected, where the winner will be searched. Finally, in the above-

mentioned papers, the trajectory of the best match is also used, and named the “spatio-temporal

signature” of the temporal sequence.

Many other rules may be used to select the candidate best matches.

Instead of using past activations to select candidates for best matches, we can also use those past

activations to exclude certain candidates. The Sequential Activation Retention and Decay

NETwork (SARDNET), proposed in (James and Miikkulainen 1995) does just this. In this

approach (which also uses feedback), the best match is excluded from subsequent searches. Thus,

a sequence of length l will select l different best matches, or a l- length trajectory. As discussed in

(James and Miikkulainen 1995) this will force the map to be more detailed in the areas where

each of the sequences occur, thus representing small variations of those sequences with greater

detail. A decay factor is also introduced to make the selection of the best winner depend on past

activations, but we will not discuss its influence here. This hybrid approach was used

successfully to learn arbitrary sequences of binary and real number, as well as phonetic

representations of English words.

Kangas Map based approaches have been used for speech recognition tasks (Kangas, Tarkkola et

al. 1992; Kankas 1994), texture identification, and 3-D object identification (Chandrasekaran and

Palaniswami 1995; Chandrasekaran and Liu 1998).

Exploratory data analysis 63

4.3.6.3 - Modification of the Network Topology

The third possibility in handling temporal data lies in modifying the network topology,

introducing either feedback connections into the network or several hierarchical layers, each with

one or more SOMs. Feedback SOMs are intimately related to digital filters and ARMA models,

which are a more traditional way of dealing with temporal sequences. The latter approach is

mainly used when a segmentation of complex and structured problems is needed in application

domains, such as image recognition, speech recognition, time series analysis, process control,

and protein sequence determination.

4.3.6.3.1 - SOMs with Feedback

Basic Idea

One of the classical methods to deal with temporal sequences, which have been used with great

success in control theory, is to feed some sort of output back into the inputs. This is usually done

with an internal memory that stores past outputs, and uses them when generating the next

outputs. One of the advantages of these methods is that they do not require the user to specify the

length of the time series that must be kept in memory, as happens with the tapped-delay

approaches.

Variants

There are a few different values that can be used for feedback, and a few different ways to

introduce these values back into the system. Thus a large number of approaches have been

proposed and tested in different environments.

Variant 1 - Temporal Kohonen Maps (TKM)

Historically, the first well-documented proposal for feedback SOMs appeared in 1993 (Chappell

and Taylor 1993), named as “Temporal Kohonen Map” (TKM), and is very similar to the model

used in (Kangas 1992). The main idea behind this approach lies in keeping the output values of

each unit and using them in the computation of the next output value of that unit. This is done

introducing a leaky integrator in the output of each SOM unit. In a TKM the final output of each

unit is defined as

 Vi(n) = α Vi(n-1) - ½ || x(n)-wi(n) ||2 , (31)

64 Part I, Chapter 4

where

Vi(n) is the scalar output of unit i, in at time n,

Vi(n-1) is the scalar output of unit i, in at time n-1,

x(n) is the input pattern presented at time n,

wi(n) is the SOM unit i, at time n,

α is a time constant called decay factor, or memory factor, restricted to 0 < α < 1.

The best-matching unit is considered to that which has a higher Vi(n) (which is always negative).

The learning rule used is that of the basic SOM. When α =0, the units have no memory, and we

fall into the standard SOM algorithm. It must be noted that this output transfer function

resembles the behavior of biological neurons, which do have memory, and weigh new inputs

with past states.

In essence, for the sake of comparing this approach with others, the activation function (to be

minimized) is

 Vi(n) = α Vi(n-1) + (1-α) || x(n)-wi(n) || (32)

This formulation of the TKM is shown in Figure 18.

Variant 2 - Recurrent SOM (RSOM)

The TKM keeps only the magnitude of the output of the units, and keeps no information about

each of the isolated components, and thus no information about the “direction” of the error

Z-1

+

α

-

wi(n)

x(n) ||.|| Vi(n)
y(n)

error

magnitude
computationinput

unit weights

difference
computation

leaky
intergrator

final output

1−α

Z-1Z-1

+

α

-

wi(n)

x(n) ||.|| Vi(n)
y(n)

error

magnitude
computationinput

unit weights

difference
computation

leaky
intergrator

final output

1−α

Figure 18 - Structure of each unit in a Temporal Kohonen Map (TKM)

Exploratory data analysis 65

vector. To overcome this limitation, the Recurrent SOM (RSOM) was proposed (Critchley 1994;

Varsta, Heikkonen et al. 1997), where the leaky integrators are moved from the output to the

input of the magnitude computation. As a consequence, the system memorizes not only the

magnitude, but also the direction of the error.

The activation function for each unit will now be

 Vi(n) = || yi(n) || , (33)

where yi(n) is the error vector given by

 yi(n) = (1-α) yi(n-1) + α(x(n)-wi(n)) (34)

This formulation of the Recurrent SOM is shown in Figure 19

Recursive SOM

The TKM uses, for the computation of the activity of each unit, only the previous output of that

unit. The RSOM also uses only local feedback. Another alternative is to feedback the outputs of

all the units of the map to each of them. This alternative was first proposed in (Harmelen 1993),

later in (Barreto and Araújo 1999), and was analyzed in detail in (Voegtlin 2000; Voegtlin and

Dominey 2001), and with slight modifications in (Ruf and Schmitt 1998). The latter authors first

named this approach Contextual Self-Organizing Map (CSOM), and later Recursive SOM. In this

paper we use the name Recursive SOM to clearly differentiate it from the Hypermap architecture

that also uses the term “context”. The dimensionality of each unit is increased significantly.

Besides the standard weight vector wi
input each unit i will also have a weight vector wi

output, which

Z-1

+

α

-

wi

x ||.|| Viy

error
magnitude
computationinput

unit weights

difference
computation

leaky
intergrator

final output

feedback error

1-α

Z-1Z-1

+

α

-

wi

x ||.|| Viy

error
magnitude
computationinput

unit weights

difference
computation

leaky
intergrator

final output

feedback error

1-α

Figure 19 - Structure of each unit in a recurrent SOM

66 Part I, Chapter 4

is to be compared with actual outputs in the previous instant. The activation function defined by

(Voegtlin and Dominey 2001) is

 Vi(n) = exp(-α || x(n)-wi
input(n) || 2 – β || V(n-1)-wi

output(n) || 2), (35)

where α and β are constant coefficients that reflect the importance of past inputs.

The formulation of the Recursive SOM is shown in Figure 20.

SOM with Temporal Activity Diffusion (SOMTAD)

Another approach, similar to recursive SOM, was proposed and analyzed in (Kopecz 1995)

(Euliano and Principe 1996; Euliano, Principe et al. 1996; Euliano and Principe 1998; Euliano

and Principe 1999) and, in the latter paper, named SOM with Temporal Activity Diffusion

(SOMTAD). In a SOMTAD, instead of feeding back all past outputs (and learning their

respective weights), only the activations of neighboring units are fed back. This leads to a sort of

shock wave that is generated in the best match unit, and propagates throughout output space of

the map. Adapting the proposed algorithm to the formalism we have been using, we will have

 Vi(n) = (1-α) Vi(n-1) + α || x(n)-wi(n) || , (36)

 just as in a KTM, but each unit i will also have an enhancement E given by

 Ei = f(Vneighbour(t-1)), (37)

x

SOM
(map of units)

V
input to the SOM

past activations

(x,V)

,

concatenationinput pattern

x

SOM
(map of units)

V
input to the SOM

past activations

(x,V)

,

concatenationinput pattern

Figure 20 - Structure of the Recursive SOM

Exploratory data analysis 67

where f(.) is some function, that couples the enhancement of one unit with the activity of its

neighbor.

The best match is then

 best-match(t) = arg min(|| x(n)-wi(n) || + β Ei(t)), (38)

where β is called the spatio-

temporal parameter, and

controls the importance of past

neighboring activations. The

structure of each unit of a

SOMTAD is shown in Figure

21.

It must be noted that when β

tends to 0, the SOMTAD

becomes a standard SOM. As

it increases, the behavior will

be similar to a Kangas map,

since the best match will tend to be in the vicinity of the last best-match, and as β tends to +∞,

the model degenerates into an avalanche network.

Discussion

None of the above proposals is universally better then any other, so one can always find an

example of an application where a given approach outperforms the others. There are, however,

some well-known characteristics that can help us choose a good approach for a given problem. A

good theoretical comparison of the Temporal Kohonen Map (TKM) and the Recurrent SOM

(RSOM), can be found in (Varsta, Heikkonen et al. 2000), where the authors show that TKM

lacks RSOM’s consistent update rule. Thus, while a RSOM will converge to optimum weights

for its units, following a gradient descent algorithm, the TKM will not, hence in some way it will

be unreliable. In a series of experiments, the authors show that generally a RSOM will provide a

more efficient mapping of the input space signals then a TKM, which tends to concentrate its

units in certain regions of that space. On the other hand in (Voegtlin and Dominey 2001) it is

shown that for a classical benchmark problem, the Mackey-Glass chaotic time series, the

Recursive SOM will provide a far better mapping then the Recurrent SOM. This will generally

TKMx

input TKM unit

β

intermediate
activation

Vi

Vneigh

activation of
neighbors

+

output

Figure 21 - Structure of each unit in a SOMTAD based map

68 Part I, Chapter 4

be the case when a global perspective of the signal space is necessary, which means that in those

cases, when a global perspective of the past inputs is necessary, a strictly local approach, such as

TKM and RSOM, can not give good results. However, it must be noted that the complexity of the

system is also considerably increased when we use a Recursive SOM.

Examples

Recurrent SOMs have probably been the most used model. They have been successfully applied

to the Mackey-Glass Chaotic Series, infrared laser activity, and electricity consumption (Koskela,

Varsta et al. 1997), as well as clustering of epileptic activity based on EEG (Koskela, Varsta et

al. 1998). As described earlier, the Recursive SOM was also used to study the Mackey-Glass

series, and has outperformed the RSOM. It was also used, with slight modifications, in (Ruf and

Schmitt 1998). To our knowledge, the SOMTAD model has only been applied by its authors to

digit recognition, and to small illustrative problems in (Euliano and Principe 1996; Euliano,

Principe et al. 1996; Euliano and Principe 1998; Euliano and Principe 1999).

Exploratory data analysis 69

4.3.6.3.2 - Hierarchical SOMs

Basic idea

Hierarchical SOMs are often used in application fields where a structured decomposition into

smaller and layered problems is convenient. Here, one or more than one SOMs are located at

each layer, usually operating at different time scales (see Figure 22). Hierarchical SOMs in

temporal sequence processing have been successfully applied to speech recognition (Kempke and

Wichert 1993; Jiang, Gong et al. 1994), electricity consumption (Carpinteiro, Silva et al. 2000),

vibration monitoring (Jossa, Marschner et al. 2001), motion planning (Barreto and Araújo 1999)

and temporal data mining in medical applications (Guimarães and Urfer 2000).

Discussion

The main difference between hierarchical SOMs lies in the type of codification of the results of

one level SOMs to the next upper level. They also differ in the number of levels used, which

strongly depends on the type of application. Finally, they differ in the number of SOMs at each

level, and the interconnections between the levels.

...

x
input

all or part of the data

...

all or part of the data

lower level SOMs

second level SOMs

(up to higher level SOMs)

...

...

x
input

all or part of the data

......

all or part of the data

lower level SOMs

second level SOMs

(up to higher level SOMs)

...

Figure 22 - Structure of a Hierarchical SOM

70 Part I, Chapter 4

The rationale for using hierarchical SOMs is that of “divide and conquer”. By focusing

independently on different inputs we do lose information, but we gain manageability. We can

thus use a relatively low complexity model, such as a SOM to handle each of the small groups of

inputs, and then fuse this partial information to extract higher- level results. Good results can thus

be obtained with hierarchical SOMs in complex problems that cannot be modeled by a single

SOM (Guimarães, Peter et al. 2001).

There are mainly three different ways to calculate the input vector for the next level SOM. First,

the weights of the lower- level SOM are used as input without any further processing, either

taking into account the information of the previous known classes (Kempke and Wichert 1993)

or without considering any information on the classes (Walter and Ritter 1996). In this case, the

first level SOM is simply being used for vector quantization. Second, a transformation of the

network results is possible, for instance: 1) calculating the distances between the units

(Carpinteiro 1998); 2) concatenating subsequent vectors into a single vector, thus representing

the history of state transitions (Simula, Alhoniemi et al. 1996); or 3) taking into account the

information about clusters formed at this level, and adjusting the weights towards the cluster

center (Guimarães and Urfer 2000). The third possibility lies in interposing other algorithms or

methods, such as segment classifiers (Behme, Brandt et al. 1993).

Examples

This approach was first introduced in speech recognition, where each layer deals with higher

units of speech, such as phonemes, syllables, and word parts (Behme, Brandt et al. 1993;

Kempke and Wichert 1993). For instance, in (Behme, Brandt et al. 1993) at each layer a SOM

operating at different time scales is used, which is connected to a segmentation unit for the

segmentation of the input and to segmentation classifiers. Each of the classifiers was trained to

recognize a special class of segments, thus producing an output vector for each segment. These

output vectors, i.e. the activities of the classifiers, form the input for the next level, which thus

operates on a larger time scale. Each segment classifier m produces an output activity am = Σi

ci·wim, ci denoting the activity of the SOM unit i and wim the synaptic strength from SOM unit i to

classifier m. These connections may be inhibitory (wim<0), but always fulfill Σiw2
im=1.

In (Jiang, Gong et al. 1994) a speaker recognition system based on the auditory cortex model is

proposed. Since an auditory cortex can be generally considered as a layered upward structure

Exploratory data analysis 71

with complex connections, three hierarchical levels of SOMs with local connections have been

introduced. The output of the first map contains leaky integrators and is calculated as follows:

 yi(n) = α ⋅ (k / (1 + ||wi(n)-x(n)||)) + (1 - α)⋅ yi(n – 1) , 0 < α < 1 . (39).

For the sake of comparison with other approaches, this equation can be transformed into the

following that should be minimized:

 yi(n) = (1 - α)⋅ yi(n – 1) + α ||wi(n)-x(n)|| . (40)

The units of the second and the third layer have input connections from the units of the

immediately lower level. Additional connections exist from the first to the third level.

Kemke and Wichert (Kempke and Wichert 1993) also used hierarchical SOMs at different time

scales, as mentioned before. The codification of the input at the next layer is based, however, on

a pre-classification of the signal. A class is associated with each unit on the map. In order to

calculate the output for a given input vector, the mean of the weights of all units belonging to the

class is calculated, and used as input to the map of the next higher- level map.

Hierarchical SOMs have also been applied to monitoring and modeling the dynamic behavior of

complex industrial processes, such as the dynamic behavior of a computer system (Simula,

Alhoniemi et al. 1996). The main problem in process analysis is to find characteristic states or

clusters of states that determine the general behavior of the system. In this approach, a

hierarchical SOM with two levels was constructed containing a “state map” used to track the

operating point of the process with trajectories, and a “dynamics map” used to predict the next

state on the state map. Each unit on the dynamics map then represents a "path" leading into the

corresponding state. The training set of the state map for the dynamics map is formed by

concatenating subsequent vectors into a single vector, representing the history of state transitions.

In prediction, the state map vector having the best matching trajectory in its dynamics map is

then the predicted state.

An application of hierarchical SOMs in medicine, namely in sleep apnea research, is given in

(Guimarães and Urfer 2000). Here, SOMs are used at different hierarchical levels, in order to

handle the complexity given by the large number of signal channels. At the lowest level,

72 Part I, Chapter 4

primitive patterns in multivariate time series are discovered for distinct time series selections,

while more complex patterns are identified at the next higher-level SOM. This approach

considers the patterns obtained by the low-level maps, using the information provided by the U-

matrix to identify the clusters. Thus, based on this information, a cluster center is calculated, and

in order to calculate the input to the next-higher level map, all weights are approximated towards

its cluster center ck according to the following adaptation rule:

 wi,new = wi + α ||wi - ck||, if ck > wi , (41)

and

 wi,new = wi - α ||wi - ck||, if ck ≤ wi. (42)

A two-level hierarchical SOM has also been applied to short-term load forecasting (Carpinteiro,

Silva et al. 2000), and to music data, the Bach’s fugue (Carpinteiro 1998). In this approach the

input to the second layer SOM is determined by the distance between the best-match ui(n) and all

the other k units of the map uj(n), j≠i, leading to a k-dimensional input vector.

A hierarchical approach to parameterized SOMs (PSOMs) was proposed by Walter and Ritter

(Walter and Ritter 1996), in order to cope with only a very few number of examples. This

approach was applied to rapid visuo-motor coordination. One possible solution is to split the

learning into two stages, both on distinct PSOMs: 1) a first level PSOM, considered as an

investment stage for a pre-structuring of system, which may process a large number of examples;

and 2) a second level PSOM, named as Meta-PSOM, that now is a specialized system with fast

learning, and only needing a few examples as input. The weights of the first level are then used

as input to the second level Meta-PSOM.

4.3.6.4 – A survey of papers

As we shall see in part II of this thesis, we opted for using embedded time in our SOMs, and

allowed the user to visually do some trajectory based analysis. So as to have an idea how popular

the various temporal SOMs are, we surveyed 68 papers that we considered relevant, and the

results are presented in Table 3. Due to the large number of papers involving SOMs for temporal

sequence processing, and due to the somewhat fuzzy borders of what are or are not temporal

SOMs, many papers that could be considered relevant are not referenced.

Exploratory data analysis 73

In proposing this taxonomy, we focused on identifying the core concepts involved when

introducing time into SOMs. As mentioned before, for many applications it is useful do draw on

more than one of these ideas. Naturally, our taxonomy is not complete and exhaustive, in the

sense that more specific and detailed approaches do exist or can be developed in the future. Also,

due to the large number of papers involving SOMs for temporal sequence processing, and due to

the somewhat fuzzy borders of what are or are not temporal SOMs, many papers that could be

considered relevant are not referenced.

We identified three main approaches for temporal sequence processing with SOMs. These are: 1)

methods requiring no modification of the basic SOM algorithm, such as embedded time and

trajectory-based approaches; 2) methods that adapt the activation and/or learning algorithm, such

as Hypermaps or Kangas Maps; and 3) methods that modify the network structure, introducing

feedback connections, or hierarchical levels. The use of each of these approaches, which are not

mutually exclusive, depends highly on the application, and none is universally better than any

other. The best results are usually obtained by using a carefully tailored combination of these

methods. Table 1 provides a classification of some existing and relevant approaches in this

taxonomy.

74 Part I, Chapter 4

Unmodified
SOM

Modified
activation

/learning rule

Modified
topology

References

E
m

be
dd

ed
 ti

m
e

T
ra

je
ct

or
y-

ba
se

d

H
yp

er
m

ap

K
an

ga
s

M
ap

Fe
ed

ba
ck

H
ie

ra
rc

hi
ca

l

(Alhoniemi et al., 1999) X
(Atlas et al., 1995) X
(Barreto & Araújo, A. 1999) X X
(Barreto & Araújo, 2000) X X
(Behme et al. , 1993) X X
(Brückner et al., 1992) X
(Carpinteiro, 1998) X
(Carpinteiro & Silva, 2000) X
(Chandrasekaran & Palaniswami, 1995) X X X
(Chandrasekaran & Liu, 1998) X X X
(Chappel & Taylor, 1993) X
(Chappelier & Grumbach, 1995) X
(Crichley, 1994) X
(Euliano & Principe 1996) X
(Euliano et al., 1996) X
(Euliano & Principe 1998) X
(Euliano & Principe, 1999) X
(Guimarães, 2000) X X X
(Guimarães et al., 2001a) X
(James & Miikkulainen, 1995) X X X
(Jiang et al., 1994) X X
(Jossa et al., 2001) X X X
(Joutsiniemi et al., 1995) X X
(Kangas et al., 1990) X
(Kangas, 1992) X
(Kangas et al., 1992) X X
(Kaski & Joutsiniemi, 1993) X X
(Kasslin et al., 1992) X
(Kemke & Wichert, 1993) X X
(Kohonen et al., 1984) X X
(Kohonen, 1988) X X
(Kohonen, 1991) X
(Kopecz, 1995) X
(Koskela et al., 1997) X
(Koskela et al., 1998a) X
(Koskela et al., 1998b) X
(Lakany, 2001) X
(Leinonen et al., 1992) X X
(Leinonen et al., 1993) X X
(Lin & Si, 1998) X
(Lobo et al., 1998) X
(Midenet & Grumbach, 1994) X
(Moshou & Ramon, 2000) X
(Mujunen et al., 1993) X X

Exploratory data analysis 75

 Embd Traj. Hyp. Kang. Feedb Hierar
(Pesu et al., 1996) X
(Principe & Wang, 1995) X
(Principe et al., 2000) X
(Ritter et al., 1989) X
(Ritter, 1994) X
(Ruf et al., 1998) X
(Simula et al., 1996) X X X
(Speidel, 1992) X
(Srinivasa & Ahuja, 1999) X
(Tryba & Goser, 1991) X
(Ultsch, 1993) X
(Ultsch et al., 1996) X
(Utela et al., 1992) X X
(Varsta et al., 1997)
(Varsta et al., 2000) X
(Vesanto, 1997) X
(Vesanto, 1999)
(Voegtlin, 2000) X
(Voegtlin & Dominey, 2001) X
(Von Harmelen, 1993) X
(Walter & Schulten, 1993) X
(Walter & Ritter, 1996) X X
(Walter, 1998) X
(Zandhuis, 1992) X X

Table 3- Overview of the approaches used in 68 different papers.

4.3.7 – Other variants on the basic SOM

Multiple variants of the basic SOM algorithm have been proposed some of which are reviewed in

(Kangas, Kohonen et al. 1990) and (Kohonen 2001). Besides the Temporal SOMs mentioned in

the previous section, these include: non-time related Hierarchical SOMs; Adaptive Sub-Space

SOM (ASSOM), where the neurons have a lower dimension than the original pattern, thus

“living” in one of its sub-spaces; Self-growing SOMs, that automatically expand when certain

criteria are met; Neural Gas, where there are no pre-defined output space neighborhoods, and

instead are defined and modified during training; MST-SOMs where the grid neighborhoods are

replaced by neighborhoods defined on a Minimum Spanning Tree of the units (Kangas, Kohonen

et al. 1990); and many more.

Besides the U-Matrices mentioned before, a number of other techniques have been proposed to

visualize the output SOM, or to post-process it so that other representations of the data may be

provided.

76 Part I, Chapter 4

One visualization technique, presented in (Kaski, Venna et al. 1999) maps the SOM units

directly into a color space, the CIELab space (CIE 1986). This method has two main advantages

to the normal display of labeled SOMs. On one had, it avoids the arbitrary assignment of colors

to the labels, in such a way that similar units will be assigned similar colors. This will give a

better visual insight into the relationships amongst different units and clusters. On the other hand,

this color mapping dos not need labeled units, and can thus be applied to pure unsupervised

learning problems.

Producing rules from SOMs, as a means of knowledge discovery is becoming an important topic

too. One approach followed by (Guimarães and Urfer 2000) uses hierarchical SOMs to achieve

higher degrees of abstraction before attempting to generate those rules. Fuzzy rules have also

been extracted from SOMs, as for example in (Drobics, Bodenhofer et al. 2000), where an

algorithm named FF-Miner was developed.

Finally, there have been many hardware implementations of SOM. A number of special built

VLSI chips have been designed specifically to implement SOM. Some, such as (Gioiello,

Vassallo et al. 1992) where projected, simulated, and had their performance theoretically

predicted, while others, such as (Rueping 1994) where actually build at foundries. While most of

them can boast impressive performances, none has become mainstream. One reason for this is the

simple fact that they are custom make for SOM, and thus have little flexibility in being used for

other purposes. The small volume of sales makes for a high price, that turns away potential

clients. The fact that none of the implementations is clearly better than others, and that all are

quite different, makes the learning curve for using them quite steep, again discouraging potential

users. Finally, the impressive evolution of general purpose microprocessors makes software

implementation a safer bet for investors. It is our opinion that SOM hardware is still searching

for a “killer application” to get into the mainstream of computing.

 77

PART I

CHAPTER 5

Classifier design

5.1 – Introduction

The term classification can be used in a variety of contexts, with slightly different meanings.

From a computer science and engineering point of view, the term generally refers to data-driven

classification, i.e., the ability classify new data, based on previously classified data and, only

when possible, on prior knowledge about the problem.

Classification, in the sense that we will consider in this thesis, can be defined as follows:

78 Part I, Chapter 5

Given a set X of multidimensional patterns x1, x2,…, xn, each one with an associated cla ss θ1, θ2,

..., θq, decide which is the class θ of a new pattern x.

The patterns may be multidimensional patterns of any type, namely their components may be

real-valued, categorical, binary, or anything else. In some instances, they may even be trees or

graphs. As for the class, it must be categorical. A real-valued class leads to regression, which is a

closely related subject, but one which we shall not address in this thesis. The relationship

between the two has been explored in many papers, such as (Torgo and Gama 1997).

As will be discussed in Chapter 6, the set of patterns used to design the classifier is called the

training set, referred to as Xtrain. Other patterns, that constitute the validation set, Xvalid, may be

used to control the design process. Finally, some patterns, that are not used for designing the

classifier, may be used to estimate the probability of error of the classifier and are called the test

set, or Xtest.

The first classifiers where developed by researchers in the field of statistics and engineering, and

followed what we shall call a statistical approach to classifier design. With the emergence of the

field of Artificial Intelligence, many new approaches where devised, which we will call AI-based

approaches. In recent years there has been a general convergence of these two basically different

points of view, for it has been recognized that they have many points in common (Schurmann),

and sometimes the same method has been re- invented in one community years after it was

developed by the other (Ripley 1996). Statistics can give a sound theoretical foundation for many

AI-based methods, and can solve in an optimal and efficient way many problems, while Artificial

Intelligence can provide solutions that, if many times not optimal, can solve difficult problems in

reasonable time. Comparisons and taxonomies of AI-based and statistical classifiers can be found

in (Holmstrom, Koistinen et al. 1997), or some of the pattern recognition textbooks referenced.

Following this more modern unifying approach, we will overview the purely statistical classifiers

an AI based approaches together, making the necessary distinctions when necessary. I hope that

pure statisticians will not be offended by the lack of rigorous mathematical proof for the AI based

methods, nor AI researches will be bored with the formalism of statistics. Due to our background,

it will necessarily be more of an AI based approach.

Classifier design 79

5.2 - Classifiers

There are basically two types of statistical approaches to designing classifiers: the parametric

approaches, and the non-parametric approaches. Parametric approaches assume that the known

patterns have a probability distribution that follows a known analytical function. From the data,

the parameters of that function are estimated, and an optimal decision boundary is obtained.

Excellent reviews of parametric classifiers can be found in any patterns classification book, of

which we may recommend (Duda, Hart et al. 2001), (Fukunaga 1990), (Bishop 1995), (Ripley

1996), or (Marques 1999)(which is written in Portuguese).

Non-parametric approaches assume no pre-defined distribution, and try to obtain the decision

boundary directly from the data.

This usually implies estimating some measure of the probability density of the data’s distribution.

To estimate the probability density at a given point, p(x), from the data itself we may take n

patterns of the desired class, and find out how many of them (say k) fall within a given area (∆V),

and calculate the ratio (Duda, Hart et al. 2001):

V
nk

xp
∆

≈
/

)((43)

This estimate will converge to the true probability density as n increases if three conditions are

met:

 0 lim =
∞→

?V
n

 (44)

 ∞=
∞→

k
n

 lim (45)

 0 lim =
∞→

k/n
n

 (46)

Clearly the first and second conditions are difficult to meet, even approximately, with any given

finite training set. Thus, no data driven probability density estimation will be without error.

The two most used approaches to effectively calculating p(x) require fixing ∆V and counting k/n,

or letting ∆V grow to achieve a desired k. The former technique leads to Parzen Windows based

approaches, while the latter leads to k-Nearest Neighbor based approaches, of which the 1-

80 Part I, Chapter 5

Nearest Neighbor, or simply Nearest Neighbor is the most common. In this thesis we will only be

interested in studying the latter family of non-parametric classifiers. It must be noted that for

classification purposes, we do not need to explicitly calculate the probability density of each

class in any given point of the input space, but simply find out which class has a higher value of

that probability density. Thus, the total number of patterns (n in the above equation), is irrelevant,

as is the exact value of ∆V. If those two parameters are equal for all classes, we need only

compute the number k of patterns of each class that fall into some n-dimensional volume ∆V. If

we are only interested in crisp “yes or no” decisions, we are not even interested in knowing the

exact k of each class, but only which one is greater.

5.3 - Nearest Neighbor Classifiers

One of most widely used methods for non-parametric classifiers is the nearest neighbor classifier.

It is generally recognized that the first serious study of the nearest neighbor rule for classification

was done by Fix and Hodges from the US Air Force School of Aviation Medicine, in a technical

report dated February 1951, named “Discriminatory analysis, non-parametric discrimination:

consistency properties” (Fix and Hodges 1951), available in (Dasarathy 1991). However, the first

paper to be published in a major journal, with a sound theoretical justification of the method is

due to Cover and Hart in (Cover and Hart 1967).

The nearest neighbor rule for classification can be stated as follows:

Algorithm 4 - Nearest Neighbor Classification Rule

Let

 XTrain Be the training Set composed of patterns and associated

classes (x1, θ1), (x2, θ2),… ,(xn, θn)
 xnew Be a new pattern
 θnew The unknown class of the new pattern

Do

1 For i=1 to |XTrain| do
2 Calculate the distance di= || xi – xnew ||
3 Find i that minimizes di (i=argmin(di))
4 θnew=θi

Classifier design 81

Stated in plain English, the rule says: “find the class of the pattern that is nearest to the new

pattern, and that will be the new class”.

We can now ask ourselves if this intuitively sound rule does in fact make sense, under which

conditions will it perform better or worse than other rules, and how does it compare to Bayes

rule, when such can be calculated. As pointed out by many authors (e.g. (Mitchell 1997)), the

nearest neighbor classifiers are a particular case of the more general non-parametric probability

density estimators, that are at the root of every classification procedure that tries to achieve

optimality. As seen in the previous section, to estimate the probability density from data we must

compute the values for equation (43), and to achieve the optimum Bayes error, the class we want

is the one with greater probability density at that point. Whether or not the nearest neighbor rule

converges to this value is known as the convergence problem, which has a number of variants.

The first convergence problems where solved in the 60’s when (Cover and Hart 1967) showed

that given mild assumptions on the continuity of the probability density function, asymptotically,

when the size of the training goes to infinity:

a) If the classes are separable, the nearest neighbor rule converges to the true class, with

probability 1.

b) If the classes are not separable, the nearest neighbor rule converges to an error rate that is

less than twice the optimum Bayes error rate, also with a probability of 1.

Easier to follow, and very elegant proofs for the same problem are given in (Ripley 1996) and

(Duda, Hart et al. 2001). More research into the asymptotical properties has also been presented

in a number of papers, e.g. (Peterson 1970; Gyorfi 1978; Krishna, Thathachar et al. 2000).

Unfortunately, these good properties occur when the number of training patterns tends to infinity.

Naturally, this is not the case in real applications, and so a lot of work has been done to try and

find bounds for the error rate in finite cases. (Cover and Hart 1967) analyzed the 1-dimensional

case, which was subsequently broadened to the n-dimensional case by (Gyorfi 1978; Rogers and

Wagner 1978; Devroye and Wagner 1979; Fukunaga and Hayes; Psaltis, Snapp et al. 1994;

Drakopoulos 1995; Bax 2000), and (Nock and Sebban 2001). We recommend (Bax 2000) for a

general overview of solutions to the problem. Generally, the best results (Nock and Sebban 2001)

show that under very weak assumptions:

82 Part I, Chapter 5

)
1

1)((sup
1

2 2

−
−∂+

−
−≤≤

∈ c

cE
xE

c
c

EEE bayes
mx

Xx
bayesbayesnneighbourbayes , (47)

where Ebayes is the Bayes error, Enneighbors is the error of the nearest neighbor classifier, c is the

number of classes, and δmx(x) is a likelihood function, originally introduced by (Drakopoulos

1995). As shown in (Nock and Sebban 2001), this likelihood function, that can be estimated for

any given finite sample, is usually small.

As a conclusion, the error rates using the nearest neighbor rule with a finite number of training

patterns are quite close the optimum Bayes error in theory, and very acceptable in practice, as has

been verified in innumerous experimental situations.

The error rate in variants of the nearest neighbor classifiers have also been studied, amongst

others, by (Wilson 1972) for edited nearest neighbors, (Kulkarni, Posner et al. 1998) for k-nn,

and (Krishna, Thathachar et al. 2000) for broad family, including LVQ and Nearest Neighbor

based Multilayer Perceptrons (NN-MLP) (Zhao and Higuchi 1996).

5.4 – Variations on nearest neighbor or prototype based

systems

With the widespread use of powerful computers, and the enormous amount of data available in

data warehousing systems, nearest neighbor systems have enjoyed a great deal of attention and

found their way into various practical applications. Many improvements have been made on the

original algorithm, and sometimes the same technique has been re- invented in different areas of

knowledge with different names.

The first point we want to make, is that there are many common points between a vast array of

classifier systems that rely on two fundamental principals, that can be used as the definition of

prototype based classifiers :

a) When designing the classifier, store instances of patterns x. These patterns are in the same

input space as the patterns we will want to classify later. They may be the training

Classifier design 83

patterns themselves, a selection of them, or new patterns generated in some way.

Depending on the approach we take, they may be called reference patterns, reference

vectors, prototypes, neurons, stored patterns, examples, cases, etc. In this thesis we

choose to adopt the term prototypes as we feel it captures the general idea in a better way,

and has been widely adopted (Chang 1974; Bezdek, Reichherzer et al. 1998).

b) When classifying a new pattern, compute the distance (or similarity) to each of the stored

patterns, and decide on the new class based on the class of the nearest neighboring

prototype or prototypes. Once again, there are small variations on whether we take the

actual distance into consideration or not, on whether we consider only the nearest

neighbor or a number of nearest neighbors, etc.

Any classifier that uses these two techniques shall be called a prototype based classifier in this

thesis. It must be noted that there is no widespread consensus as for the best name for this family

of classifiers, and a variety of different names have been used, such as Nearest Prototype

Classifiers (NPC) (Kuncheva and Bezdek 1998), Voronoi networks (Vnets) (Krishna, Thathachar

et al. 2000), Generalized Nearest Prototype Classifiers (Bezdek and Kuncheva 2001), memory

based classifiers (Dietterich, Wettschereck et al. 1994), etc.

We shall now briefly overview some of the types of classifiers that we consider prototype based

classifiers.

5.4.1 - k-means, and fuzzy c-means clustering

Although originally developed as clustering algorithms, the k-means technique and its

derivatives, such as fuzzy c-means, have also been used as a way to obtain prototypes for nearest

neighbor classifiers (Bishop 1995; Duda, Hart et al.). These techniques were reviewed, as

clustering techniques, in Chapter 4. When used as classifiers, each centroid is assigned a label,

based on the labels of the training patterns that are closest to it. Normally, it is assigned the label

of the majority of the patterns, but we may use a more complex scheme, and assign a

“probabilistic label”, that estimates the probability of that centroid belonging to any class. When

a new pattern is presented, it is assigned the label of it’s nearest centroid.

84 Part I, Chapter 5

5.4.1 - SOM and LVQ

One family of prototype based classifiers stems from the work done on vector quantization, that

led to vector quantization-based classifiers, and later to Kohonen’s Self-Organizing Maps (SOM)

(reviewed in Chapter 4), and Linear Vector Quatization algorithm (LVQ). In this context, the

prototypes are named neurons, and are generated by the algorithms based on the original training

patterns. In the case of SOM, the prototypes are generated without any knowledge of the classes

of the training data, and only after learning has stopped is an “inverse nearest neighbor” rule

applied to yield the class of the prototype, which is then called a “labeled neuron”. When using a

SOM to perform classification, the distance from the new pattern to each neuron is computed,

and the class of the nearest neuron (if it has any) is given to that prototype. As noted in various

papers, SOMs can be quite effective when a mixture of classification/novelty detection is

required, and as prototype generators, they have the advantage of filtering out outliers, and

smoothly covering the input space. The LVQ neural networks are more apt for classification, and

rely on training algorithms similar to SOMs. However, in LVQ, the classes of the training

patterns are taken into account making it a supervised learning algorithm right from the start. If

care is not taken, a lot of the smoothness that makes the SOM so useful may be lost when using

LVQ. When a LVQ map converges to a stable position, the neurons belonging to different

classes are clearly separated, and outliers may not be filtered out.

As with SOM, many LVQ based variants have been proposed, besides the original LVQ1,

OLVQ1, LVQ2, and LVQ3 proposed by Kohonen. Two of them are the Generalized Linear

Vector Quantization (GLVQ) and its fuzzy version GLVQ-F (Karayiannis, Bezdek et al. 1996),

which have been used in benchmark comparisons with prototype minimization techniques that

we shall overview later in this chapter. Another, that used different update rules and feature

weight adaptation, is proposed by (Huang, Chiang et al. 2002), and called LVQ-H.

5.4.2 – Neural Gas, Growing Cells, and GTM

Amongst the SOM related variants some must be mentioned explicitly either because they part

with the notion of map present in SOM, or have significantly different update rules, or simply

because they have diverged quite a bit from the original techniques. One is the Neural Gas

approach (Martinetz, Berkovich et al. 1993). In this approach, the notion of neighbor in the

output space of SOM is substituted by neighborhood in the original input space. Although the

update rule is quite similar, the topological mapping present in SOM is lost, and the network

Classifier design 85

produces just a number of neurons spread out in the input space, in a fashion that resembles the

k-means. As a purely sampling technique, the neural gas can have a closer representation of the

data than the SOM, especially when the dimensionality of the input space is greater than that of

the output space, since there are no distortions imposed by a mapping.

Other are the Growing Cell networks (Fritzke 1991). These networks start with very few units,

and add more units are they become necessary. The output plane will not be forced to be a

rectangular or hexagonal grid of units, but unlike pure neural gas models, there will be “output

space neighborhoods”. More recent developments have unified the Growing Cell and Neural Gas

models in the Growing Grid (Fritzke 1995), and Growing Neural Gas (Fritzke 1995) models.

One of the most important alternatives to Kohonen’s SOM is the Generative Topographic

Mapping (GTM), proposed in (Bishop, Svensén et al. 1996) and (Bishop, Svensen et al. 1998),

as a statistically well founded alternative to SOM. Each unit in a GTM represents a Gaussian

distribution. The parameters of that distribution are determined in a fashion similar to the

Gaussian Mixture Model (GMM) (Bishop 1995), using a Expectation-Maximization (EM)

algorithm. However, unlike in GMM, constraints are introduced between the units, so that they

form a low-dimensional grid that keeps topological neighborhoods.

5.4.3 – RBF

Another neural model called Radial Basis Function Networks, (RBF) was proposed by

(Broomhead and Lowe 1988). Once again many variants have been developed, but the main idea

remains the same: “center” the neurons in positions that are learned in the input space of patterns,

and then assign a certain radial function to each of these neurons. There may be one function for

all neurons, or each may adjust its parameters separately. In any case, the centers of the RBF

networks clearly correspond to our notion of prototypes.

5.4.4 – CBR

Case Based Reasoning (CBR) has been used in artificial intelligence for many years. The first

proposal of CBR as a AI technique is due to (Schank 1982), but it has older philosophical and

psychological foundations. The rational behind CBR is to solve problems by analogy to known

solutions or, in other words, to learn by example. A CBR system will store known cases, and

86 Part I, Chapter 5

when a new problem arises, finds the most similar case. It will then try to adapt the known

solution to the new problem. Many improvements have been proposed, and CBR has evolved

into a quite mature area, with many good textbooks, such as (Kolodner 1993) for a good

overview of early work, (Maher, Balachandran et al. 1995) for a indus try-oriented perspective, or

(Watson 1997) for a more recent and very practical and easy to follow reference. Several well

kept internet sites, such as www.cbr-web.org and www.ai-cbr.org are dedicated solely do CBR

issues.

Basically CBR systems are a particular case of prototype based systems, for they store the

training data (cases), and use similarity between these and new data (new cases), to find solutions

for these. However, while most prototype based systems deal with patterns that are simple

multidimensional vectors with real-valued, integer, or categorical data, CBR systems will

frequently deal with more complex patterns. As an example, (Emam, Benlarbi et al. 2001)

presents a comparison of various CBR techniques for evaluating the risk associated with software

components, represented by their source code and a number of associated indicators. After

finding the best match amongst stored cases, CBR systems will sometimes go beyond what a

classifier would do (simply find the class), and generate a more elaborate answer. From this point

of view, a CBR would be a prototype based classifier followed by a post-processing system.

CBR, with small variants, is also known by many other names such as Exemplar-Based

Reasoning (Kilber and Aha 1987), Instance-Based Reasoning (Aha 1991), Memory-Based

Reasoning, and Analogy-Based Reasoning, as noted by (Aamodt and Plaza 1994).

5.4.5 – Lazy Learning

Lazy learning is the name given to a number of techniques, most of them reviewed in (Aha

1997). The common factor in these approaches is that little or no processing is done while

constructing the classifier with training data. The data patterns are simply stored, and processing

is postponed until a new pattern has to be classified. Lazy Learning algorithms are a type of

prototype based algorithms because they store all training patterns and all use some type of

similarity measure to compare the new patterns with the stored ones. In the preface to (Aha

1997), it is recognized that Lazy Learning is one more name for a broad family that includes the

CBR systems mentioned in the previous section, and many other nearest neighbor based

techniques. The editor of the book is personally responsible for quite a few different names, but

Classifier design 87

argues that each name focuses on a particular aspect, thus creating sub-families that put different

emphasis on different characteristics of prototype based classifiers.

5.4.6 –SVM (Support Vector Machines) and other Kernel Based

classifiers

In recent years there has been a lot of interest for Support Vector Machines (SVM), which are a

particular case of a more general family named Kernel Based classifiers (Herbrich 2001), that

include the above mentioned RBF networks. SVM stem from the theoretical work of Vapnik on

learning theory and risk minimization, presented originally in (Boser, Guyon et al. 1992), and

edited as a book in (Vapnik 2000). An enormous amount of papers and books that have been

published on the subject, and quite a few software packages implement SVM, both for research

and for commercial purposes . For an overview of SVM we would recommend (Cristianini and

Shawe-Taylor 2001). For a complete yet easy to follow description of theoretical aspects of

kernel machines and learning theory, we would recommend (Anthony and Bartlett 1999), while a

more practical overview of the same subjects is presented in (Herbrich 2001). A short and easy to

follow tutorial on the use of SVM is available in (Burges 1998). There are also a few very well

kept internet sites on the subject, such as “kernel-machines.org” or “svm.research.bell- labs.com”.

The basic idea behind SVM is that it always possible to transform the data into a space where the

classes are linearly separable (Bishop 1995), which will have a dimensionality at least equal to

the data’s Vapnik-Chervonenkis (VC) dimension (Anthony and Bartlett 1999). In that space, a

SVM will find the data patterns that are closest to the border between the classes. These patterns

are called the Support Vectors, since they are the support for choosing the optimal hyperplane

that separates the cases. A SVM will then choose the hyperplane that is equidistant from the

patterns of different classes. Clearly the support vectors chosen correspond to our notion of

classifier prototypes, and can be used as such.

Other Kernel Based classifier also rely on finding some sort of function, called kernel function,

that will be localized some ware in a given feature space. There is a very wide variety of possible

Kernel functions (although they must satisfy Mercer’s theorem (Herbrich 2001)), including

polynomials and RBFs. If we consider appropriate similarity (or distance) functions, the centers

of these kernel functions can be seen as prototypes for nearest neighbor classification.

88 Part I, Chapter 5

5.5 – Other research on nearest neighbor related problems

5.5.1 - k-Nearest Neighbors, and voting schemes

Slightly better accuracies are possible using a variety of k-nearest neighbor schemes (Bishop

1995) which have been studied together with the basic nearest neighbor rule since (Wilson 1972).

The Nearest Neighbor classifier can be seen as a particular case of these k-Nearest Neighbor

schemes, with k=1. Nonetheless, we will not overview them in this thesis. One reason is that they

require fine-tuning of a certain number of parameters, such as the number k of neighbors to

consider, or the method to assign weigh ε to the neighbors (Devijver and Kittler 1982). The main

reason however is that they do not lend themselves easily to prototype minimization, which is our

main interest.

5.5.2 - Influence of distance or similarity measures

The original papers on nearest neighbors, and indeed most of all the work done on nearest

neighbors, use patterns in Rn, and use the Euclidean distance to find the nearest neighbors.

Although widely used, this measure has several drawbacks, such as its inability to deal with non-

numerical attributes, and its sensitivity to irrelevant attributes. This has lead to a great deal of

research into the use of other measures of distance or similarity, and their influence in the

behavior of classifiers.

For lists and descriptions of different similarity measures that have been used in nearest neighbor

classifiers, we would recommend annex A of (Webb 1999), the second chapter of (Devroye,

Gyorfi et al. 1996), or the introductory chapter of (Kohonen 2001).

The reason why nearest neighbor classifiers are so sensitive to the similarity measure, it that

different measures may lead to different neighbors, and indeed to a very different topological

ordering. The choice of similarity measure is thus critically dependant on the specific problem at

hand, and many similarity or distance functions have been used. A contribution for the choice of

the optimal metric for nearest neighbor classification, under certain constraints, is presented in

(Short and Fukunaga 1980) (Short and Fukunaga 1981).

Classifier design 89

The similarity measure does not have to be unique, and different (or local) measures may be used

depending on the patterns being considered. This type of approach is used by (Hastie and

Tibshirani 1996; Wettschereck, Mohri et al. 1997; Wilson and Martinez 1997; Ricci and Avesani

1999).

5.5.3 - Fast search for nearest neighbors

With the growing size of databases and available data for training prototype based classifiers, the

problem of finding the nearest neighbor within these very large sets of prototypes has become a

subject of great practical interest. Most techniques rely on efficient database organization,

sometimes dividing the input space into sub-regions where fewer prototypes have to be searched,

using hierarchical proximity graphs, or using “approximate nearest neighbor” techniques. Some

of these techniques produce nearest neighbor classification systems that have a structure similar

to those of the prototype minimization techniques that we shall see in the next section. One such

method is the Reduced Complexity Nearest Neighbors (RCNN) (Lee and Chae 1998), that

separates the prototypes into anchors and non-anchors in a fashion that resembles the search for

small prototype sets described later. Of the many papers proposing efficient ways to store and

look for data, we may suggest (Ramasubramanian and Paliwal 1992; Tai, Lai et al. 1996; Song

and Ra 2002).

5.6 - Prototype minimization

Despite its simplicity, soundness, and ease of use, the nearest neighbor classifier has a few major

drawbacks:

a) Large memory requirements. All the training set must be stored in memory.

b) Heavy processing requirements. For every new pattern that is to be classified, the distance

to all stored patterns has to be calculated. Since there are many patterns, this will take a

lot a time.

c) Sensitivity to noise, outliers, and overlapping distributions.

As we saw in the previous section, the latter two drawbacks are addressed, albeit without really

good and efficient solutions, with fast searching techniques and k-nearest neighbor rules.

However, both drawbacks would be significantly minimized if we could reduce the number of

patterns in the set used for classification, and do so in an “intelligent” manner. This new, smaller

90 Part I, Chapter 5

subset of patterns will be from now on called classification set, or set of prototypes, since these

patterns are representatives of the class they try to classify.

One of the co-authors of first major paper on Nearest Neighbors (Cover and Hart 1967),

presented a first attempt at obtaining a smaller classification set in (Hart 1968), calling it

Condensed Nearest Neighbors (CNN). Since Hart’s original paper in 1968, several proposals

have been made to obtain a smaller amount of prototypes then the whole training set, namely

Reduced Nearest Neighbors (RNN) (Gates 1972), Edited Nearest Neighbors (Wilson 1972),

Iterative Condensation Algorithm (ICA) (Swonger 1972), Multiedited Nearest Neighbors

(Devijver and Kittler 1982), Spanning Tree based nearest neighbors, or Chang Algorithm (Chang

1974), Selective Nearest Neighbors (SNN) (Ritter, Woodruff et al. 1975), Ordered CNN (Tomek

1976), (Tomek 1976),(Gowda and Krishna 1979), Symbolic Condensed Nearest Neighbors

(Gowda and Ravi 1994), Dasarathys Minimum Consistent Subset (Dasarathy 1994), Proximity

Graph (PG) editing (Dasarathy and Sanchez 2000), DYNAGEN (Laha and Pal 2001), Tabu

Search generated nearest Neighbors (Zhang and Sun 2002), and many others that we will

mention later, such as (Ullmann 1974; Bezdek, Reichherzer et al. 1998; Ferri, Albert et al. 1999).

These different approaches can broadly be classified into editing techniques, when the main goal

is to reduce errors by omitting certain patterns, and condensing techniques, when the sole

objective is to reduce the number of patterns.

Over time, various reviews and comparisons have been made of these different condensing,

editing, selection, or generating techniques. We must mention a few major ones, namely the book

(Dasarathy 1991) that reviews all the early work, and contains copies of the original articles, and

(Wilson and Martinez 1997), that contains a brief but very good review of more recent work. For

a more up to date review this thesis is hopefully a good reference, and we intend to present a

short paper with the key concepts shortly.

The first question that arises is whether there is an “optimal” classification set, in the sense that it

has the minimum number of prototypes necessary for the classification of a given training or test

set. This is a sensitive question, since this optimal classification set for one set of test patterns is

not necessarily the optimum set for another set of test patterns. Worse still, what really matters is

the optimal classification set for the unseen data patterns, which obviously cannot be computed.

Another problem arises as to whether that “optimal classification set” must be selected from an

Classifier design 91

available set of prototypes, or whether new prototypes may be generated at the “optimal”

locations. To clarify concepts, we shall define some concepts before overviewing prototype

minimization techniques.

5.6.1 - Consistent Subset

The concept of consistent subset was introduced by (Hart 1968), and can be defined as follows:

Let X be a set of patterns. The set of patterns C ⊂ X is said to be a consistent subset of X if and

only if for every pattern x∈X, the closest pattern to it in C has the same class.

A consistent subset is said to be minimal2 if its cardinality is less or equal to any other consistent

subset. It was proved (Wilfong 1991) that finding a minimal consistent subset for patterns in R2

is equivalent to the disc covering problem, and thus NP-complete. Although a general case proof

has not been produced, it is reasonable to extend the concepts used in (Wilfong 1991) and believe

that save for very particular cases, the search for a minimal consistent subset is always NP-

complete. This probably explains why so many different techniques have been developed for

finding it, and why none is truly optimal and practical at the same time.

A minimal consistent subset of prototypes is what is sought when we attempt to find an

“optimal” classification set by selecting available prototypes. However, this minimal consistent

subset may produce decision boundaries that are quite far from the original sets boundary, and

thus another concept was developed, that is closer to these boundaries.

2 Some authors, like Wilfong (1991). Nearest Neighbor Problems. 7th ACM Symposium on

Computational Geometry. use the term mimimum, while others such as Ritter, G. L., H. B.

Woodruff, S. R. Lowry and T. L. Isenhour (1975). "An Algorithm for a Selective Nearest

Neighbor Decision Rule." IEEE Transactions on Information Theory: 665-669.,Dasarathy, B. V.

(1994). "Minimal consistent set (MCS) identification for optimal nearest neighbor decision

systems design." IEEE Transactions on Systems, Man, and Cybernetics 24(3): 511-517. use

minimal. We choose to use the latter.

92 Part I, Chapter 5

5.6.2 - Selective Subset

The concept of selective subset was introduced by (Ritter, Woodruff et al. 1975), and with a few

modifications can be defined as follows:

Let X be a set of patterns. The set of patterns S ⊂ X is said to be a consistent subset of X if and

only if for every pattern x∈X, the closest pattern to it in S has the same class, and is closer than

any pattern x∈X that has a different class.

A selective subset is said to be minimal, if its cardinality is less or equal to any other selective

subset. The difference from the definition of consistent subset may seem subtle, but is crucial. In

a selective subset, we require that the prototypes of each class not only classify correctly all

patterns when we use the all prototypes for classification, but that they still classify correctly all

patterns, when all patterns of the other classes are used as prototypes. Thus, each class has to

choose its prototypes assuming that the other classes will retain all their patterns as prototypes. It

is a “keep every inch” approach, that leads to final interclass boundaries very close to the original

nearest neighbor boundaries. Given the well-known properties of these boundaries, it can be

argued that the minimal selective subset, though having more prototypes than the minimal

consistent subset, will yield a better classifier. Once again, the question of the applicability of

Occam’s razor to classification can be raised (Nataranjan), but we leave that discussion for

(Domingos 1999).

5.6.3 – A taxonomy of prototype minimization techniques

Since there are so many prototype minimization techniques, and they vary so much amongst

themselves, we shall attempt to classify them according to their characteristics, before going into

the details. We choose to do that classification according to the following parameters.

5.6.3.1 - Consistency (Consistent, Selective, none)

Some approaches generate only consistent subsets, others selective subsets, and others attempt

neither. When using this categorization, we relax the requirement that the classifier prototypes be

a proper subset of the original set of prototypes, and consider that it may be a subset of a

Classifier design 93

hypothetical superset of prototypes. We do this to allow algorithms that generate their own

prototypes to be considered consistent, if they have the consistency properties. Techniques that

are neither consistent nor selective, generally admit errors in the training set. Selective subsets

are always a particular case of Consistent subsets, so if a method produces Selective subsets, we

will not include it the consistent methods.

5.6.3.2 - Selection/Generation (Select, Generate)

Some approaches only select prototypes from the initial available ones, while others will generate

new prototypes at more convenient locations. In some applications, it may not make sense to do

so, since these would lead to prototypes at locations that, for some reason, do not make sense (for

example, families with 2.3 children or cars with 4.8 wheels). It may also be difficult to generate

new prototypes when the patterns are not real valued, such as when they are trees, complex data

structures, or probability distributions.

5.6.3.3 - Determinism (Deterministic, Order dependent, Parameter dependant,

Random dependent)

Some approaches will, given the same prototypes and patterns, generate always the same

classifier, and are thus dubbed deterministic. Those that are not deterministic, may have a

number of different factor that affect the outcome, and these factors may occur simultaneously.

Some approaches will depend on the order by which the patterns or prototypes are presented to it.

Others rely on one or more parameters that are user-definable, such as maximum allowed error,

or the choice of a kernel function. Others still rely on random variables to search for the best

solutions, as is the case with genetic algorithms or simulated annealing.

We shall now review the main methods, and in the process present the theory developed by each.

5.6.4 – Prototype Minimization techniques

Over the years many different techniques have been developed to minimize the number of

prototypes necessary for classification. We shall now attempt to review them.

94 Part I, Chapter 5

5.6.4.1 – CNN - Condensed Nearest Neighbors

The first attempt to minimize the number of prototypes, named Condensed Nearest Neighbors

(CNN) was proposed by Hart in (Hart 1968). CNN has become a benchmark against which most

other algorithms are compared. Formally the algorithm can be described as follows:

Algorithm 5 - Building Condensed Nearest Neighbors set (CNN)

This algorithm guarantees that all patterns in the training set will have the same classification

with CNN and with the original classification set, and that the new set will not be larger that the

original one. In practice, the classification set thus obtained, which we shall call CNN, is much

smaller than the original set.

While simple and reasonably efficient, this algorithm is far from optimal, and has a number of

shortcomings.

The first concerns minimality. The final classification set, CNN, depends on the order by which

the patterns are presented. Besides being annoying for many applications, this fact by itself

shows that CNN will not find a absolute minimal classification set. In may cases the first

prototypes to be added to CNN will later be made redundant, since prototypes closer to the

border between the classes will inevitably be selected. The sensitivity to the order by which the

patterns are presented may be partially overcome by re- initializing CNN with different

permutations of the training set, as done in (Cerverón and Ferri 2001).

Given

 XTrain Training set, with patterns x1, x2,…,xn
 |XTrain| Number of patterns in the training set
 CNN Condensed Nearest Neighbor set
 Additions A Boolean flag

Do

1 CNN = {x1}
2 Repeat
3 Additions=FALSE
4 For i =2 to |XTrain|
5 Classify xi with CNN
6 If xi is incorrectly classified
7 CNN = CNN ∩ { xi }
8 Additions=TRUE
9 Until Additions = FLASE

Classifier design 95

The second concerns robustness no noise. Since all patterns in the training set will be classified

exactly as they were in the original classification set, any outliers will be retained. Since the CNN

will have fewer prototypes, those that remain will have greater importance, because we can no

longer use the knn algorithm to smooth out the outliers. Thus, the CNN method works best when

the classes are separable. The issue of separability is discussed in (Cover 1965) and (Haykin

1999). If the classes are not separable, it is advisable to use some editing algorithm (see 5.6.4.3 -

ENN - Edited Nearest Neighbors) before CNN, since editing will “clean up” the overlap area.

This general principle is applicable to many of the prototype minimization techniques that we

will overview.

To show the effectiveness of the CNN algorithm, a toy problem is proposed in (Hart 1968), that,

with only minor modifications, has been used as benchmark and visualization example for many

other authors (such as (Ritter, Woodruff et al. 1975), (Gowda and Krishna 1979), (Tomek

1976)). In this problem, which we shall call Hart’s problem, we have 2 classes with uniform

distribution in the areas shown in Figure 23. The two classes form “F” shapes (one of them

inverted), one with boundaries defined by the line that joins (0,0), (7.5,0), (7.5,5), (15,5), (15,10),

(7.5,10), (7.5,15), (15,15), (15,20),(0,20), and the other by its complement in the rectangle

limited by (0,0),(22.5,20). Each class has 200 patterns used for training, and another 200 used for

validation.

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Figure 23 – Hart’s problem: two classes, each with 200 patterns, with uniform distribution in the "F" shapes
given

In the next section, a comparative study is done on the performance of the different prototype

minimization techniques, but just as an example, in a we show the results of applying CNN to

96 Part I, Chapter 5

Harts problem. In this run, only 47 of the original 400 patterns were selected as classifiers (21

patterns for class 1, 26 for class 2).

0 5 1 0 1 5 2 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

0 5 1 0 1 5 2 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

Figure 24 - Comparison of NN and CNN for Hart’s problem. In the right figure, only 47 of the original 400
patterns were selected as classifiers.

More recent studies on the properties and complexity of the original CNN procedure have been

made by (Baram 2000), and shown that in the general case, the complexity is O(n3), where n is

the size of the original set, and the expected

5.6.4.2 – RNN - Reduced Nearest Neighbors

One of the main reasons why the CNN will not yield a (at least local) minimal number of

prototypes is that, in the first steps of the algorithm, prototypes are included that will later be

made redundant by new additions. An obvious solution was proposed by (Gates 1972), named

the Reduced Nearest Neighbors. This method of obtaining a classification set uses as a starting

point the CNN, and then prunes it. It can be stated as follows:

Classifier design 97

Algorithm 6 - Building the Reduced Nearest Neighbor set (RNN)

As we did for CNN, in Figure 25 we present an example of the use of RNN on Hart’s problem

(exactly on the same data used for CNN). In this case, the number of patterns used for

classification dropped to only 29 (14 for class 1, 15 for class 2).

0 5 1 0 1 5 2 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

0 5 1 0 1 5 2 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

Figure 25 - Comparison of NN and RNN for Hart’s problem. In the right figure, only 29 of the original 400
pattern were selected as classifiers.

The RNN will select the Minimum consistent subset (MCS) of the available prototypes if and

only if the MCS is contained in the CNN, as proved in (Gates 1972). This last condition is

generally not met, and thus the set of prototypes selected, although small, might not be the MCS.

5.6.4.3 - ENN - Edited Nearest Neighbors

As mentioned earlier, a k-nearest neighbor rule, with k>1, can give slightly lower errors that the

simple nearest neighbor rule. One of the reasons, is that the k-nearest neighbor rule will filter out

 Given

 XTrain Training set, with patterns x1, x2,…,xn
 CNN Condensed Nearest Neighbor set
 |CNN| Number of patterns in CNN
 RNN Reduced Nearest Neighbor Set, with prototypes rnn1, rnn2,...,

rnnn
 Candidate_RNN A set of prototypes

Do

1 RNN = CNN
2 For i =1 to |CNN|
3 Let Candidate_RNN = RNN – {rnni}
4 Classify all XTrain with Candidate_RNN
5 If all patterns in XTrain are correctly classified
6 RNN = Candidate_RNN

98 Part I, Chapter 5

the outliers. With this in mind, (Wilson 1972) proposed the use of what he called and editing

technique, that used the 3-nearest neighbor rule to classify each of the prototypes. If the

classification thus provided was incorrect, that prototype was dropped. The final set of prototypes

with therefore be smaller, so as a byproduct, this technique is also a prototype minimization

technique. The original paper has a very thorough theoretical study of the asymptotical properties

of the obtained classifier, showing that is very close to Bayes optimal classifier.

A number of improvements where rapidly developed for the basic Edited Nearest Neighbor

technique (Tomek 1976), and these are rather well summarized in (Devijver and Kittler 1982).

The first logical step is to apply condensing techniques to this technique so as further decrease

the number of prototypes. The obtained classifier does in fact have smoother boarders than those

produced by the classical condensing techniques. Another improvement that was attempted was

to use different values of k for the editing phase, using weighted voting schemes, (k,ε)-nearest

neighbors. Finally, the editing procedures can be iterated, giving rise to the so called multi edit

techniques (Devijver and Kittler 1982).

The same basic editing ideas have also been used with different neighborhood measures by

(Dasarathy and Sanchez 2000), and where called Proximity Graph (PG) editing. In this approach,

Euclidean distances where substituted by neighborhoods in Gabriel Graphs (GG) and Relative

Neighborhood Graphs (RNG).

Another approach, that while not citing edited nearest neighbors explicitly uses the same

principle, is (De and Pal 2001), where fuzzy neighborhoods are used to select the prototypes.

5.6.4.4 - ICA - Iterative Condensation Algorithm

This approach, proposed in (Swonger 1972), tries to improve the original CNN by allowing some

of the prototypes to be discarded. Unlike RNN, it will discard not only those that are not

necessary for a correct classification, but also those that are responsible for more

misclassifications than correct classifications. By allowing the error to greater than 0 (thus not

producing a consistent subset), the ICA be more tolerant to outliers, and achieve better results

when the classes are not separable.

Classifier design 99

5.6.4.5 - Chang – Chang’s Algorithm

The Chang algorithm was originally proposed by (Chang 1974), and later adapted to batch

processing (Yen and Chang 1994), and a modified version was used by (Bezdek, Reichherzer et

al. 1998). Chang’s algorithm main idea is to generate new prototypes, by merging two existing

prototypes into only one, located at their weighted mid-point. The merging process stops when

the classification error starts to rise. This algorithm can be described by:

Algorithm 7 – Chang’s Algorithm

This algorithm was inspired by the Minimum Spanning Tree algorithm (MST) (Baase and Gelder

2000), and thus techniques developed for MST can easily be applied to Chang’s algorithm.

The modifications proposed by (Bezdek, Reichherzer et al. 1998) do not use Chang’s weights,

apply the merging processes locally (by dividing the input space into regions), allow merging of

more that two prototypes simultaneously, use the distance between prototypes as weights for

merging, and when the two nearest neighbors cannot be merged, the modified version will

attempt to merge the next best matches.

 Given

 XTrain Training set, with patterns x1, x2,…,xn
 |XTrain| Number of patterns in the training set
 Chang Chang’s set of prototypes chang1, chang2,…
 Changwi Weight associated with prototype changi in Chang
 Error Real valued variable, to store the error rate

Do

1 Chang = XTrain
2 changw = 1 for all prototypes
3 Repeat
4 Find the two nearest neighbors changi, changj in Chang
5 Remove changi, changj from Chang
6 Create changk at the weighed mid point between changi,

changj, so that changk=
(changwi*changi+changwj*changj)/(changwi+changwj)

7 changwk=changwi+changwj
8 Classify XTrain with Chang, and calculate the error rate

Error
9 If Error is greater then the desired error, remove changk

from Chang, re-insert Changi and Changj and terminate the
merging

10 Until Error exceeds the desired error rate

100 Part I, Chapter 5

While good classification results have been obtained with Chang algorithm classifiers, it must be

pointed out that, as they generate new prototypes, the distances from prototypes to training

patterns has to be computed many times, thus imposing a heavy computational burden.

5.6.4.6 - SNN - Selective Nearest Neighbors

The Selective Nearest Neighbors (SNN) was originally proposed by (Ritter, Woodruff et al.

1975). It was one of the first papers that aims at optimality, and its approach is quite similar to

that of (Dasarathy 1994) and to the new approach presented in part II of this thesis. The main

concern of (Ritter, Woodruff et al. 1975) is that a consistent subset, such as those produced by

the CNN rule, may lead to interclass boarders that are quite far from the original nearest neighbor

boarders, that we know are quite close to the optimum Bayes decision boundaries. This happens

because prototypes close to these boarders can easily be deleted by the condensing techniques,

and almost certainly the minimum consistent subset will not contain most of these prototypes.

The paper then introduces the concept of selective subset discussed earlier, arguing that it will be

closer to the original boarders. The problem is then to find the minimal selective subset.

A key concept of this paper is that of selective neighbor of a pattern i, denoted Yi. A prototype is

a selective neighbor of a pattern if it has the same class as the pattern, and is closest to it than any

pattern of a different class3. A selective subset of the original prototypes must include at least one

selective neighbor of each pattern. A binary matrix A is then constructed, where each column i

corresponds to a pattern, and each row j to a prototype, such that

∉
∈

=
ij

ij
ij Yp

Yp
A

 if 0
 if 1

 (48)

It then starts the SNN algorithm, that is described as follows:

3 The selective neighbors of a pattern, in Ritters sense, are equivalent to the Q-set of a pattern in

the positive only approach described in part II of this thesis, or to the Q0(x), since in Ritters

framework R0(x) will always be empty.

Classifier design 101

Steps 1 to 11 of Algorithm 8 will select the obvious choices of selective nearest neighbors, and

will prune Ritter’s matrix, while the computationally hard choices are left to step 14. Step 1 to 5

will choose the prototypes that are the only selective neighbor of any given pattern. These steps

are exactly the same as the first steps of the positive-only Q-set heuristic presented in Chapter 1

of Part II. Steps 6 to 8 will prune Ritter’s matrix by eliminating prototypes that are selective

neighbors of only a subset of the patterns “covered” by another prototype. These prototypes

should not be chosen as selective nearest neighbors, since there is another prototype that

classifies correctly all the patterns that they do, and still some more. Steps 9 to 11 will prune

Ritter’s matrix by eliminating patterns that will be correctly classified if another pattern is

correctly classified, i.e., that are particular cases of a more difficult classification. These pruning

steps will greatly reduce the computational effort of search performed in step 14.

Algorithm 8 – Selective Nearest Neighbors

Given

 A Ritter’s binary matrix
 P Set of all prototypes (p1, p2,…,pn)
 SS Selective subset of prototypes, initialized to ∅

 |XTrain| Number of patterns in the training set
 CNN Condensed Nearest Neighbor set
 Additions A Boolean flag

Do

1 For all i corresponding to columns remaining in A
2 If column i of A has only a single 1, then:
3 Store the index of the row j where that 1 occurs
4 SS = SS + {pj}
5 Delete all columns of A where row j has the value 1
6 For all j corresponding to rows remaining in A
7 For all k ≠ j corresponding to rows remaining in A
8 If for all i Aji ≤ Aki , delete row j
9 For all i corresponding to columns remaining in A
10 For k ≠ i corresponding to columns remaining in A
11 If for all j Aji ≤ Ajk , delete column i
12 If A is empty, terminate the algorithm
13 If any deletions where made in steps 1 to 8 go back to step 1
14 Use a branch and bound algorithm to select the minimum number

of prototypes, corresponding to the rows, that will guarantee
that each column has at least one 1.

102 Part I, Chapter 5

The search procedure of step 14, for which a specific algorithm is proposed in (Ritter, Woodruff

et al. 1975), is computationally very hard, effectively limiting the use of SNN to simple

problems.

It must be noted however, that the results produced by the SNN procedure are identical to those

produced by the positive-only Q-sets with optimal selection, presented later in part II of this

thesis.

5.6.4.7 – Voronoi - Voronoi boundary nearest neighbors

Most of the data condensing techniques change the

actual boundary between the classes, even if they do

keep exactly the same error rate. When considering 2-

dimensional patterns, (Toussaint and Poulsen 1979)

developed a technique based on Voronoi tessellation4,

based on the earlier work by (Dasarathy and White

1978). The Voronoi tessellation is a partition of space

into disjoint regions around a number of reference

points, in such a way that any point in the region

around a reference point is closer to it than to any

other reference point, as seen in Figure 23. In simpler

words, a Voronoi tessellation determines the “area of

influence” of a reference point. All prototype based classifiers are implicitly defining a Voronoi

tessellation, and the borders between classes are the edges of the tessellation that lie between two

reference points (in this case prototypes) that belong to different classes. If we keep only the

prototypes whose edges are edges of prototypes with a different class, we will have exactly the

same borders, and hopefully less prototypes. One of the fastest ways of computing the Voronoi

4 As pointed out by Halls, P. J., M. Bulling, P. C. L. White, L. Garland and S. Harris (2001).

"Dirichlet neighbours: revisiting Dirichlet tessellation for neighbourhood analysis." Computers,

Environment and Urban Systems 25(1): 105-117., the Voronoi tesselation is really due to

Dirichelet who developed it for the 2-dimensional case. Voronoi later extended the concept to the

n-dimensional case, and Thiessen further improved it for practical applications. It is thus

alternatively known as Direchelet tesselation, or Thiessen tesselation

Figure 26 - Example of a Voronoi
tessellation, defined by a set of 2-

dimentional prototypes represented by
points

Classifier design 103

edges, is to compute first the Delaunay triangulations (Mathworks 2001). The Delaunay

triangulation algorithms produce a list of sets of 3 points (patterns) that define the triangles, and a

simple inspection of the classes of these sets will determine which points (patterns) to include: if

a triangle has more than 1 class in its 3 vertices, all 3 vertices need to be included. Although we

have not seen this explicitly mentioned in any paper, we use this principle in one of our Matlab

routines presented in part III of the thesis.

For high dimensional dataset, a Voronoi will be extremely difficult to compute, and we do not

know of any procedure that is easily extendable to a n-dimensional case. Algorithms for

computing it in R2 are O(n log n), where n is the number of points (Baram 2000), and for R3 they

are O(n2 log n). For higher dimensions, we do not know of any results.

Although not keeping the exact Voronoi boundary, recent papers have used Voronoi boundaries

do extract small sets of prototypes, such as (Baram 2000), and same principle is used in the

neural network community, leading to the Voronoi-diagram based Neural Networks (Gentile and

Sznaier 2001).

5.6.4.8 - MNV – Mutual Neighborhood Value

The Mutual Neighborhood Value (MNV) algorithm was originally proposed by Gowda (Gowda

and Krishna 1979) using work done for his PhD thesis in 1978 (we were not able to find a copy

of this thesis).

A modification of the original MNV is proposed by (Gowda and Ravi 1994), in which the actual

values of each pattern are substituted by symbolic values, implicitly performing a varying

quantization of those values, and a new symbolic similarity measure is used. This new approach

is sometimes called Symbolic Nearest Neighbors.

5.6.4.9 – RPC - Reduced Parzen Classifier

The Reduced Parzen Classifier was initially proposed by (Fukunaga and Hayes 1989). The basic

idea is somewhat similar to the Reduced Nearest Neighbor (RNN), in that it tries to improve a

classifier by tentatively eliminating each of it’s prototypes sequentially. Unlike RNN, the criteria

used for keeping the prototypes is not the classification error, but the change in density estimate

104 Part I, Chapter 5

using Parzen windows. The RPC also allows the introduction of new prototypes from the training

set, provided there is a significant improvement in the density estimation, as compared to that

that is possible using the full training set. Unfortunately, this technique is computationally very

demanding.

5.6.4.10 – IBL, IB2, IB3, TIBL, BIBL – Instance Based Learning

In (Aha, Kibler et al. 1991), a number of optimizations for Instance Based Learning (see 5.4.4)

are proposed. Of these, the IB2 and IB3 became the most popular, and have been the subject of

further improvements. The original IB2 is just a re- invention of CNN (see 5.6.4.1), but IB3

introduces additional heuristics that make it more effective in certain circumstances. The IB

algorithms became important in the Instance Based learning community, and are frequently used

as benchmark references, e.g. (Brighton and Mellish 2002), (Zarndt).

Typical Instance Based Learning (TIBL), proposed in (Zhang 2002) tries to use the centermost

prototypes first, considering them more typical than the border prototypes. The measure of

“typicalness” takes into account the similarity with other prototypes of the same class and the

distance from prototypes from different classes. The same author also tries to use the exact

opposite of TIBL, that tries to select the less typical, or boundary instances first. This latter

approach is called Boundary Instance Based Learning (BIBL). In the experiments proposed by

(Zhang 2002), TIBL is compared with BIBL, pure nearest neighbors (there called Instance Based

Learning – IBL), and a variation of IB2 (there called Storage Reduction Based Learning –

SRBL). As expected, the results varied widely from dataset to dataset. TIBL would sometimes be

outperformed in accuracy, although never by much, and it would always yield far fewer

prototypes than the other methods.

5.6.4.11 - NGE – Nearest Generalized Exemplars

Nearest Generalized Exemplars (NGE) where introduced by (Salzberg 1991). The basic idea is

similar to Parzen windows and RBF, since it tries to construct ever larger hyper-rectanges around

the selected prototypes. This approach has proved to be very popular. An implementation of

NGE is supplied in (Aha 1995), and comparisons with other methods are available in

(Wettschereck and Dietterich 1995), that also proposes changes to the basic NGE.

Classifier design 105

5.6.4.12 – DMCS - Dasarathys Minimum Consistent Subset

Dasarathys Minimum Consistent Subset (DMCS) procedure was proposed in (Dasarathy 1994),

originally claiming to find the minimum consistent dataset. It bears some resemblance to the

SNN algorithm (Ritter, Woodruff et al. 1975), but it does not attempt to build a selective subset,

and reconstructs the neighborhood of each pattern each time a prototype is excluded. On the

other hand, it also resembles ICA (Swonger 1972) in that it iterates successive consistent subsets,

re-evaluating them against the original patterns, and trying to improve them. Dasarathy

introduces the concept of nearest unlike neighbor (NUN) of a pattern, that is the closest prototype

to it that has a different class. It is argued that this NUN is critical for defining how much

simplification can occur for the class of the pattern in question. The prototypes of the same class

that are nearer than the NUN form Ritters selective neighbor set. The patterns then cast a vote for

all the prototypes in their selective neighbor set, and the most voted prototype is selected for the

next generation consistent subset. The patterns that voted for this prototype are then removed,

and a new vote is performed. This process is repeated until no more patterns remain. Thus far, the

MCS is a heuristic approach to the SNN optimal method, more or less equivalent to the positive-

only heuristic presented in part II of this thesis, and it produced a selective subset of the

prototypes. However, the process is now iterated, using only the prototypes obtained in the last

iteration, and inserting any of the original prototypes that do not increase the number of errors.

This new iterative process will hopefully calculate in each iteration NUNs that are further away

than the previous, since the prototypes close the boarder tend not to be chosen.

Unfortunately, the claim that the iterative process will converge to a minimal consistent subset is

not well founded and a counter-example to this claim has been found, for example, in (Kuncheva

and Bezdek 1998)5, (Cerverón and Fuertes 1998), and (Zhang and Sun 2002). This last paper also

provides an explanation why the process is not optimal.

5 Interestingly, the Iris datasets used by Dasarathy, B. V. (1994). "Minimal consistent set (MCS)

identification for optimal nearest neighbor decision systems design." IEEE Transactions on

Systems, Man, and Cybernetics 24(3): 511-517. and Kuncheva, L. I. and J. C. Bezdek (1998).

"Nearest Prototype Classification: Clustering, Genetic Algorithms, or Random Search ?" IEEE

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 28(1): 160 -

164. are not exactly the same, as is discussed in Bezdek, J. C., J. M. Keller, R. Krishnapuram, L.

I. Kuncheva and N. R. Pal (1999). "Will the real iris data please stand up?" IEEE Transactions on

106 Part I, Chapter 5

5.6.4.13 – GA - Genetic Algorithm Selection

Genetic algorithms (Fogel 1999) have been used successfully in pattern selection (Chang and

Lippmann 1991), (Kuncheva 1995), (Kangas 1999), (Ho, Liu et al. 2002). The basic idea is to

consider sets of prototypes as chromosomes, and apply the genetic operators of replication,

crossover, mutation, and natural selection to find the best set.

As has happened in many fields, the use of the evolutionary inspired algorithm yields quite good

results, using moderate computing resources. No claim can be made on the optimality of the

results, while most algorithmic approaches can guarantee that they are at least locally optimal.

Thus, genetic algorithms should, if possible be followed by a local gradient descent based

method, to ensure that at least locally, they are in fact minimal.

Interestingly, it was through the use of genetic algorithms that a counter-example to some

optimality claims was found (Kuncheva and Bezdek 1998). In that paper, a 12 element set of

prototypes was found, using genetic algorithms, that classifies without error the Iris dataset (see

section 1.6.1 of Part II). On exactly the same data set, the other algorithm could find only a 14

element set6.

5.6.4.14 - RISE – Rule Induction from a Set of Exemplars

Rule Induction from a Set of Exemplars (RISE) is the name given by (Domingos 1995) to an

algorithm that unifies rule induction with instance based learning. There are several versions of

RISE, described in detail in (Domingos 1996) and (Domingos 1997). Version 3.1, described in

(Domingos 1997) is the most recent one, and the best performer in benchmarks. It is arguable

whether RISE should be considered a prototype based system. In our definition of prototype

based systems, it is implicit that the stored entities have the same dimension as the data patterns.

RISE is a rule inducing system, and as such it does not store the data patterns themselves, but the

Fuzzy Systems 7(3): 368 - 369. However, later mails exchanged between the authors, concluded

that when the MCS algorithm is applied to the true Iris dataset, the results are even worst, since a

14 set consistent subset is found, when a 12 set consistent subset has been found.
6 Due to an error, a 13 element set was originally claimed.

Classifier design 107

rules extracted from them. However, we can see these rules as entities in a subspace of the

original data pattern space, and thus as stored patterns. This view is implicit in RISE’s algorithm

for classifying new patterns, as it computes a “distance” between the new pattern and the stored

rules. In accordance with this line of thought, rule generation is a form a feature selection, and

this is explicitly mentioned in (Domingos 1997). Therefore, we consider RISE to be in the broad

family of prototype based classifiers. Since RISE will try to form ever more general rules (and

thus fewer rules), it can also be seen as a prototype minimization technique.

5.6.4.15 - RT – Reduction Technique

In (Wilson and Martinez 1997), three slightly different prototype minimization techniques are

proposed, named Reduction Technique 1 (RT1), RT2, and RT3. The basic idea of RT1 is to

build, for each prototype, a list of it’s nearest neighbors (belonging to same class), and a list of

it’s so called associates. A prototype is said to be an associate of a given pattern if it is the closest

prototype to that pattern that has a different class. In Q-set formalism (see Chapter II-1), it would

be the first prototype in either R0 or R1. The algorithm will attempt to remove each prototype in

turn, checking to see if the number of associates that will become correctly classified outweighs

the number of nearest neighbors that cease to be correctly classified.

The author points out that RT1 is very sensitive to the order by which prototypes are removed,

and may sometimes enhance outliers instead of filtering them out. To reduce sensitivity to order,

a more complex procedure, named RT2, is proposed. RT2 sorts the prototypes before attempting

their removal, in such a way that “border” prototypes are removed last. Finally, since RT2 is still

sensitive to outliers, RT3 is proposed. RT3 basically applied a data editing technique (similar to

(Wilson 1972)) before applying RT2. This editing step, that as mentioned before improves most

of the prototype minimization techniques, makes RT3 the best performer of the three techniques.

5.6.4.16 – RS - Random Selection

Although it might seem almost childish at first sight, random selection of prototypes has shown

to produce reasonable sets of classification prototypes (Kuncheva and Bezdek 1998). The use of

random selection, and random walk methods in general became possible with the advent of

widely available powerful computers, and relies on pure luck to find the best solution. Naturally

that luck is enhanced by attempting many different selections. Unlike genetic algorithm

approaches where the randomness is guided with the genetic selection rules, in pure random

selection no attempt is made to guide the process.

108 Part I, Chapter 5

 In this approach, a given number of prototypes are randomly selected from amongst the

available ones, and the set with fewer classification errors is chosen. The number of prototypes

selected in each run may be itself a random variable, or may be modified to increase/decrease the

error rate until a satisfactory value is reached.

5.6.4.17 – SHC - Stochastic Hill Climbing Selection

Stochastic hill climbing is a simple optimization technique that randomly chooses a candidate

direction, and moves along it if there is any decrease in the cost function. It has been used by

(Kuncheva 2001) do search for minimal classifier sets. A prototype is randomly selected or

excluded, and a certain fitness function is computed, that weighs classification accuracy and the

size of the training set. If the value of the fitness function increases, the change is made

permanent, and if not, it is reversed. In the paper where it is proposed, it performs worst than the

combination of Hart’s CNN and Wilson’s ENN.

5.6.4.18 – SVM - Support Vector based methods

Support Vector Machines (SVM) are a particular case of kernel based methods presented earlier.

A SVM will find the most representative patterns fo r the interclass boundary definition (called

support vectors), and thus can also be used as a condensation algorithm. They do however have

the inconvenient that they require a fair amount of training, and are thus computationally very

hard to find. (Mitra, Murthy et al. 2000) proposes a mixed SVM/CNN algorithm, that basically

uses the CNN procedures, but when deciding to add new prototypes, uses a SVM classifier

instead of the nearest neighbor rule. Their experimental results show that this mixed method

achieves considerably better condensation then the original CNN on very large datasets, but

requires far less time than the pure SVM approach.

5.6.4.19 - DYNAGEN

 (Laha and Pal 2001) proposes a method, called DYNAGEN that relies on a very small SOM to

find initial candidate prototypes, and then follows a certain number of steps, somewhat similar to

Chang's spanning tree procedures, to create new prototypes and adjusting them to better fit the

data. It relies on 4 modification procedures: merging two prototypes; modifying a labeled

prototype; splitting a prototype into two; and deleting a prototype. It then starts iterating

applications of these 4 procedures, subject to data-dependant conditions, until the desired

Classifier design 109

accuracy is reached. Although very heuristic in its approach it was tested on standard datasets,

and achieved a reasonable error rate with a very small number of prototypes.

5.6.4.20 – TS - Tabu search

Tabu search (Glover and Laguna 1997), is a optimization technique that tries to avoid local

minima by “outlawing” search strategies that have to them. Since finding a minimal consistent

subset is a optimization problem, it is only natural that tabu search has been used on this problem

(Cerverón and Ferri 2001), (Zhang and Sun 2002). There are several ways in which tabu search

can be applied, and both referenced papers use slightly different techniques, but a direct

experimental comparison is not possible since they use different datasets. On the Iris dataset,

(Zhang and Sun 2002) obtained a number of prototypes that varied between 11 and 15, having an

average of 14 ± 0.8.

The tabu search for consistent sets is not deterministic, depending both on the order by which the

patterns are presented, and on random internal variables, and thus there is always a certain

variance associated with the number of prototypes selected for any given problem.

5.6.4.21 – Simulated Annealing

Simulated Annealing is an optimization technique inspired in physics (Kirkpatrick, Gelatt Jr. et

al. 1983). It tries to simulate what happens in certain materials when a decrease in temperature

leads to rearrangements of particles. When used for optimization, this technique consists of

allowing random searches around known solutions, providing the cost function does not increase

more than a certain amount, that corresponds to the simulated “temperature”. As the optimization

progresses the “temperature” decreases, (i.e. the allowed increase in the cost function decreases,)

until only solutions that have a lower cost are accepted (i.e. the temperature is zero), and thus the

optimization algorithm becomes greedy.

Simulated Annealing has been used for prototype minimization by (Huang, Liu et al. 1996;

Decaestecker 1997; Liu and Nakagawa 2001; Devi and Murty 2002), with promising results.

110 Part I, Chapter 5

5.6.4.22 – DMCNN - Devi Modified CNN

A recent paper (Devi and Murty 2002) proposes an incremental CNN based method, called

Modified Condensed Nearest Neighbor, to which we add the author’s name (DMCNN). The

method is really a mix between the simple means and CNN. The process starts by using only the

simple means of each class as prototype for that class. It then finds which patterns are

misclassified by this first set of prototypes, and calculates means of these patterns, adding them

to the prototype set. This process is iterated until no more patterns are misclassified. A further

improvement of the procedure deletes prototypes that are no longer essential to keep the error

rate from growing. The authors present encouraging experimental comparisons with other

methods, on standard and private datasets. Although we have not experimented with their

method, it seems intuitive that this procedure is not applicable to datasets where each class may

have disjoint areas of significant probability density, or is “highly non-convex”.

5.6.4.23 - ICF - Iterative Case Filtering

In a recent paper, (Brighton and Mellish 2002) proposes a method named Iterative Case Filtering

(ICF). It is based on the ENN (see 5.6.4.3) with the iterations proposed by (Tomek 1976), but

uses the concepts of neighbors and associates of RT (see 5.6.4.14), albeit with different names, to

decide on whether remove prototypes or not. Although its name is very similar to ICA (see

5.6.4.4), the principles used in the iterations are quite different. In some of the benchmarks, ICF

outperformed the other methods with which it was compared, namely RT3 and ENN.

5.6.5 – Benchmark comparisons between methods

As stated before, none of the discussed algorithms is universally better than the others. The

performance of each is extremely problem dependant, and different parameters can be used when

judging them. Nevertheless, it is useful to compare the different methods in various toy and

practical problems. Many authors have produced such comparisons. Since there are so many

variants, there is no global comparison, but for reference, we present a list of some papers and the

methods compared in Table 4.

Classifier design 111

Paper Algorithms compared

(Bezdek, Reichherzer et al. 1998) Chang, Modified Chang, LVQ, GLVQ-F, DR, Dasarathy

(Kuncheva and Bezdek 1998) Chang, Modified Chang, GA, RS, Dasarathy, M-FCM,

simple means, LVQ, GLVQ-F

(Kuncheva 2001) CNN, ENN, GA, TS

(Liu and Nakagawa 2001) LVQ, MLVQ3, GLVQ, DSM, MCE, SA, MSE,

MAXP,DA, k-means, PMSE, CMSE, MAXP MAXP1, k-nn

(Kangas 1999) GA, selection mean,

(Devi and Murty 2002) GA, SA, TS , CNN, DMCNN.

(Huang, Chiang et al. 2002) LVQ, SA, LVQ-H

(Cerverón and Ferri 2001) TS, MCS, CNN, MNV

(Zhang and Sun 2002) TS,CNN,MCS

(Bezdek and Kuncheva 2001) CNN, ENN, RS, GA, TS, LVQ, DSM, GLVQ-F, FCM,

Bootstrap

(Wilson and Martinez 1997) k-nn, RT1, RT2, RT3, H-IB3

(Brighton and Mellish 2002) ICF, RT3, ENN

Table 4- List of some papers that compare prototype minimization techniques

Just for the sake of curiosity, in Table 5 we present the best attempts to produce a consistent

subset for the Iris dataset, discussed in Chapter II-1.

Algorithm Nº of Prototypes Paper

Mod Chang 11 (Kuncheva and Bezdek 1998)

TS 11 (Zhang and Sun 2002)

GA 12 (Kuncheva and Bezdek 1998)

Dasarathy 14 (Dasarathy 1994)

Chang 15 (Kuncheva and Bezdek 1998)

QSET 17 (Lobo 2002)

CNN 18 (Zhang and Sun 2002)

Table 5 - Smallest size of consistent subsets obtained for the Iris data

 113

PART I

CHAPTER 6

Validation

6.1 – Introduction

After obtaining a classifier by any of the discussed methods, it is important to have an idea how

reliable that classifier is, i.e., when a new pattern is given to the classifier, what is the probability

that it will be correctly classified? The answer to this question is the true error rate.

The true error rate, also known as actual error rate, conditional error rate, or eT, is defined as the

expected probability of misclassifying a randomly selected pattern (Webb 1999). In some very

114 Part I, Chapter 6

particular cases, when the exact probability distribution of the data is known, this error may be

calculated exactly. Such is the case for the simple problems presented in Appendix A and B.

Generally, the true probability distribution of the data is not known, and thus the true error rate

must be estimated from the data itself.

To estimate error rates from data, we must present patterns for which the true class is known to

the classifier, and see whether it assigns them their true class. If it does not, we consider that the

classifier committed an error. The error rate will be the total number of errors divided by the total

number of patterns tested, and is usually expressed as a percentage:

100
setgiven in the patterns ofnumber total

set given in the patterns fiedmissclassi ofnumber
 rateError ×== e (48)

Depending on the dataset on which the error rate is computed, we will obtain different estimates

of errors.

If it where possible to use an infinitely large dataset, the error rate on that dataset would be an

unbiased (and zero variance) estimate of the true error. Naturally, it is impossible to obtain and

use such a set. Therefore, we must use finite size sets to estimate the true error rate. Let us then

clarify what sets may be used, and by which names they are used.

6.2 – Known sets, training sets, validation sets, and test sets

The set of patterns for which the associated class is known is sometimes called the training set,

since it can be used to train the classifier. However when we are designing classifiers, it is

convenient to use only a subset of these patterns for actual training, and keep the rest of them to

check the performance of the classifier. Thus, the name training set should be used in a more

precise manner, and a precise definition should be given for these different sets. Since different

authors use slightly different names for these sets, we shall define them as follows:

known set - Set of all patterns for which the class is known (Xknown).

training set - Set of patterns used to train (or design) the classifier (Xtrain).

Validation 115

validation set - Set of patterns available during the training process, but used only to assess

that process, or select one of the available models (Xvalid).

test set - Set of patterns not used at all during the training process. These patterns may

be used only for the final assessment of the classifier (Xtest).

While the definition of known set and training set are quite clear, the difference between test and

validation set can be confusing, and their use (or even existence) depends a lot on the method

used to obtain the classifier. The validation set, although not actively used for training, in the

sense that the design parameters are not derived from it, is available during training as a means of

checking the performance of the system. In a neural network, for example, it may be used to

check that the network is not overfitting, and thus be used to generate the stopping criteria of the

training process. On the other hand, the test set must never be used at all during the design

process, not even for iterating it, for that would “shape” the classifier to it’s particular

characteristics. Another difference between these two sets is that in many design algorithms (for

example, when leave-n-out multiple classification trees (Breiman, Friedman et al. 1984) are

used), validation and training sets are interchanged, while test sets are always left out of the

Known,
labeled data

Training
set Validation

set

Test
set

Classifier

Trains
Controls
Learning
process

Predicts
generalization
performance

New,
unlabeled

data

Usefull
Classification
work

Known,
labeled data

Training
set Validation

set

Test
set

Classifier

Trains
Controls
Learning
process

Predicts
generalization
performance

New,
unlabeled

data

Usefull
Classification
work

Figure 27 - Different data sets involved in the classification process

116 Part I, Chapter 6

process. Finally, it should be noted that many authors use the term test set for what we here call

validation set7.

It is arguable whether the use of test sets is important or not. In practice, when the available

known set is small, only a training set and, if necessary, a small validation set are used. As the

results obtained with the test set do not influence the design of the classifier, only our confidence

in it, we are usually quite happy to trade it for a better training and validation set. In any case,

when a classifier is necessary for a real world problem, the classifiers obtained with training and

test sets should only be used as a means of estimating the true error. The final classifier, that will

perform the real classification task, should use all available known data for training.

Even when the known set is large, some authors do not use an independent test set, because in

that case, the training and validation sets will be good unbiased estimators of the distribution of

the data. As long as some other technique can be used to guarantee that there is no overfitting, the

error rates obtained with the training and validation sets will not differ considerably from those

obtained with the test set.

6.3 – Error rate estimates

As mentioned above, the true error rate cannot generally be computed, and will usually be

estimated from available data.

The most optimistic estimate is the apparent error rate, also known as resubstitution error rate.

This error rate is calculated by computing the proportion of training patterns that are

misclassified. Since those patterns where used for training, the classifier will have been fine

tuned to try and classify them, and thus the apparent error rate will be lower than that obtained

7 When I started to write this thesis, I though it would be clearer to call test set to the data used to

“test the progress of the training process”, and use the term validation set to identify the data

used for “final validation of the classifier”. This convention would take into to account that many

authors use what they call “test set” to control the overfitting of the training process. However,

Prof. Joseph Kittler, although recognizing that different communities call different and

sometimes opposing names to the same things, convinced me that it is better to stick to the

convention used in the pattern recognition community, which is explained in the text.

Validation 117

with an independent test set. The bias of the resubstitution error rate can be reduced using

jackknife techniques (Miller 1974) (Webb 1999) but will always be optimistic.

A more reliable estimate for the true error can be obtained using an independent test set. This

error rate estimate is known as holdout estimate (Devijver and Kittler 1982), and will depend the

size of the test set (assuming that this test follows the probability distribution of the problem at

hand). The following deduction of the confidence of the holdout estimate is based on (Mitchell

1997).

Let us assume that the true error rate for a given classifier is p. Given any pattern in the test set, it

will be incorrectly classified with probability p, and correctly classified with probability 1-p.

Given n such test patterns, the total number of errors r will follow a binomial distribution P(r)

given by:

rnr pp

rnr
n

rP −−
−

=)1(
)!(!

!
)((49)

The expected value for the number of errors, and it’s standard deviation will be

 nprPE =)]([(50)

)1(pnpp −=σ (51)

We may thus obtain an unbiased estimate for p using

n

rPE
p

)]([
= (52)

and substituting E[P(r)] by the r obtained in a given experiment leading to the estimator

n
r

p =ˆ . (53)

The standard deviation of this estimator will be

 3
)(

ˆ
)()ˆ1(ˆ)1()1((

n
rnr

n
pp

n
pp

n
pnp

n
rP

pp
−

=
−

≈
−

=
−

==≈
σ

σσ (54)

118 Part I, Chapter 6

 If we whish to calculate confidence intervals for p, we may, providing n > 30 and np(1-p) > 5,

approximate the binomial distribution of p to a Gaussian distribution (Mitchell 1997), and in that

case, we will have:

 []pNpN ZpZpp ˆˆ ˆ,ˆ σσ +−∈ , (55)

where ZN is a constant, function of the desired confidence.

Thus, the larger the test set, the better our estimate will be. If data can be generated at low cost, a

large test set will yield a very accurate estimate of the true error. Even when the exact true error

can be calculated analytically, as is the case in Appendixes A and B, using a test set may be

simpler and more cost efficient.

However, if the total number of known patterns is limited, increasing the test set will decrease the

number of patterns available for training, and thus produce a less reliable classifier. The holdout

estimate will thus be a pessimistic estimate of the true error.

Having both a optimistic apparent error rate and a pessimistic holdout error rate, bootstrapping

techniques (Efron 1979; Efron; Jain, Dubes et al. 1987; Efron 1990) may be used to obtain an

estimate of the true error that will have less bias than any of the above.

The less biased holdout estimate would be obtained using almost all known patterns for training,

and very few (in the limit only one) for testing. The variance of this estimate would be very large,

but can be reduced using a technique called cross-validation.

The cross validation error rate is also known as U-method, leave-one-out (or leave-n-out),

rotation estimation (Kohavi 1995), or deleted estimate error rate (Webb 1999). It is obtained by

partitioning the known data into m sets on n patterns. We then select one set as test set, and use

the remaining m-1 as training set, and repeat the process m times selecting a different test set

each time. The average error rate obtained, although slightly pessimistic, will be closer to the true

error than a standard ho ldout estimate. The minimum bias will be obtained when all but one

patterns are used for training, leading to the pure leave-one-out technique. Other schemes for

partitioning the available data into different training and test sets are possible, and discussed in

(Mullin and Sukthankar 1999).

Validation 119

Many good and comprehensive reviews of how to measure error rates and compare classifiers

have been published, such as (Fukunaga and Hayes 1989; Michie, Spiege lhalter et al. 1994;

Dietterich 1998; Lim, Loh et al. 2000).

6.4 – Confusion Matrices

The error rate estimates presented in the previous section give equal importance to all types of

errors, i.e., as long as the class given by the classifier is not the same as the true class of the

patterns we increase the number of errors by 1.

There are a few reasons for wanting to know more about what errors are being committed. The

main one is that there may be a cost associated with each type of error. If, for example, we want

to detect intruders with an alarm system, the cost of not detecting an intrusion when it occurs (a

false-negative classification), is greater than the cost of thinking there is an intrusion when none

has occurred (a false-positive classification). This problem has been the subject of a lot of

attention in classical detection theory, and has been thoroughly addressed in many text books,

such as (Kay 1988; Kay 1998), the latter including examples of MATLAB code for

implementing most of the techniques.

Another reason for wanting to known more about what types of errors are occurring has to do

with the exploratory data analysis issues discussed in chapter 4. By observing which classes tend

to be misclassified, and what those misclassification are, we may be able to add some pre-

processing or extra classifier to distinguish amongst those cases.

The most common way of presenting a detailed description of the errors is the confusion matrix

(Fukunaga 1990). The rows of a confusion matrix represent the actual class of the patterns, while

the columns represent the class assigned by the classifier, as seen in Table 6.

120 Part I, Chapter 6

 Assigned

class

True

class

A B C

A 80 20 0

B 13 87 0

C 1 0 99

Table 6- Example of a confusion matrix. Numbers on the diagonal correspond to correctly classified patterns.
In this case, it clear that class C is correctly classified, but there are errors in distinguishing class A from class

B.

PART II

Original contributions

 123

PART II

CHAPTER 1

Q-Sets: A Boolean formalization for minimizing prototype-

based classifiers

1.1 - Introduction

As overviewed in Chapter 5 of Part I, prototype-based classifiers constitute a broad and very

important family of non-parametric classifiers. As stated, this family of classifiers has 2 common

characteristics:

124 Part II, Chapter 1

a) The classifier stores labeled patterns, which we have called prototypes, which are of the

same nature as the patterns that are to be classified.

b) When a new pattern is presented for classification, a similarity measure is used to find the

prototype or prototypes that are nearest to it, and the class is decided based on the classes

of these classes

As was seen, a lot of effort has been put into finding a small set of prototypes that will perform

the classification efficiently and with as low an error rate as possible. The holy grail of this quest

is to find the minimal set that will perform such a task. Under certain assumptions, (Wilfong

1991) proved that finding this set is equivalent to a certain special case of the Disk Cover

problem, that is known to be NP-Complete.

In this chapter, we will present a new formalization for the problem of finding the minimum set

of prototypes to classify a given set of patterns, that was first proposed in (Lobo, Swiniarski et al.

1998), and that transforms this problem into Boolean function manipulation problems. This link

between the areas of classification and Boolean algebra, brings not only insight into the core of

our problem, but also a vast array of techniques that can be used to efficiently compute small sets

of classifier prototypes.

1.2 - Informal presentation of the theory

Before going into the formal and complete description of the Q-set formalization, let us first

overview the method informally. While not complete, this overview is nonetheless accurate and

gives an insight that makes the necessarily detailed formalization more palatable.

Our aim is to select a few prototypes from a large set of candidates that will correctly classify a

given set of training patterns.

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 125

The basic idea behind what we have come to

call Q-set formalization is quite basic, and

requires us just to invert the nearest neighbor

rule when training the classifier: when using

the nearest neighbor rule, each pattern’s

nearest neighbor must have the same class as

that pattern. If a given pattern does not meet

this requirement, i.e. if its nearest neighbor

has a different class, then it will be

misclassified if we use all candidate

prototypes, and we will ignore it when

selecting the final prototypes. As for the rest

of the patterns, they will have at least one,

and generally a set of prototypes with the

same class that are closest to it than any

prototype of another class. This is, at first

glance, the Q-set of that pattern: the set of prototypes that will correctly classify it using the

nearest neighbor rule. In Figure 28 we can see a graphical example of a Q-set for a 2-

dimensional problem. The existence of any of the prototypes of the Q-set in the final classifier is

sufficient to guarantee that that pattern will be correctly classified. If we consider a Boolean

function that indicates whether that pattern is correctly classified (having logical value of 1) or

not (a logical value of 0), as a function of the presence in the final classifier of the candidate

patterns, it will be a logical-OR of the presence of the prototypes in the Q-set. Without trying to

be rigorous, we can say that

∑
∈

=∪∪∪==
)(

...)(
xQsetp

xQ ppppx kba classified correctly is Pattern (56)

 where pa is a Boolean variable with the value 1 if and only if prototype pa is in the final

classifier. From the point of view of the training set, any single one of the prototypes of the Q-set

is equally good for the classification task, but we should choose one that apart from classifying

this patterns also classifies others. The basic idea, is that we must classifier all the patterns:

pattern x1 , x2,… xn (i.e. all the patterns). Once again, without being too formal we may say that

 ∑∏∏
∈==

==∩∩∩=
)(11

)()(...)()(
ix

in21 pxxxx
Qsetp

n

i

n

i

QQQQ classified correctly are patterns All (57)

Q-setQ-set

Figure 28 - Example of a Q-set for a 2-dimensional
problem. The center cross represents the patterns for
which the Q-set is being calculated. Crosses represent
prototypes with the same class as the pattern, and
circles represent prototypes with a different class.
The white area represents the Q-set, containing 3
prototypes.

126 Part II, Chapter 1

Since the conjunction and disjunction operators of Boolean algebra are both distributive in

relation to each other, we can rearrange the above equation into

 ∑∏∏∑ ′== kk pp classified correctly are patterns All (58)

This last form, a sum of products, is ideal for finding the minimum number of prototypes. If we

simply select the prototypes that appear in the shortest term of the sum, then the global function

will be one, and we will correctly classify all patterns in the training set that were classified by

the ensemble of all candidates. The shortest term of a Boolean function written as a sum-of-

products is its minimum prime implicant, and the problem has been studied extensively.

Unfortunately it is a hard problem to solve since factoring out the original function can be

computationally very expensive, so a number of heuristic methods have been devised, and later

in this thesis we propose one that is particularly suited to the classification problem.

What we have just presented is what we will later call the positive-only Q-set approach, which is

a particular case of the broader formalization. In this positive-only approach, we assumed that we

had to have at least one of the prototypes of a pattern’s Q-set in the final classifier. We assumed

that because if that were not the case, there would be another prototype, of a different class, that

would be nearer to the pattern than any other prototype, thus yielding a classification error. But is

that really true? What if that prototype with the wrong class was not selected for the final

prototype? There may be another prototype of the same class as pattern x, that is further away,

but that will perform a correct nearest neighbor classification if the “bad” prototype is removed.

We must then revise our concept of Q-set and associated q- function to include the possibility that

if we exclude a certain prototype, then other prototypes, further away, may be acceptable choices.

Thus, the Boolean function that determines whether the classifier performs correctly as a function

of the prototypes it includes will now have negations, and will cease to be in the convenient

conjunctive normal form (CNF). We will later see that it takes the form

 ∏∑ ∑∏=))()((qr pp classified correctly are patterns All (59)

This more general approach, while far more complex may allow us to force the correct

classification of all the training set patterns, even those that were originally incorrectly classified.

We shall see later that is equivalent to the rather well known Satisfiability Problem, that was the

first problem proved to be NP-Complete (Cook; Cook; Stoffel, Kunz et al. 1997). Since no one

has, up to date, proved that NP=P, no simple solution to this classification problem is yet

available. However, since no one has been able to prove otherwise, there is still hope, and in the

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 127

mean time, a vast array of methods have been developed to find acceptable solutions. The main

point is that we can use well known techniques from other areas to simplify our classifier design

problem.

Now that a rather intuitive introduction has been made, we may proceed with a formal

description of the Q-sets.

1.3 - Theoretical framework

Let X be a space of n-dimensional patterns x, for which we want to design a classifier. Let Xtrain

⊂ X be the set of patterns x∈ X that we have available for designing that classifier.

Let s be a measure of similarity defined in []0,1: →× XXs . It is not important for this measure

to give values in the range [0,1], but it can be done without loss of generality. As a similarity

measure, it is necessary that s(x,y)=1 ⇔ x=y. We choose to use a similarity measure as it is more

general than a true distance measure: any distance measure may be mapped to a similarity

measure with the required constraints, but the inverse is not true.

Let P be the set of classifier prototypes p available (P⊂X). These prototypes are simply the

patterns, for which the true class is known, that will later be used to perform the classification.

Let ()PP=H the power set of P, i.e., the set of all the subsets of P. Let h∈H be a classifier,

constructed with prototypes available in P (sometimes also called the model for X (Mitchell

1997)). Let us now define an indicator function }1,0{:)(→Xph , associated with each set h

(Schneeweiss 1989), as

 ()

 ∈

=
otherwise

hpif
ph

0
1

. (60)

Later, for the sake of clarity and when there is no possible confusion about whether we are

referring to the prototype p or the indicator function h(p), we shall use p to mean that h(p)=1 and

p to mean that h(p)=0.

Let C be the set of all possible classes defined as { }CccC ,,1 L= . Let c(x,h) be a function

defined in C: →× HXc , that assigns the pattern x to a class c., according to the model h. That

128 Part II, Chapter 1

function c(x,h) computes the similarity between pattern x and each of the prototypes p∈h, and

assigns to x the same class as the prototype p that is most similar to x. Let us denote the true class

of pattern x as ctrue(x).

The classifier with fewer prototypes is the one that minimizes the integer-valued sum (that we

shall name classifier cost) given in the following equation

 Classifier cost = ∑
∈Pp

ph)((61)

It must be noted, however, that if we impose no restrictions, the trivial solution of considering no

prototypes (i.e. ∀p, h(p)=0) would be the minimum. It would also not classify anything, so when

minimizing equation (61), we must impose the restriction that the classifier should classify

correctly (or with a certain given error rate) the set of patterns Xtrain.

To do this, we introduce the concept of Q and R sets, and the associated “good” and “bad”

neighborhoods.

1.3.1 - Definition of Q and R sets

Let us introduce the concept of “good neighborhood” order i, of the pattern x, denoted by Qi(x),

or Q-set order i of x, and “bad neighborhood” order i, of the pattern x, denoted by Ri(x), or R-set

order i of x.

The good neighborhoods of x are sets of prototypes p∈P that have the same class as x, while bad

neighborhoods are sets of prototypes that have a different class. The order of the neighborhood is

determined by the similarity between the given pattern x and the prototypes of the neighborhood.

The prototypes of the bad neighborhood order 0 are closer to the pattern x then any prototype of

the same class as x. If the bad neighborhood order 0 of all patterns is empty (R0(x)={}), then the

prototypes can certainly classify the whole set without errors, if they are all included in the final

classifier. The good neighborhood order 0 of x ,Q0(x), is the set of prototypes p that have the

same class as x, are not as similar to x as any of the prototypes of the bad neighborhood order 0,

but are closer than any other prototypes of a different class (namely they will be closer than those

of the bad neighborhood order 1). For the sake of simplicity we shall use “+”to represent the set

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 129

reunion (A+B ≡ A∪B) and “-“ to represent the set exclusion (A-B ≡ A\B). We can now define

recursively all the good and bad neighborhoods formally as:

 () () () () () (){ }pxrxpxPprxPrxR0 ,,,,,)(sscccc >=∈∀≠∈= (62)

 () () () () () () () (){ }rxpxrxxRPrpxPpxQ 00 ,,,,, sscccc >≠−∈∀=∈= (63)

 () () () () () (){ }pxrxpxxQPprxxRPrxR 00 ,,,),(,)()(1 sscccc >=−∈∀≠−∈= (64)

() () () () () () () () () (){ }rxpxrxxRxRPrpxxQPpxQ 0 ,,,),(, 101 sscccc >≠+−∈∀=−∈= (65)

or in general

() () () () () ()

>=−∈∀≠−∈= ∑∑
−

=

−

=

pxrxpxxQPprxxRPrxR ,,,,)(,)()(
1

0

1

0

sscccc
n

i
i

n

j
jn (66)

() () () () () ()

>≠−∈∀=−∈= ∑∑
=

−

=

rxpxrxxRPrpxxQPpxQ ijn ,,,,)(,)()(
0

1

0

sscccc
n

i

n

j

(67)

The construction ceases when the first Q-set or R-set is empty. The R-set of the same order

contains patterns that have a different class and are further away from the pattern x than any

prototype with the same class. For practical purposes this last R set may be ignored, but its

simple definition permits also a recursive but symmetrical definition of the R and Q sets. The

total number of Q sets for a pattern x will be the order of the last plus one.

130 Part II, Chapter 1

In Figure 29 we may see a graphical

example of these sets for a 2-dimensional

problem. Let us now reflect for a moment

on the meaning and properties of these Q

and R sets.

Each Q and R set of a given pattern x

encompasses patterns that are in a

hyperspherical crown around that pattern.

The space around this pattern is thus

divided in multiple layers, like skins in

an onion. The width and number of these

crowns will vary considerably from case

to case. There will be at least two non-

empty sets for any given pattern (and

thus two crowns), and there may be as

many sets as patterns in P. The simplest

case, from a classification point of view,

is when there are only 2 non-empty layers, with R0={}, Q0={ p ∈ P : c(x)=c(p) }, R1={ p ∈ P :

c(x)≠c(p) }. In such a case, any single one of the prototypes of the same class as x can be used to

classify it correctly.

In most cases, R0(x) will be an empty set. When this is not the case, then using the original

nearest neighbor rule with all available prototypes in P will result in a classification error for

pattern x. Whenever there is a pattern for which R0(x)≠{}, there may be no subset of P that

classifies the given set X without errors, as we shall see later.

1.3.2 - Partial and generalized q-functions

Having defined the Q and R sets of patterns, we may now define the associated Boolean indicator

functions. For reasons that will become clear later, let us call these Partial Q-functions. Let us

then define the functions 0,1}{n:, →×× HXpartialparial rq as

Q0Q1Q2 R1R2

R3

Q0Q1Q2 R1R2

R3

Figure 29 - Example of a Q and R sets for a 2-
dimensional problem. The center cross represents the
patterns for which the sets are being calculated.
Crosses represent prototypes with the same class as the
pattern, and circles represent prototypes with a
different class. The white areas represent the Q-sets,
while the gray represent the R-sets.

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 131

=⇒∈∀
∈=∃

=
)0)()(,(0

)(,1)(:1
),,(

pxpp
xppp

hQotherwise
Qhiif

nxhq
n

n
partial (68)

and likewise

=⇒∈∀
∈=∃

=
)0)()(,(0

)(,1)(:1
),,(

pxpp
xppp

hRotherwise
Rhiif

nxhr
n

n
partial (69)

Since the model membership functions h(p) are Boolean, the definitions given for the partial q-

functions are equivalent to the following:

)(),,(
)(

p
xp

U
nQ

partial hnxhq
∈

= (70)

We may also use the more practical notation common when dealing with Boolean functions, and

represent the disjunction as the Boolean sum, or

 ∑
∈

=
)(

)(),,(
xp

p
nQ

partial hnxhq (71)

Naturally, the partial R-function will be

 ∑
∈

=
)(

)(),,(
xp

p
nR

partial hnxhr (72)

Let us now introduce the concept of generalized q-function, defined in []0,1: →× HXq :

 =

=
otherwise

chciif
hq 0

)(),(1
),(

xx
x (73)

Simply stated, the generalized q-function is 1 when the pattern is correctly classified by model h.

THEOREM

Given a model h and a pattern x,

),,()),,((),(
|)(|

0 0

nhqihrh
xQ

n
partial

n

i
partialq xxx ∑ ∏

= =

⋅= (74)

PROOF

132 Part II, Chapter 1

For c(x,h)= ctrue(x), it is necessary that the closest prototype, in model h, of pattern x, have the

same class as x. Therefore, it is necessary that at least one prototype of the correct class (i.e. of a

good neighborhood) exists, i.e., ∃n : qpartial(h,x,n)=1, and that no prototype of a different class

(i.e., of a bad neighborhood), of lower order exist, i.e., ∀m≤n, rpartial(h,x,m)=0, or alternatively

1),,(
partial

=mxhr . Thus, if any of the products ∏
=

⋅
n

i
partialpartial irnq

0

),,(),,(xhxh =1, then q(x)=1.

Since this may occur for any of the orders of the neighborhood, we have

),,(),,(),(
|)(|

0 0

nqirxh
xQ

n
partial

n

i
partialq xhxh∑ ∏

= =

⋅= (75)

Q.E.D.

It must be noted that, for any given pattern, its q- function is a Boolean function of the indicator

functions h(p). Unfortunately, the form given is not canonical. Its logical value may be changed

by changing the values of these functions, i.e., by including or excluding prototypes p from the

model h. We must therefore choose an assignment of h(pj) for j=1 to |h| that forces q(h,x) to be

true. For a single pattern this is always possible, provided that at least one of the Q-sets is non-

empty.

1.3.3 - Correctness function

When designing the classifier, we usually want it to classify all patterns of the given training set

Xtrain without errors. If we are willing to accept errors, we may consider only a subset of Xtrain

and call that subset Xtrain. Let us define our final function, which we shall call correctness

function, as { }1,0: →× HXCorrect :

 =∈∀

=
otherwise

hcXiif
hXCorrect train

train 0
1),(,1

),(
xx

 (76)

From the above definition it is clear that we can define Correct(X train,h) as a function of the q-

functions of the patterns in Xtrain:

∏ ∏ ∑ ∏
= = = =

⋅==
||

1

||

1

)|(|

0 0

),,()),((),(),(
train trainX

j

X

j
j

xQ

n
partial

n

i
jpartialj nhqihrhqhCorrect xx,xX train (77)

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 133

Going back to the original problem of minimizing the classifier cost ∑
∈Pp

ph)(, it is now clear that

this minimization must be done with the constraint that Correct(Xtrain,h)=1.

We shall now analyze a particular case where this minimization can be done efficiently, before

going on to the more general case.

1.4 - Positive-only q-functions

The problem of finding an assignment for h(p), p∈P that minimizes the cost while maintaining

Correct(Xtrain,h)=1 is greatly simplified if we consider positive-only q-functions. By positive-only

q-functions, we mean that we may only force positive assignments of h(p) (i.e. h(p) =1) when

attempting to force a q- function to be 1. In other words, we never assume that a particular h(p)

will be 0: we either assume it is 1 or it is a “don’t care“. This is equivalent to admitting that all

the bad neighborhood patterns may be in the final classifier, and thus each class must minimize

its own prototypes without assuming the other classes will do any minimization, just like when

two warring factions rearrange their defenses without trusting their opponent will withdraw

anything. When Xtrain and P are one and the same, as is many times the case, this is equivalent to

finding the minimum selective subset of P (Ritter, Woodruff et al. 1975).

It is clear that the set of prototypes found using this approach may be larger than the absolute

minimum set necessary to classify a given training set of patterns. We must however bare in

mind that the goal of classification is to perform well in the unseen data, not the available

training data. By using the positive-only approach, we are keeping the original class boarders as

untouched as possible, and thus we may be safeguarding that the error in the unseen does not

increase. On the other hand, we are not allowing much smoothing of those boarders, which in

some circumstances may also have adverse effects.

When considering positive-only q-functions, Correct(Xtrain,h) can only be 1 if ∀x rpartial(h,x,0) =0.

If for any pattern x this is not the case, then that pattern cannot be correctly classified unless we

guarantee that the patterns of its 0 order R-set are removed (which violates our positive-only

assumption).Thus, we must ignore these patterns as errors. As we shall see later, some of these

patterns may actually end up being correctly classified, for the prototypes in their 0 order R-set

may not be chosen for the final classifier. The number of patterns for which the 0 order R-set is 0

134 Part II, Chapter 1

will contribute to what we called the a priori error rate, which is the maximum error rate that the

procedure might yield on the training set.

For the remaining patterns, the q- functions are greatly simplified. All R-sets of order greater than

1 are necessarily non-empty, so if we cannot assume that we will remove any of their prototypes,

the partial r- functions will have to be assumed 1, and thus all terms but the first of eq.77 must be

assumed 0. The resulting q- function is thus

 ∑
∈

==
)(0

)()0,,(),(
xp

pxh
Q

partial hqxhq (78)

Consequently the resulting correctness function Correct(Xtrain,h) will be

 ∏ ∏ ∑
= = ∈

==
||

1

||

1)(0

)(),(),(
train train

i

X

i

X

i Q
itrain hhxqhXCorrect

xp

p (79)

Finally this function is almost in a canonical form. In fact it is in the Conjunctive Normal Form

(DNF) (Wegener 1987), which has been studied extensively. It also has the peculiarity that it

contains only positive (or affirmative) literals, since there are no negations involved in this

equation. To find the minimum cost classifier we must simply find the minimum number of

assignments that will make the function 1, which is an equivalent definition of a minimum size

prime implicant of the Boolean function (Wegener 1987). This exact problem is of great

importance in a number of different fields, namely in Computer Aided Design (CAD) and fault

diagnostic, so we shall briefly review the techniques developed in those fields. Unfortunately, it

has been proved that in the most general case, finding a minimum size prime implicant is NP-

complete (Eiter and Gottlob 1995).

1.4.1 - Known methods for finding prime size implicants

The simplest way to find the minimum size prime implicant is simply to factor out the terms of

equation (79). Since the conjunction and disjunction operators of Boolean algebra are both

distributive in relation to the other, a product of sums can be factored out to a sum of products:

 ∑∏∏ ∑ ==
= ∈

)()(),(
||

1)(0

k

X

i Q
train hhhXCorrect

train

i

pp
xp

 (80)

Any of the terms of the summation (a product of h(pk)) can make the function 1, so we need only

assign the values 1 to the h(pk) of the shortest of those terms. Unfortunately, that is easier said

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 135

than done, and the indexes of the summation and products in equation (80) were deliberately left

unspecified, because they can only be found by actually factoring out the previously equation.

Factoring out that equation has a complexity tha t is exponential on the number of patterns used.

We wrote MATLAB code to perform this function, and when we later compare numerical

results, we shall see that factoring out is only possible for rather small toy problems.

As with many NP-Complete problems, the branch-and-bound technique (Fukunaga 1990) can be

used to find the exact solution in what may be reasonable time. We also wrote MATLAB code to

implement this approach, but although it does improve dramatically the processing time, we will

see that it is still only viable for small size problems.

The complexity of this problem is very well explored in (Wegener 1987), but significant

improvements have been made since then in finding the most efficient ways possible of solving

it. One of the most promising solutions is to use Integer Linear Programming (ILP) techniques.

This approach was proposed in (Pizzuti 1996), and later improved by (Silva 1997). The proposed

method is designed to solve general propositions in CNF, so one of the steps involves

transforming it into a affirmative only propositions, substituting negated literals by a associated

positive literal, and adding the restriction that only one may be true. This obviously is not

necessary in our case, and so we are left with a relatively simple unbounded minimization

problem to be solved by ILP.

1.4.2 - Algorithm for building positive-only Q-sets

It is possible to construct positive-only Q-sets for a training set, with a time complexity O(n×m)

where n is the number of patterns in the training set, and m the number of prototypes. As for the

memory requirements, they are between O(n) and O(n×m), depending on the particular problem.

The algorithm is as follows:

136 Part II, Chapter 1

Algorithm 9- Computing Positive -only Q-sets

A MATLAB implementation of this algorithm is given in appendix, and was used extensively

throughout the experimental part of this thesis.

The memory requirements for this algorithm are relatively modest and are mainly reduced to

those necessary for the input and output data. The only internal variable that requires any

considerable memory is a single vector of length |P|, that has to store an index and a similarity

value in each element. This requirement, linear in |P|, is absorbed by requirements needed for the

input and output. The input data requires O(|Xtrain|, |P|). It the worst case, the output requirement

are O(|Xtrain| × |P|) since each Q-set may have as many elements as there are prototypes. In

practice, the Q-sets will be much smaller rendering the requirements closer to O(|Xtrain|).

However, in some implementations sets are rather cumbersome to work with, and it is simpler to

substitute them by Boolean vectors, where membership is represented by a logical 1 in the

corresponding component of the vector. In those implementations the memory requirements are

O(|Xtrain|× |P|), but since each value is Boolean, that cost is really quite small.

It is also important to stress that the similarity values (or distances), need not be kept, and they

usually require far more space than a simple index or Boolean value.

The time requirements for the algorithm are O(|Xtrain| × |P|). In step 2, we repeat the procedure

|Xtrain| times, and in step 3 |P| times, making it at least O(|Xtrain| × |P|). Steps 5 and 6 are both

linear in |P|, and thus asymptotically absorbed by the previous step.

Let
 Xtrain be the set of training patterns x
 P be the set of candidate prototypes p
 Q be a vector with the Q-sets of each pattern, initialized to ∅

1 Do
2 For i=1 to |Xtrain|
3 For j=1 to |P|
4 Calculate the similarity s(xi,pj)
5 Find the largest value v of s(xi,pj), for which the class pj

is different from that of xi.
6 For each s(xi,pj), add index j to Q(xi) if s(xi,pj)>v

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 137

1.4.3 - Heuristic Q-set algorithm for selecting prototypes

Since an optimum selection of the prototypes is equivalent to finding the minimum size prime

implicant of a Boolean function, and that has been shown to be NP-Complete, we must resort to

some sort of heuristic algorithm to obtain acceptable solutions in acceptable time. Most heuristic

algorithms explore certain characteristics, so we developed our own heuristic, that is very similar

to the one proposed, using a completely different formalization, by (Ritter, Woodruff et al.

1975), and very similar to the Davis-Putnam algorithm for refutation (Davis and Putnam 1960)

that has been used previously for minimizing Boolean functions (Barth 1995). The main idea is

that we must select the prototypes that are the only element of any Q-set, and after that, we

should be greedy and choose the prototype that classifies correctly more patterns. The algorithm

can be presented as follows:

Algorithm 10 - Qset Heuristic for selecting prototypes

The algorithms memory requirements are basically that of its inputs, and thus are not a problem.

As for the time complexity it is O(|P|×|Q|2). In step 3, all components of Q(i) have to be searched,

making it O(|Q|). In step 4, for each component of Q all P may have to be searched, making it

O(|P|×|Q|). Step 5 will iterate at most #Q times the next steps, of which steps 6 and 8 must search

at most |P|×|Q| possibilities, rendering the algorithm O(|P|×|Q|2).

Let
 Q be a vector length i with the Q-sets of each pattern xi
 P be the set of indexes of candidate prototypes p, appearing in

Q
 Psel be the set of indexes of the selected prototypes

1 Do
2 Let Psel = ∅
3 Find all Q(i) that have a single element, and add that element to

Psel,, remove it from P, and remove those ith components from
vector Q

4 For all remaining components of Q, remove them if they have any
element that is also in Psel

5 While there are any components remaining in Q do
6 For all elements of P, calculate how many times they appear

in Q
7 Find the most occurring element, add it to Psel, and remove it

from P
8 For all remaining components of Q, remove them if they have
 any element that is also in Psel

138 Part II, Chapter 1

The fist part of this algorithm (selecting the prototypes that are the single element of a Q-set) is

inevitable, and thus, at least in some sense optimal. The second part, where the most occurring

prototype is selected is clearly non-optimal, and many different search strategies can be used.

It must also be noted that since this procedure generates selective subsets, there is no interaction

between the choice of prototypes for each class. Therefore, this last step of selecting prototypes

can be done independently for each class, thus reducing considerably the complexity of the task.

1.4.4 - Other selection techniques

One of most interesting approaches for selection of prototypes is to consider prototypes as

features of the Q-set, and use feature selection techniques to choose the best prototypes. In this

type of approach, each Q-set is seen as an object, which has a certain number of features: the

prototypes.

As was reviewed in part I of this thesis, Rough Set Theory (Pawlak and Slowinski 1994)

provides us with tools to make an optimal choice of features. Moreover, for this application, it

has the advantage over other feature selection techniques that it was developed for categorical

data, as is the case with prototypes that are either are part of a given Q-set or not.

Rough Sets have also another advantage in this case, since they provide not only reducts with

minimum sets of classifier prototypes, but also cores, which will contain the prototypes that

appear in all minimum sets of classifiers.

1.5 – General case

When considering the general case, i.e., the case in which may exclude certain patterns from the

final classifier, we will be able to construct a classifier with less prototypes then the one obtained

with positive-only Q-sets. However the computational cost of constructing it will be considerably

greater.

Let us look again at the correctness function in this case:

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 139

 ∏ ∏ ∑ ∏
= = = =

⋅==
||

1

||

1

|)(|

0 0

),,()),((),(),(
train trainX

j

X

j
j

xQ

n
partial

n

i
jpartialj nhqihrhqhCorrect xx,xX train (81)

Both r and q-functions are disjunctions (or Boolean sums) of literals, but as the r-functions are

negated, due to DeMorgans laws the result we be a conjunction (or Boolean product) of negated

literals. Thus the product of r-functions will be a single product of negated literals. Due to the

presence of the final q- functions, the result will be a 4 level Boolean formula (Wegener 1987),

with products of sums of products of sums.

The first remark that must be made is that there may be no assignment of logical values to the

literals h(p) that make the function 1. In fact this is the classical Satisfiability (SAT) problem

(Cook 1971; Cook 1983): Given a generic Boolean formula, find an assignment for its variables

that makes its logical value 1. This problem was proved to be NP-complete, and a great deal of

effort has been put to solving it with a P-complexity algorithm (Baase and Gelder 2000), for that

would revolutionize many fields of science.

The fact that there may be no solution means, from the classification point of view, that it is

impossible to classify correctly the given set of patterns with any combination of the available

prototypes. To obtain a classifier we must therefore relax our constrains and assume that there

may be errors. It may be quite difficult to pinpoint the exact patterns that are causing problems,

but it certainly is one that has a non-empty 0 order R-set (R0(x)?∅). As we saw when discussing

the positive-only Q-sets, if the first R-set is empty, then any prototype of the 0 order Q-set will

correctly classify the given pattern. Thus, removing all patterns for which R0(x)?∅ guarantees

that an assignment is possible that makes Correct(Xtrain,h)=1.

Unlike the positive-only case, when dealing with the general case we need to find the minimum

number of positive assignments that make the function 1. This is no longer equivalent to finding

the minimum size prime implicant, since there may be another prime implicant that, although

having more literals, has fewer of them in the affirmative form. Nonetheless, it is still useful to

find the prime implicants of the function, since the we can then search only these to find the one

with less affirmative literals.

A number of different techniques have been developed to work with binary functions with a large

number of literals. One of the most successful, stems from graph theory and is known as BDD –

140 Part II, Chapter 1

Binary Decision Diagrams (Bryant 1986). Most of the techniques involving BDD are concerned

with solving the SAT problem, but many of them have the specific aim of finding prime

implicants. One such technique for computing prime implicants of multi- level Boolean functions

is presented in (Stoffel, Kunz et al. 1997).

1.5.1 – A Heuristic for the general case – G2P

One of the main reasons why a heuristic for the general case is not trivial is there is a lot of

interaction between the different classes, i.e., a choice of one prototype for one class will have a

big impact on the available choices for other classes. Such an interaction, as has been pointed out

does not exist in positive-only approach. One possible solution is to try and de-couple the classes

once again, through a certain pre-processing, which we have called G2P – General to Positive-

only.

The G2P algorithm relies predetermining an acceptable maximum error rate (AMER) on the

training set, and then assigning a cost/benefit (CB) ratio to each of the prototypes that we are

considering for exclusion. As we exclude prototypes, it is possible that the 0 order R-set of some

patterns will cease to be empty, and thus that pattern would be (a priori) incorrectly classified by

the positive-only approach. When this happens, we will assume that the number of errors has

increased by 1, and will check to see if the AMER (acceptable maximum error rate) has been

reached, and thus we should stop attempting to exclude prototypes. The CB (cost/benefit) ratio

will decide which prototype we will exclude next. We consider that there is a cost of 1 if the

removal of a prototype makes pattern loose all its 0 order Q-sets, thus turning the 1st order R-Set

into the 0 order R-set, and producing a a priori error for the positive-only approach. We consider

that there is a benefit of n, when the exclusion of a prototype will increase by n the size of the 0

order Q-set of a patterns (thus giving more possibilities when choosing a prototype for that

pattern). We will remove the prototype with smallest CB, calculate the a priori error rate, and

proceed to the next removal until the AMER is reached.

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 141

To apply the G2P algorithm we must now compute the complete Q-sets8 of the patterns, apply

the algorithm, and then feed the resulting q-functions to the prime implicant finding procedure

(possibly the Q-set Heuristic). Let us then see how to perform the first 2 steps.

1.5.1.1 - Computing the complete q-functions

The algorithm for computing the complete q-functions may be described as follows:

Algorithm 11 - Computing the complete Q-sets

The algorithm is quite similar to that of computing the positive only Q-sets, but for each pattern,

we must now order prototypes by decreasing similarity. This increases the time complexity to

O(n × m log m) where n is the number of patterns in the training set, and m the number of

prototypes. The complete Q-sets will also have a fixed length m, thus fixing the memory

requirements for the output at O(n × m).

The associated general case q-function can easily be obtained from the given complete Q-sets by

observing the following rules:

a) Insert a OR (+) operator after any prototype that has the same class as the pattern.

b) Insert a AND (•) operator after any prototype that has a different class to that of the

pattern.

8 The term complete Q-sets refers to the ensemble of all Q-sets and R-sets of a given patterns,

and is a easier way to call them.

Let
 Xtrain be the set of training patterns x
 P be the set of candidate prototypes p
 Q be a vector with the complete Q-sets of each pattern
 Qlval be a companion vector to Q with the logical values

1 Do
2 For i=1 to |Xtrain|
3 For j=1 to |P|
4 Calculate the similarity s(xi,pj)
5 Let Q(i) be the list of prototypes ordered by increasing

values of s(xi,pj).

142 Part II, Chapter 1

c) Open a parenthesis whenever a prototype of a different class is followed by one that has

the same class of the pattern.

d) Close all parenthesis at the end of the expression.

1.5.1.1 – Applying G2P

We must now apply the described procedure G2P, which can be summarized in the following

algorithm:

Algorithm 12 - G2P - General to Positive

It may seem strange that steps 4 and 18 are introduced to actually go one iteration further than

what is apparently necessary. However, it must be noted that it is possible to remove prototypes

Let
 Q be a vector with the Q-sets of each pattern xi
 P be the set of indexes of candidate prototypes p, appearing in

Q
 Pcand be the set of indexes of the candidate prototypes for

exclusion
 Pxcld be the set of indexes of the excluded prototypes
 AMER be the acceptable maximum error rate

1 Do
2 Let Pxcld = ∅
3 Repeat
4 Save the Q to Qold so as to be able to backtrack later
5 Let Pcand = ∅
6 For i=1 to #Q
7 Find the first p of Q(i) that has a different class to xi

and add it to Pcand if the next p on the list has the same
class as xi

8 For all p in Pcand
9 Let cost(p)=1 and benefit(p)=1
10 For i=1 to |Q|
11 If p has the same class as xi then
12 If p is the first prototype and the next one

 is of the wrong class add 1 to cost(p)
13 else
14 If p is the first prototype of the wrong

 class, count the number of prototypes of
 the right class that immediately follow
 it, and add them to benefit(p)

15 Select the p with smallest ratio cost(p)/benefit(p), add it
to Psel, remove it from P and from all Q(i)

16 Calculate the present a priori error rate apriori_error
17 Until apriori_error > AMER
18 Restore Qold to Q

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 143

without any impact on the error rate in the training set, and thus, even after we have reached the

maximum error allowed, it is still worth trying to remove more prototypes.

Steps 6-7 also provide considerable speedups, since the search for a prototype to remove will

occur only within those that will certainly give benefits.

Although this procedure does require considerable computing power, its complexity is still quite

acceptable. Each iteration is less than O(|Q|, |P|).

1.6 - Comparison with other methods

Despite its elegance, the practical value of the Q-set theory can only be appreciated when

compared with other prototype minimization techniques, in practical applications. The vast

amount of minimization techniques, some with may parameters that have to be fine tuned for any

given application, makes an extensive comparison out of the scope of this thesis. We will

therefore limit ourselves to a comparison with the most standard and reliable methods, using

widely known benchmark data sets. From amongst these, we chose the Hart’s double F problem

(already discussed in part I), and the classical Iris Dataset. Both these problems are difficult to

solve using exact minimization techniques, so we added a very simple “straight line” problem

(explained later), to compare Q-sets with exact minimization and the other techniques.

As stated in Part I, the CNN-Condensed Nearest Neighbor (Hart 1968), together with the RNN-

Reduced Nearest Neighbor, are the two fastest and simplest prototype minimization techniques,

yet they have proved to compare vary favorably with most other techniques. Like Q-sets, they

only select prototypes amongst a given set, as opposed to other methods that generate new ones.

We shall therefore use CNN and RNN as benchmarks for comparisons with Q-sets. It must be

noted that, unlike these two methods, the Q-set method does not rely on order, and thus we can

expect lesser variance in the results.

144 Part II, Chapter 1

1.6.1 – The double F problem

This problem, initially proposed by (Hart 1968) and

already presented in Part I, consists of two classes

of bi-dimensional patterns with a uniform

distribution in two interlocked F shapes, as seen in

Figure 30. The two classes lie in the 22.5 x 20

rectangle with the bottom left corner at the origin

(0,0), and have boundaries defined by the line that

joins (7.5,0), (7.5,5), (15,5), (15,10), (7.5,10),

(7.5,15), (15,15), (15,20). In most papers, 200

patterns of each class are used. We generated a

“reference set” with 200 patterns of each class, that

was used in part I, but for comparisons, we generate multiple random datasets with the double F

distribution, using different numbers of prototypes. Since the true borders between the classes are

known, the generalization error of a given classifier set of prototypes may be calculated exactly.

The generalization error is simply the area between the true boundaries and the Voronoi

boundaries defined by the selected prototypes (divided by the total area if an error rate is

desired). However, the direct computation of this error is very time consuming. Therefore, we

use a Monte Carlo method that consists of using a test set of 100.000 patterns of both classes, and

classifying them with the selected prototypes. Besides obtaining a estimate of the generalization

error, we also obtain an estimate of the time each classifier takes to classify a large dataset. Given

the number of test patterns available, and the estimated error probabilities, the variance of the

estimate for each of the classifiers is always less than 0.1%.

0 5 1 0 1 5 2 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

Figure 30 - Hart's Double F problem.
Class 1 has a uniform distribution in
the rightmost F shape, while class 2 has
the same type of distribution in the
leftmost, inverted, F shape.

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 145

Number of prototypes

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500

Size of training set

N
u

m
b

er
 o

f
p

ro
to

ty
p

es

CNN

RNN

Qset-P

Qset-N

Qset-N0

Figure 31 - Number of prototypes used for Hart's double F problem.

Error rate

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500 3000 3500

Size of training set

E
rr

o
r

ra
te

 (%
)

CNN

RNN

Qset-P

Qset-N

Qset-N0

NN

Figure 32 - Error rate for Hart's double F problem.

We compared the basic nearest neighbor (NN) rule with CNN, RNN, Q-sets with positive-only

heuristic (Qset-P), Q-sets with negations (general case) using the G2P heuristic with one

admissible error (Qset-N), and the same algorithm using zero admissible errors (Qset-N0). We

started by using a total of 100 training patterns (50 of each class), and steadily increased that

number to 3200 training patterns. In each case, we repeated the experiments 30 times, using

146 Part II, Chapter 1

different randomly generated datasets. The complete results are presented in Appendix A, and

summarized in Figure 31, Figure 32, and Figure 33.

Training time /s

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500

Size of training set

T
ra

in
in

g
 t

im
e

/s CNN

RNN

Qset-P

Qset-N

Qset-N0

Figure 33 - Training time required for Hart's double F problem.

It was observed that, for this problem, the Q-Set positive-only heuristic’s performance was

consistently between that of CNN and RNN. The number of prototypes was always less than that

obtained with CNN, but larger than that obtained by RNN. It is only natural that the number of

prototypes be larger than RNN, for while RNN will produce a consistent subset, positive only Q-

Sets will yield selective subsets, that are closer to the original Voronoi boundaries. Accordingly,

the error rate obtained with positive-only Q-Sets is consistently smaller than that obtained with

RNN. It is higher than that obtained with CNN, although the error rates all converge as they

decrease exponentially when the training set becomes very large. The training time required for

positive-only Q-sets also lies between the very short training time required for CNN and the time

required for RNN.

As expected, the general case Q-set heuristics require a great deal of training time, and provide

only modest improvements. The error rate was very close to that obtained with positive-only Q-

sets, with the error rate sometimes increasing slightly when 1 error was allowed during training.

The number of prototypes obtained was higher than that obtained with RNN, but less than that

obtained with positive-only Q-Sets. It must be said that although the training time required for

general case Q-Sets heuristics will always be considerable higher than that for the positive-only

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 147

case, our implementation of the G2P procedure is very inefficient. Matlab is notoriously

inefficient when “for” cycles are required, as is the case with G2P. Thus, a C/C++

implementation would decrease the relative difference in training time between these methods

and the others. The same argument also applies to the differences between the positive only Q-

Set and the remaining methods, since the Matlab implementation uses 8 byte floating variables to

store binary values, and varying size matrices to store sets. A lower level implementation, as

mentioned before, will greatly increase the performance of Q-Set heuristics. Nevertheless, the

asymptotic behavior is the same, no matter which implementation is used.

1.6.2 – The iris dataset

The Iris dataset is probably the best known benchmark dataset in the world. It was originally

proposed as a classification problem by Fisher (Fisher 1936), based on data collected by E.

Anderson. We where not able to find Anderson’s original article, published in 1935 in the

Bulletin of the American Iris Society, volume 59, pages 2-5, titled “The Irises of the Gaspe

peninsula”. The dataset contains measurements of 4 different characteristics (septal length,

septal width, petal length, and petal width) of 150 different irises. The iris is a plant that has 3

different species, namely Iris Setosa, Iris Versicolor, and Iris Virginica. The dataset includes 50

samples of each species.

This dataset is available at the Machine Learning Repository at the University of California at

Irvine, but as pointed out in (Bezdek, Keller et al. 1999) some errors have crept into the datasets

that have been circulating amongst researchers. In this thesis, we use the original dataset.

Applying the Condensed Nearest Neighbor (CNN) algorithm to the Iris dataset, just as it is

presented in the original paper, produces 24 prototypes. Reduced Nearest Neighbors will bring

the number of prototypes down to 16. The Q-set positive-only heuristic will produce 17

prototypes, while the general case Q-set heuristic, allowing no errors, will produce only 15.

We also performed leave-one-out validation on the Iris dataset. The results are presented in Table

7. Since for classification a single pattern is used each time, the processing time is too small to be

measured reliably, and thus is not included in the results. Similarly, for each test there is either

one or no errors, so an analysis of variance is pointless, and the total number of error obtained in

the 150 trials is shown in parenthesis. Due to the particularly good results obtained using the

148 Part II, Chapter 1

general case Q-Set heuristic with one error allowed, we also included the results obtained when

allowing 2 errors (QSet-N2).

Method Nº Prototypes Error rate Training

time / s

NN 149.0 ± 0.0 4.0 (6) 0

CNN 23.7 ± 1.58.0 (12) 0.14 ± 0.03

RNN 15.9 ± 0.5 8.0 (12) 0.26 ± 0.04

QSet-P 16.9 ± 0.4 8.0 (12) 0.06 ± 0.02

QSet-N 13.9 ± 0.5 7.3 (11) 2.06 ± 0.21

QSet-N0 14.9 ± 0.4 6.7 (10) 1.11 ± 0.09

QSet-N2 12.0 ± 0.4 8.0 (12) 2.47 ± 0.15

Table 7 - Leave-one-out cross-validation for the Iris Dataset. Together with the error rate, the actual number
of errors is shown in parenthesis

As can be seen in Table 7, the positive only Q-Set heuristic continues to be have a performance

between that of CNN and RNN. The number of prototypes obtained by this heuristic is much less

than that of CNN, and only slightly more than that obtained by RNN. Since the dataset is quite

small, the error rate for all three methods is the same. The most revealing result when comparing

these methods, is that the Q-set approach takes considerably less time to train. This happens

because while Q-Set techniques search a Boolean space, CNN and RNN perform that search in

the original space, that is now 4-dimensional. As the number of dimensions grows, the evaluation

of distances will be ever greater, and that difference will increase. Even if all distances are

computed beforehand and stored in memory, the Q-Set approach will still be faster for it only

needs to compare binary values, as opposed to the possibly real-valued distance measurements

required for CNN and RNN.

More important still, the general case Q-Set heuristics, both allowing errors and not, achieve the

lowest number of prototypes, and maintain or actually improve the error rate. Unfortunately, that

is still obtained with a very high training time.

The reasons why Q-Set approaches perform so much better than in the case of Hart’s double F

problem can be traced to two main factors. The first, already mentioned, has to do with the higher

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 149

dimensionality of this problem. The second, is that while in Hart’s problem there is no margin

between the two classes (patterns of one class may be arbitrarily close to patterns of another), in

this case there is a fair distance between patterns of different classes. Thus, small shifts in the

Voronoi boundaries generated by the prototypes will not have a significant impact in the error

rate.

1.6.3 – The straight line problem

In the above mentioned problems we where not able to compare the results with those obtained

using Q-Sets with an exact minimization technique. While there are techniques and software for

finding exactly the smallest prime implicant in problems with many variables, it was not practical

to include them in our comparisons. Therefore, we wrote a Matlab routine using branch-and-

bound to perform that search. This routine could easily find the smallest prime implicants in

problems with up to 40 variables (or prototypes). The branch-and-bound technique is extremely

sensitive to the starting point, and thus the time required to find a solution has very high variance

when the technique is applied to a series of similar problems. Thus, while sometimes we could

obtain results using up to 58 variables in just a few minutes, other times we had to abort the

process after running it for 24 hours.

These limitations led us to compare Q-Sets with exact minimization and other methods only for a

very simple problem, that we called the straight line problem. In this problem, we generate 2-

dimensional patterns with uniform distribution in the unit square limited by (0,0) and (1,1).

Those that lie in the left side of that square (i.e., with x<0.5) are considered to belong to class 1,

and the others to class 2.

We forced the number of training patterns of each class to be equal, and performed a number of

trials, increasing the total number of training patterns from 4 up to 40. The complete results are

presented in Appendix B, and summarized in Figure 34, Figure 35, and Figure 36.

150 Part II, Chapter 1

Number of prototypes

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50

Size of training set

N
u

m
b

er
 o

f
p

ro
to

ty
p

es CNN

RNN

QSET-P

QSET-N1

QSET-N0

QSET-BB

Figure 34 - Number of prototypes used for the straight line problem

Error rate

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50

Size of training set

E
rr

or
 r

at
e

CNN

RNN

QSET-P

QSET-N1

QSET-N0

QSET-BB

NN

Figure 35 - Error rate for the straight line problem

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 151

Training time

0.01

0.1

1

10

100

1000

0 10 20 30 40 50

Size of training set

T
ra

in
in

g
 t

im
e

/s

CNN

RNN

QSET-P

QSET-N1

QSET-N0

QSET-BB

Figure 36 - Training times for the straight line problem. Note that the time axis uses a logarithmic scale to be
able to show very different training times. Due to this, when the training time is too close to zero (as is the case
for QSET-BB, CNN, RNN and QSET-P when the training set has fewer than 16 patterns), the value is not
represented in this graph.

For this very simple problem, it is clear that the positive-only Q-set heuristic solution is very

close to the true minimal selective subset. Therefore, the enormous amount of time required to

find the optimal solution is defiantly not worthwhile. This small problem also shows that RNN

will generally produce prototypes that do not constitute a selective subset.

1.7 – Extensions and applications of Q-set theory

We shall now overview some ways in which Q-sets may be used, and point to ways in which

they can be extended.

1.7.1 - Choice of candidate prototypes and training sets

To apply Q-set minimization we need to have a set of candidate prototypes, and a set of training

patterns. In many cases, such as the comparisons in section 1.6, we assumed that they were the

same. There are however many other possibilities, so let us see what are the consequences of

each choice.

152 Part II, Chapter 1

1.7.1.1- XTrain = P = Available known data

A common approach is to take the whole original

training data and use it both as candidate prototypes and

training data. A good reason for considering this

approach is that it maximizes the use of all available

information. Moreover, we will always have a solution

for the general Q-set case, because we can guarantee that

R0(x)={}, ∀x. This happens because each pattern is

closest to itself than any other, and has the same label as

itself.

From a computational point of view, this approach has

the inconvenient that it is very costly. The heuristic

positive-only Q-set algorithm is quite fast, and can be

used for very large data sets, but is nonetheless O(n2). However, the optimal approach, and the

general case approach may not be viable when the data set is large.

From a classification point of view, considering the same patterns as prototypes and training set

has a major drawback, that is common to the original nearest neighbor classifier: it is very

sensitive to outliers. An outlier will not be removed from the prototype set, because there is a

training set pattern (the prototype itself), that will be incorrectly classified if the prototype is

removed.

Known,
labeled data

Training
set

Prototypes

Q-sets

P XTrain

Test
set

Known,
labeled data

Training
set

Prototypes

Q-sets

P XTrain

Q-sets

P XTrain

Test
set

Figure 37 - Same data used for
prototypes and for selection

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 153

1.7.1.2 - Available known data divided into disjoint XTrain and P

From a purely classification point of view, we should never use

twice the same data when designing a classifier, so we should

divide the available data into two separate sets: one to be used

as the P prototypes, and the other to be used as XTrain patterns.

Providing there is enough data, this should be the preferred

approach.

It must be noted that, in coherence with the nomenclature used

in Part I, the P set is what was referred to as Training Set, since

it is used to actively provide the classifying prototypes, and

what in this chapter we called XTrain is closer to the concept of

Validation Set, since it is not actively used to construct the

prototypes, but just to select them. We will, however, keep the notation that we have used in this

chapter, and continue calling XTrain the Training set.

By having disjoint sets of prototypes and selection patterns, we may have patterns in XTrain that

cannot be correctly classified, and must thus be ignored. In the positive-only approach this is

done automatically, but when considering the general case, care must be taken, since the

correctness function may or may not be satisfiable.

Although the error rate in XTrain may be higher, this approach will provide a better generalization,

since outliers and very rugged boarders between classes will be smoothed out.

1.7.1.3 - P provided by another classifier design technique

There are many prototype-based classifiers that do not provide even locally minimum consistent

subsets, and all of these can be pruned by the Q-set technique. The idea is to use the prototypes

provided by those methods as candidate prototypes, and then use the original training data, or

another set of validation data as Xtrain to select the best prototypes.

Techniques such as k-means (Duda, Hart et al. 2001) , Probabilistic Neural Networks (Specht

1990), Radial Basis Function Networks (Powell 1987) (Broomhead and Lowe 1988; Poggio and

Girosi 1990)

Known,
labeled data

Training
set

Prototypes

Q-sets

P XTrain

Test
set

Validation
set

Known,
labeled data

Training
set

Prototypes

Q-sets

P XTrain

Q-sets

P XTrain

Test
set

Validation
set

Figure 38 - Separate data for
prototypes and selection

154 Part II, Chapter 1

, and Self-Organizing Maps (Kohonen 2001), require that the

used specify a a-priori number of centroids, kernels, or

neurons. Too few of these will result in a severe degradation

in performance of the classifier, and so the number of

prototypes is usually greatly over-dimensioned. A pruning

algorithm may then be used, and the Q-set technique

performs that job rather well.

Using some clustering technique before applying Q-sets has

the additional advantage that is removes outliers and

smoothens the data distribution, thus eliminating, or at least

reducing the sensitivity to outliers.

We find the use of Self-Organizing Maps (SOM) particularly useful for this task, as we have

shown in (Lobo, Swiniarski et al. 1998). As mentioned in Part II, a thorough and general

theoretical description of the behavior the SOM is difficult, but it is generally accepted that there

is a magnification factor, usually estimated at d/(d+2), d being the dimensionality of the problem.

This magnification factor means that a SOM will represent sparsely populated regions of the

input space with greater detail than the densely populated ones. This is particularly suited to Q-

sets, since SOM pre-processing under-represents the densely populated areas where the choice

between basically equivalent prototypes would take a long time, it smoothes the borders between

classes, removing the outliers, and it still has a good representation of those borders. Moreover,

as argued in (Lobo, Swiniarski et al. 1998), the SOM algorithm can effectively be applied to very

high dimensional data, or very large data sets, without requiring unreasonably high

computational resources, and without having the numerical stability problems that can affect

other techniques. As is normal when dealing with a supervised learning situation, we may still

use the LVQ (Kohonen 2001) algorithm on the SOM before applying the Q-sets, so as to further

separate the prototypes of different classes.

One particularly simple pre-processing step before applying Q-sets is sample the original data to

select the candidate prototypes. If done correctly, we will be left with a set of prototypes that

have a distribution proportional to that of the original data, and from which it will be much

simpler to select the best ones.

Known,
labeled data

Training
set

Prototypes

Q-sets

P XTrain

Test
set

Validation
setClassifier design

(SOM, k-means,etc)

Candidate
Prototypes

or

Known,
labeled data

Training
set

Prototypes

Q-sets

P XTrain

Q-sets

P XTrain

Test
set

Validation
setClassifier design

(SOM, k-means,etc)

Candidate
Prototypes

or

Figure 39 - Q-sets used a pruning
technique

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 155

One final note on using Q-sets as a pruning algorithm must be made: some techniques already

provide at least locally minimum prototype sets, and thus it is no use to try and prune them. Such

is the case, for example of Reduced Nearest Neighbors (Gates 1972), or Selective Nearest

Neighbors if we use positive-only Q-sets.

1.7.1.4 - Q-sets used as pre-processing

Besides being used as post-pruning method, Q-sets can

also be used as a pre-pruning method, that is it may be

used to select only a few data patterns that will later be

used do design another classifier. While not directly

concerned with the way we select the data (any of the

above techniques can be used) we chose to include this

section here since it is tightly related to data set

manipulation.

It could be argued that if Q-sets provide us with a

classifier, that from a certain point of view is optimal, it

would not make sense to use its output to design another

classifier. However, we may not want to use a prototype-

based classifier, and prefer some other type, such as a

discriminant function, or a Multi-Layer Perceptron neural

network. These other methods may have distinct advantages for certain applications, such as

providing an easily understandable distinction between classes, or a smoother border between

them. However, training these classifiers on the original, large, data set may have inconvenient,

such as require a lot of computing power. Therefore, some sort of sampling of the training data

may be necessary. If we use the positive-only approach, the selected prototypes will be close to

the border, and thus be good patterns to train the classifier.

Sampling the training set with a prototype-based classifier design technique has been used by

(Plutowski, Cottrell et al. 1996; Mitiche and Lebidoff 2001; Choi and Rockett 2002), and shown

to be effective in reducing the computational effort of training neural networks.

Known,
labeled data

Training
set

Q-sets

P XTrain

Test
setValidation

set

Classifier design
(Neural Network,etc)

Reduced
Training

set

Classifier

Known,
labeled data

Training
set

Q-sets

P XTrain

Q-sets

P XTrain

Test
setValidation

set

Classifier design
(Neural Network,etc)

Reduced
Training

set

Classifier

Figure 40 - Q-sets as pre-processing

156 Part II, Chapter 1

The idea of using a condensing algorithm as a pre-processing step for initializing another

algorithm has also been used before, as for example in (Kim, Lee et al. 1993), where Tomek's

(Tomek 1976) rule for CNN is used to initialize a LVQ network.

1.7.2 – Extensions to fuzzy Q-sets

A lot of effort has been made in using fuzzy set theory in classifier design (Bezdek, Keller et al.

1999). There are many reasons to do so, but one of the most important is that these classifiers

provide, in a very natural fashion, a degree of certainty to the given result. It is thus appropriate

that we point ways in which fuzzy set theory may integrated with the Q-set approach.

We feel that the best way to introduce fuzzy sets in this framework is to basically leave it out

until the final classifier is produced, and only then assign a some membership function to each of

the final prototypes, based on its distance to the nearest prototype of the opposite class. This

keeps the process of selecting the prototypes fast and efficient, and introduces the fuzziness only

where it is important for a correct interpretation of the results. One can, however, note that this is

not a true integration of fuzzy set theory into Q-sets.

An interesting way to use fuzzy set theory is to consider that the Q-sets are not crisp set of

prototypes, but a fuzzy set, where the membership is a function of the similarity between the

patterns and each prototype. We may even consider that the R-sets have a membership of 0, and

the order of the partial Q-set imposes damping factor on the membership (alternatively, the size

of the preceding R-sets may do the same). The q- functions generated would be functions not of

h(p), but of h(p) × Membership to Qset From that point onwards, we may substitute the Boolean

sum and product by the fuzzy equivalent.

After we do that, we will be left with an expression for the correctness function that does not

necessarily compute to 0 or 1, irrespective of the assignments we make to each of the indicator

functions. Instead of having the problem of minimizing the classifier cost subject to the restraint

that the correctness must be 1, we will have a multi-objective maximization problem, for we will

want to minimize the cost and maximize the correctness.

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 157

This last approach has several advantages very dear to the fuzzy set community, namely it

propagates the “goodness” of a prototype as a classifier throughout the processing, and allows for

a graceful degradation in performance as we force a smaller set of final prototypes.

It does however have the very big disadvantage that it requires far more computing power to

achieve a result, and this result is consequence of more or less arbitrary assignments of

importance (cost versus correctness) or “goodness” (membership in Q-sets).

1.7.3 – Incremental Q-sets

The Q-set methods described are designed for a “one-shot” design of the classifier. Many real

world systems can benefit a lot from what is called incremental learning or incremental update.

The basic idea is to change the classifier whenever relevant new information arrives.

Let us see how we may adapt the positive-only Q-set to incremental learning. There are two new

facts that may occur: the addition of a new prototype, and the addition of a new selection pattern.

In any case, we must keep the original Q-Sets.

1.7.3.1 – Adding new patterns to Xtrain

If we plan to add new patterns for selection, we must keep the original prototypes, even though

they are not used for classification. We will not have to change the calculated Q-sets ever again,

so we have no need to keep the original patterns of Xtrain.

When a new pattern is added, its Q-set must be computed, which is a relatively fast procedure.

Next, it must be checked whether any of the prototypes of that Q-set is in the classifying

prototypes. If any one is, then no modification is necessary, and we simply store the new Q-set

together with the others. This is a necessary step, since there may be another simplification of the

original correctness function that yields a solution that has none of the prototypes of this new Q-

set.

If the new patterns is not correctly classified by the selected prototypes, i.e., if none of the

prototypes of its Q-set are present, then an update of the classifier is required. This can be done in

two ways: a temporary update, or a recalculation of a prime implicant. In the first case, we will

158 Part II, Chapter 1

simply add one of the prototypes of the new Q-set to the selected prototypes. The resulting

selection will still be a prime implicant, and thus a local minima of the cost function, but it may

not be the minimum size one. The classifier that we had previously selected is one of a series of

terms of the DNF of the correctness function. When we multiply this function by a disjunction of

literals (the new q- function), we will be adding 0 or 1 literal to each of the terms, depending on

whether that literal already existed or not. Without being too formal,

 ∏∏∑∏ +++== knkqhCorrect pppX ktrain ...SolutionPresent ..),((82)

⇔

=++=⋅ ∑∏ ...)()(),(),(banew pphxqhCorrect ktrain pX

∏

∏∏∏
+⋅+⋅+

+⋅+⋅+⋅++⋅=

......SolutionPresent ...

......SolutionPresent ..

b

b

knb

kqknkq

ppp

ppppppp aaa
 (83)

The question now arises as to which of the prototypes of the new Q-set should be added, since

any of them will provide a locally minimum solution, with equal size. One again, the greedy

option of including the one that appears more times in existing Q-sets seems to be the best. The

number of occurrences of a prototype in the Q-sets may be seen as a measure of the probability

of being in the Q-set of patterns of that class, so choosing it will maximize the probability that

another pattern (that may be added later) will need it.

However, if we value keeping the class boundaries more than lowering the number of prototypes,

it can be argued that the prototype that appears less times in the Q-set is closer to the boundaries,

and thus should be selected.

1.7.3.1 – Adding new prototypes to P

Adding new candidate prototypes, while being very valuable from the classification point of

view, is the less favorable option from the computational point of view. When doing this, we

must keep not only the original Q-sets and prototypes, but also the original selection patterns of

Xtrain. Together with the Q-sets, we must also keep the similarity value of the last element of the

set (the one less similar to the pattern), which we shall call sgood(x), and the similarity of the first

element of R1(x) (the most similar pattern of the wrong class), which we shall call sbad(x).

Q-Sets: A Boolean formalization for minimizing prototype-based classifiers 159

When the new prototype is presented, we must compute the similarity between it and all the

stores selection patterns of Xtrain. For each of these, if that similarity is less than sbad(x), no further

action is necessary. If it is less, than some updating is necessary. If the pattern in question has the

same class as the new prototype, than we only have to add that new prototype to it’s Q-set.

However, if it has a different class, than the new Q-set for that pattern will have to be reduced.

We must therefore compare the similarity of the new pattern with the similarity to all prototypes

on the Q-set, and keep only those that are more similar than the new one.

160 Part II, Chapter 1

 161

PART II

CHAPTER 2

Binary Self-Organizing Map - BSOM

2.1 – Introduction

Although many variants of SOM exist, very few are designed to work with binary data. We did

not find in the literature a detailed discussion of specific problems of adapting the SOM

algorithm to binary data, so we prepared it and present it here. We will start by discussing the

problems and advantages of using SOMs for binary data. We will then propose an adaptation of

the SOM algorithm for binary data, we present the results we obtained with our implementation.

Finally, we will briefly review the existing implementations of SOM that use binary data.

162 Part II, Chapter 2

The main reason why so few attempts have been made at using binary data with SOMs it that at

first sight it seems impossible. SOMs rely on the principle that one can slowly and smoothly

make the units move towards the centers of data clusters, and that there can be a topological

ordering of the data.

Binary vectors will always be on the vertices of binary hypercubes, and thus a smooth approach

between two vectors, along any axis, is impossible. It also seems counterintuitive to try and find

a topological ordering amongst points on such vertices.

However, we believe both these theoretical difficulties can be overcome. If two binary vectors

differ in a number of bits, then we can make them closer by changing only some of those bits. It

is true that the approach between those vector will be done in quantized jumps, but providing the

number of bits is large, those jumps can be viewed as relatively smooth. Furthermore, there is no

real reason for not it is possible to find topological ordering amongst binary data, since distance

metrics exist for these data.

The advantages of using a binary SOM are considerable. On one had, it makes it possible to

directly use data that are by nature binary, without pre-processing or encoding. On the other

hand, a binary SOM can be much faster than a conventional SOM. A binary SOM may be

implemented directly in hardware (see Part I-Chapter 4), but more important, can be efficiently

implemented in Assembler, making use of the multimedia instructions available in many modern

processors. In the popular Intel Pentium architecture, for example, these multimedia instructions

can make logical operations on 80 bits at a time, making it possible to train extremely high

dimension binary SOMs efficiently.

2.2 - Binary SOM algorithm

The basic SOM algorithm was described in detail in Part I of this thesis, but can summarized as

follows:

For a given training pattern x :

Binary Self-Organizing Maps – BSOM 163

1. Calculate the distance between each SOM unit and the training pattern x. (Calculation

phase)

2. Find the neuron with smaller distance, and call it the winner W.

(Voting phase)

3. Change the network neurons with a function G, which depends on the learning rate α, the

distance d to W (in the output plane), and the neighborhood function F. Due to the nature of

the neighborhood function, only the neurons closer to W (in the output space) will be

changed.

(Update phase)

4. Update the learning rate α and the neighborhood function F according to some rule.

Repeat steps 1 to 3 for the next training pattern, until some stopping criteria is reached.

When using binary data two problems arise with this algorithm:

a) Which distance metric is more appropriate.

b) How should the updating be done.

The first problem is quite easy to solve, and we chose to use the Hamming distance between the

patterns, since this is a common distance metric for binary patterns. It must be noted however,

that in this case using a Hamming distance is not very different from using Euclidean distance: if

we consider each component of the feature vector to be an axis, the Euclidean distance is simply

the square root of the Hamming distance. When using Hamming distances the distance increases

linearly with the number of different bits, while the using Euclidean distances would result in

smaller increments in the distance when the number of different bits grows.

The second problem is slightly trickier. In the original algorithm, the neuron being trained can

adjust its weights so that it moves slowly towards the input pattern, along the axis defined by the

two patterns. When using binary valued patterns this is not possible, since the coordinate in each

dimension can only be 1 or 0, making it impossible to take small steps, and limiting the

directions along which the patterns can be updated.

164 Part II, Chapter 2

One solution would be to allow the neurons to be real-valued. In this case, it would be possible to

use the standard updating rule, and any standard SOM software (including Kohonen’s original

software) could be used for training. After training, the map neurons could be converted back to

binary-valued patterns, so as to enable a faster classification. The main problem with this

approach is that training would be as slow as a conventional SOM, and we wouldn’t be using the

full potential of a binary implementation.

Another solution would be to multiply the learning rate by the Hamming distance and the

neighborhood function value to obtain the number of bits to update. If the number of binary

features is very large (such as in our problem), the number of bits to update will be fairly large,

and this method could provide fairly smooth steps. If a neuron differed in only one bit from a

given input pattern, it would never be updated by it, and thus there would always be a certain

quantization error. As for the direction of those steps two possibilities arise: we can

deterministically choose which bits to update (thus giving more importance to those bits), or we

can use a random or pseudo-random choice, that would on average take us along the path

towards the final target pattern.

Our solution to this problem is to probabilistically change the bits in which the input pattern and

the neuron differ, according to the value of the learning rate and neighborhood function. For each

neuron W, the product u of the learning rate α by the neighborhood function F is computed.

Then, for each bit in which the neuron W and the input pattern x differ, a random number rand

(with a uniform distribution in the interval [0,1[) is generated, and compared with the product u.

If rand<u that bit of the neuron is changed, to assume the value of the corresponding bit in the

input pattern x.

On average, the direction of movement is along the desired path, and the number of bits changed

is proportional to the learning rate.

Resuming, there are three possible approaches in the pure binary input space:

Binary Self-Organizing Maps – BSOM 165

Number of bits to

change

What bits to

change

Fixed Fixed

Fixed Random

Random Random

Table 8 - Proposed solutions

These solutions where implemented in our version of SOM, presented in Part III-2.

2.3 – Results obtained with BSOM

Our implementation of BSOM was written in C++, without trying to take full advantage of the

processor’s architecture. We did this because we did not have time to optimize the code, and

because we wanted to try the BSOM approach before committing too much time to its

optimization. Thus, we cannot present fair experimental comparisons between execution time of

BSOM and conventional SOMs.

We tested the BSOM with binary data extracted from the ship noise spectra described in Part III-

3. As mentioned there, is consists of 165 patterns with 2048 binary features each. First the whole

data set was used to train the SOM, with each of the three update rules proposed.

Surprisingly, the final SOM obtained was

identical for all our experiments with the 3 rules,

apart from the axis symmetries that are inherent

to SOMs. The mapping obtained is shown in

Figure 41. Although by no means conclusive, this

shows that the BSOM algorithm is very stable,

and all the update rules proposed are

approximately equivalent. Since the fastest rule is

the first, that modifies a fixed number of bits in a fixed order, that was the one used in subsequent

experiments.

Figure 41 - The 10x5 unit SOM trained
with binary data. Each shade corresponds

to a different type of ship

166 Part II, Chapter 2

We proceeded to use the BSOM in subsequent experiments, where we divided the available data

into various training and test sets to cross-validate the results. One more, we observed that, apart

the mentioned symmetries, the mappings obtained were almost identical, varying in only one to

four unit labels.

2.4 – Other work

A simple way to implement a binary SOM is to use the conventional SOM algorithm during

training, with real valued units, and then threshold the final weights to obtain purely binary units.

Such an approach is used by (Gioiello, M., G. Vassallo, et al., 1992) when constructing a LVQ

map to process binary data. Using the conventional Euclidean distance is not very different from

using a Hamming distance, as seen previously, and the use of real valued units makes the

updating trivial. All the speed-up benefits of using a purely binary system are lost during

training, but at least the final network can benefit from them when processing new data.

Most of the SOM implementations for binary data are designed for processing images. The

techniques used for determining similarities and updating images (i.e. making them more similar

to a target image) are not applicable for general binary patters, at least directly, since they rely on

specific 2-dimensional information.

A recent example of the use of SOM for binary images is provided by (Pujol 2001), that follows

up on previous work by the same research group, namely (Takacs and Wechsler 1998). A

modified Hausdorff distance is used to compare images. A rather complicated update rule is

used, that relies on derivatives in order of the x and y coordinates of a certain function of the

image features. While achieving remarkable results, the technique is not readily adaptable to

generic binary data, since it relies on relationships between the 2-dimensional coordinates of the

pixels. Furthermore, both the Modified Hausdorff distance and the update rule require

considerable computing time, defeating one of the main advantages of the BSOM.

However, the most common approach to using SOM with binary images involves some sort of

preprocessing that renders real-valued features, such as is done in (Tanomaru and Inubushi

1995).

Binary Self-Organizing Maps – BSOM 167

Although not dealing with SOMs, a recent paper (Girolami 2001) proposes a way of adapting the

closely related GTM (Bishop 1995) to binary data. Another one (Coultrip 1998) uses a VSLI

implementation of a classifier for binary data, based on Parzen windows.

 169

PART II

CHAPTER 3

Parallel implementation of SOM over PVM

3.1 – Introduction

Although neural networks are intrinsically parallel algorithms, they are not easily implemented

on distributed architectures because the strong interactions between neurons impose a very high

communication overhead (neural networks are also called connectionist models).

One of the neural models that has been implemented with more success onto parallel

architectures is Kohonen’s SOM (Kohonen 2001), because, as seen in Part I-4, it requires very

170 Part II, Chapter 3

little communication between units. However existing implementations have traditionally used

either dedicated VLSI chips (Rueping 1994), or parallel machines that tend to be expensive and

non-standard (Przytula, Prasanna et al. 1993).

Over the last few years, a system called Parallel Virtual Machine (PVM) (Geist, Beguelin et al.

1994), has been developed that enables a programmer to use networked computers (running

different operating systems such as UNIX and MS-Windows 95) in a manner very similar to a

single UNIX machine, using common languages such as C. Thanks to PVM, existing computer

networks, no matter how heterogeneous, can easily be programmed. Moreover, simple PCs

running MS-Windows (which abound in most organizations), can be put to work during

otherwise unproductive times, such as nights and weekends.

Our motivation for using this approach was to be able to train very large SOMs on the

University’s computer laboratories, that contain large quantities of networked PC computers,

running either MS-Windows or Linux. A more far reaching application would be to use the large

networks of superstores (including the all the registering machines that are PCs) to cluster data

from the previous day sales during the night. With this approach, it would be possible to use

SOMs that otherwise could only be trained in reasonable time on supercomputers.

3.2 - Distributed SOM algorithm

The basic SOM algorithm was described in detail in Part I of this thesis, but can summarized as

follows:

For a given training pattern x :

1. Calculate the distance between each SOM unit and that training pattern x. (Calculation

phase)

2. Find the neuron with smaller distance, and call it the winner W. (Voting phase)

3. Change the network neurons with a function G, which depends on the learning rate α, the

distance d to W (in the output plane), and the neighborhood function F. Due to the nature

Parallel implementation of SOM over PVM 171

of the neighborhood function, only the neurons closer to W (in the output space) will be

changed. (Update phase)

4. Update the learning rate α and the neighborhood function F according to some rule.

Repeat steps 1 to 3 for the next training pattern, until some stopping criteria is reached.

Many different distributed versions of Kohonen’s SOM are possible, each being more adequate

for a certain machine architecture. For implementing in PVM, we think the most adequate is the

following.

Algorithm 13 - Algorithm 13 - The distributed SOM algorithm.

Steps 1 and 2 form the initialization phase, that requires a lot of communication amongst

processors. Step 5 consists of finding the local winner in each processor. Steps 6 and 7 are the

voting phase, that does require some communication between processors. Step 8 is the update

phase, that is again purely local.

Given

 Np Number of processors, or PVM host
 C A coordinator process
 Nt Number of training patterns x1, x2,…,xn
 Nn Number of units forming the SOM

Do

1 Send the SOM units to the processors, so that each processor

receives approximately Np/ Nn units
2 Send all Nt patterns to all Np processors
3 For each pattern xi
4 In each of the Np processors do
5 Find the BMU (Best Match Unit) within that processor
6 Send the coordinates of the BMU, together with the

 similarity measure, to the coordinator C
7 Wait for the coordinator C to choose the global

 BMU, and receive that information
8 Update the local units according to the SOM rule
9 In each of the Np processors update de learning parameters
10 Repeat steps 3 to 9 until the stopping criteria is met
11 Send all units back to the coordinator C

172 Part II, Chapter 3

A graphical representation of

the algorithm showing the

messages involved is given in

Figure 42.

The initial and final phases of

the algorithm (represented in

white in Figure 42) are

executed only once, and thus

have very little influence in the

overall performance. Most of

the time is spent in the main

loop (represented in gray in

Figure 42), which iterates

through the three main phases: calculation of the distances, voting for the global winner, and

updating the units.

The calculation phase of the algorithm (finding the winner) is inherently parallel, and its

computational load can be spread evenly across the network if each processor has roughly the

same number of units.

The voting phase is the only one that requires communication (and synchronization) between

processors, because the global winner must be known to all for the algorithm to proceed. If there

was no coordinator, each processor would have to send information about its local winner to all

other processors. While PVM does support a broadcast mechanism, this would translate to a

multicast at the data link level, thus originating NP(Np-1) messages per iteration. With a

coordinator, each process sends only one message to the coordinator, and it in return sends only

one message back, thus originating only 2(Np-1) messages. Furthermore, the coordinator can

piggyback additional information on the return message, that can be used to select the next

training pattern, change the training parameters, etc.

During the update phase, each processor will have to calculate the distance between its local units

and the global winner (in the output plane), and then update only the units in the winner’s

neighborhood. The computational load will be evenly distributed only if all processors have

Coordinator
Assign neurons

Send patterns

Send start order

Find local winner

Send global winner

Update neurons

NEXT PATTERN

Receive neurons

Clients

Receive neurons

Receive patterns

Find local winner

Send local winner

Update neurons

NEXT PATTERN

Send Neurons

Figure 42 - Message exchange in distributed SOM

Parallel implementation of SOM over PVM 173

roughly the same number of units in this neighborhood. Thus it is very important to assign the

units evenly during step 1 of the distributed algorithm. When the neighborhood radius is large,

the computational load will easily be distributed. However, when the neighborhood radius is

small, it is difficult to guarantee that all processors will have the same number of units, and thus

some processors will have to wait for others. It must be pointed out that in this case, the number

of units to update will be small, so the difference in processing time amongst the processors will

also be small.

3.3 - Experimental results

During our experiments, we used networks of up to 12 PCs. Each was a Digital Venturis FX,

with a Pentium running at 100 MHz, with 16 Mb of RAM (255 K cache). The computers where

connected with a coaxial cable, using 10Base2 level 2 protocol (10 Megabits per second), and

TCP/IP as the level 3 protocol. The computers where running the MS-Windows 95 operating

system, WPVM 2.0 (Alves 1997) and Microsoft LAN Manager peer-to-peer network clients and

servers. The computers had all screen-savers and anti-virus checkers disabled and where not

running any other software during these tests.

As the speedup obtained by using the distributed SOM depends critically on the amount of

processing required before each synchronization, we used very large pattern vectors, with 1024

features, and then varied the number of neurons on the map.

We used square maps with 5 × 5, 10 × 10, 20 × 20, and 40 × 40 neurons. Although square maps

tend to slow convergence, we used them because they have a shorter boundary than rectangular

maps (for the same number of units) and thus are less affected by discontinuities of the

neighborhood function on those boundaries. This discontinuity effect would also affect the

smaller maps more then the large ones if we used the same initial radius in all tests. To avoid

this, we used an initial neighborhood function radius equal to each map’s side. So as to make the

radius decrease smoothly, we force it to decrease only 1 unit each time the whole training set

patterns are presented. The map with 5 × 5 neurons will thus have only 5 × Nt iterations of the

patterns, while the one with 40 × 40 will have 40 × Nt. So as not to make the simulation too long

for larger maps, we use fewer training patterns for these maps. In the end, each map requires

exactly 4 times more calculations then the previous one.

174 Part II, Chapter 3

The number of patterns used for training

does not influence the performance or

speedup of the algorithm, so we use only 120

patterns for the 5 × 5 map, 60 for the 10 × 10,

30 for the 20 × 20 and 15 for the 40 × 40.

While this number of patterns (and iterations)

would be far too small for a useful

classification or clustering, it is sufficient to

prove that the system works reliably. The

number of training patterns in the smaller

maps has to be greater than for the larger maps, because otherwise the time intervals would be

too small to be measured reliably.

During these simulations we distributed

the units amongst the processors in such

a way that each processor has one or

more diagonal lines of units. This

distribution, although not ideal, provides

a reasonable equilibrium of units by

processors for rectangular

neighborhoods (see Figure 43 - every

uncut neighborhood has the same neuron

load per processor at each radius).

1 2 3 4 1 2

2 3 4 1 2 3

3 4 1 2 3 4

4 1 2 3 4 1

1 2 3 4 1 2

Figure 43 - Diagonal distribution of units
amongst different processors

0

50

100

150

200

250

300

1 2 4 6 8 10 12

Nº of machines

T
o

ta
l t

im
e,

 in
 s

ec
o

n
d

s

5x5

10x10

20x20

40x40

Figure 44 - Absolute execution times

Parallel implementation of SOM over PVM 175

The execution times where measured

within the programs (with a call to a

system timer), so as to measure only the

time spent on the iterations (step 3 of the

distributed algorithm, and shaded area in

Figure 42).

The numerical results are presented in

Table 9 and in Figure 44, we can see a

graph of the absolute execution times,

while in Figure 45 we can see the relative times, that is, the speedup.

 Size of map

Nº of

PCs
5x5 10x10 20x20 40x40

1 6 24 106 15268

2 21 37 97 623

4 27 29 58 222

6 27 27 39 103

8 32 28 39 85

10 34 31 36 71

12 36 37 41 69

Table 9 - Execution times (in seconds)

3.4 - Conclusions

The results presented confirm the claim that the SOM can be efficiently distributed on an

ordinary computer network. However, depending on the workload, we may obtain overwhelming

gains (as in the 40 × 40 map), moderate but consistent gains (as in the 20 × 20 map), or even high

losses (as in the 5 × 5 map).

0

0,5

1

1,5

2

2,5

3
1 2 4 6 8 10 12

Nº of machines

R
el

at
iv

e
ex

ec
u

ti
o

n
 t

im
es

5x5

10x10

20x20

40x40

Ref.

Figure 45 -Relative execution time (1=time on a single
machine)

5x5

176 Part II, Chapter 3

There are a couple of extremely high running times corresponding to the 40 × 40 map running in

a single machine or in a group of two. After that there is a sudden break and then the running

times decrease smoothly. This initial peak is due to the machine configuration we are working

on, namely because we have 16 Mb of RAM and a 40 × 40 map takes up to 13 Mb RAM, forcing

the operating system to use the disk as swap-space. We used machines with this configuration

because we needed to have a reasonable pool of highly similar computers to achieve fair

comparisons, and these where the ones available. Nevertheless we consider this as an advantage

instead of a shortcoming, since these were the most common machines around any office or

university lab at that time, and allowed us to expose another very important fact when using

distributed processing - the efficient use of each machine's memory. Using our distribution

model, one can take advantage of each machine's local memory along with the corresponding

processing power, effectively avoiding a RAM/HardDisk swapping situation which terribly

slows down the SOM processing.

In the more general case, the total execution time will decrease smoothly (except sometimes for

the transition from 1 to 2 machines), and then start to increase slowly. Its not reasonable to

expect an unlimited gains as you throw more and more machines into the pool because of the

increase in network load.

When distributing a process, there will be a minimum overload on the total running time, due to

the network. In our tests this can be seen by observing that the highest jumps upwards happen

when there is a switch from a single machine to two machines. The distribution is profitable only

when there is a significant workload to be distributed, thereby overcoming this minimum

network overload. After that initial step, all other machine extensions walk along an almost

smooth curve, reflecting the converging equilibrium between each machine's designated

workload and the network overload due to an increasing number of traded messages.

The overload due to the network will increase linearly with the number of machines (each

additional machine will be responsible for 2 new messages), until the network starts to saturate

due to collisions and/or sending queues. The workload per machine, on the other hand, will

decrease hyperbolically, so at a certain point a minimum execution time will be reached, and

adding a new machine will not improve the overall performance.

PART III

Application

178 Part II, Chapter 3

 179

PART III

CHAPTER 1

Ship noise and target identification

1.1 – Introduction

The main objective of this thesis is to enable a submarine to identify the ships that are near it by

analyzing the sound they produce. This is a crucial problem for submarine operation, and as we

progressed in our work we found many other areas of application where the same techniques can

be used, both for military and civilian purposes.

180 Part III, Chapter 1

To solve this problem, it is necessary to understand how and why ships produce noise, how that

noise is propagated in the ocean, how it is mixed with noise from other sources, and how it is

received by the submarine. A graphical representation of this framework is shown in Figure 46.

There has been a lot of research in underwater acoustics, driven not only by this application, but

mainly because of its importance to communications (Green 1997) and underwater imaging.

Many excellent textbooks exist on this topic such as (Medwin and Clay 1998), (Kleppe 1989) or

(Kinsler 1982). A good reference is the Handbook of Acoustics (Crocker 1998).

As for the specific problem of characterizing the sound radiated by ships and its recording by

sonars, there is far less bibliography. The most cited textbook is undoubtedly (Urick 1982) which

is still used by many navies. Since it is a re-edition of a book written in 1967 and because a

significant amount of research has recently been done, we would recommend (Coates 1990) as a

solid and general purpose textbook on underwater acoustics for sonar related problems. A short

but detailed account of radiated noise with a lot of experimental data can be found in (Collier

1998) which has a naval architect’s perspective. For a more military and strategic perspective,

although scientifically correct and complete, we would recommend (Stefanick 1987). This last

book gives a great deal of attention to the problems that were crucial during the Cold War but its

appendices provide a quick reference for all underwater acoustics issues with military interest.

For a more in-depth study of the physics of sound generation and propagation, we would

recommend (Ross 1987). For the signal processing aspects of sonars (Nielsen 1991) or (Burdic

1991) would be recommended.

1.2 – The basic problem

Ever since the first submarine was used, during the American War of Independence, their

detection and identification has been one of the most important issues for any navy. On the other

hand, submerged submarines have always had serious problems in recognizing and identifying

the underwater world around them. Let us now see what means they have at their disposal and

how they have been used.

Visual detection is all but impossible underwater. Ocean water is quite opaque, and visibility is at

best a few dozen meters, which is far too little to be of any use. Moreover, there is hardly any

Ship noise and target identification 181

light at the depths at which most submarines operate. Due to these factors, regular military

submarines do not have any windows (or portholes) to observe their surroundings under water.

Most modern ships use electromagnetic sensors intensively, such as radars. Unfortunately, ocean

water is a reasonable electric conductor and, as such, does not allow easy propagation of

electromagnetic waves. For VHF/UHF radio-frequencies, the typical depth of penetration in

water (skin depth) is of only a few centimetres. For normal navigation radar frequencies, sea

water is almost completely opaque and gets more and more opaque as frequencies rise.

Very low frequency (VLF) and ultra low frequency (ULF) radiation can penetrate the ocean to a

certain extent. In fact, these frequencies have been used successfully for communication with

submarines. However, they have very long wavelengths and thus produce a high degree of

uncertainty in the location of targets. They are also subject to strong diffraction and reflection

effects that, together with a strong attenuation and the need for enormous antennas, render them

useless for use by a submarine.

Sound waves, however, can be used instead of electromagnetic waves and provide the much

needed “eyes” for submarines, as indeed they do for many marine animals, such as dolphins and

Ships generate noise
from a number of sources

Ship noise
is passed

into the water

The ocean is a multipath and dispersive sound conductor
and will introduce distortion

Other sources of sound (wind, waves, marine animals,
seismic effects, etc) are added to the ships noise

The submarine itself generates
noise and interference

The sonar equipment
captures the sound

Ships generate noise
from a number of sources

Ship noise
is passed

into the water

The ocean is a multipath and dispersive sound conductor
and will introduce distortion

Other sources of sound (wind, waves, marine animals,
seismic effects, etc) are added to the ships noise

The submarine itself generates
noise and interference

The sonar equipment
captures the sound

Figure 46 - General description of the process of noise generation, transmission, and capture by a
passive sonar.

182 Part III, Chapter 1

whales (Roitblat, Moore et al. 1989) (Council 1994). Water, given its high density and low

elasticity, is an excellent sound conductor.

In 1490, Leonardo Da Vinci described an instrument that could be used to hear underwater sound

and detect approaching ships (Urick 1982). Ever more sophisticated versions of this apparatus,

which was based on a design of hollow tubes caped with flexible membranes, were used until the

beginning of the 20th century. They generated the first scientific studies on underwater acoustics,

on Lake Geneve in 1827, and enabled a human operator to determine a ship’s direction of

approach with an error of less than one degree.

With the discovery of the piezoelectric effect and electric/electronic engineering, mechanical

devices gave way to electronic ones based on hydrophones, which have been used ever since

World War I. In the first submarines, the crew simply listened to the sound surrounding the

submarine, in hope of identifying the engine “roar” of any approaching ship. This is what is now

called passive sonar9.

With the development of electronics, a more sophisticated technique was devised, whereby a

short burst of sound (called a ping) is generated, and the time between its generation and the

arrival of its echo is measured. This enables the operator to extract two important pieces of

information. The time interva l will enable us to know the distance to the source of the echo

provided we know the speed of sound in the water at that time. The magnitude of the echo will

give some information about the object’s size, rigidity, and attitude, i.e., a sandy bottom or a

school of fish will give a faint echo while a rocky bottom or a large steel ship will give a strong

echo. A device that uses these principles is what is called active sonar. Active sonars are widely

used. Warships use them to detect targets, fishing ships use them to find fish, and almost every

ship uses them to determine the water depth. When used for this purpose, they are known as

sounders.

9 Sonar is the acronym for “Sound Navigation and Ranging”. The name originated in the British

Royal Navy, when the first electronic prototypes were used to determine distances. Nowadays,

the term is used to describe any naval system that uses sound as a means to detect, localize, or

identify any object.

Ship noise and target identification 183

Modern active sonars are quite sophisticated pieces of equipment. Thanks to the development of

signal processing and computing power, they now use elaborate signal processing techniques to

perform beam forming and noise cancellation. The pings have also evolved to multifrequency (or

coloured) signals that, when reflected, can bring back much more information about the target.

Despite the undeniable advantages of active sonar, their use has several drawbacks. From a

military perspective, the main one is that active sonars reveal the presence and position of those

who use them. Therefore, their use by a submerged submarine would defeat the submarine’s

most important advantage, which is its stealth. Active sonars also give little information about the

target. A few characteristics of the target can be determined by the vessel’s echo (Group 1988),

namely rigidity, shape, and speed, but much more can be revealed by listening to the target’s own

distinctive noise. In addition, there has been concern that the widespread use of sounders and

active sonars interferes with biological life and, in particular, with the navigation systems of

marine mammals.

Passive sonars have therefore become the preferred means of surveillance for submarines and for

submarine hunting, also known as anti-submarine warfare. During the Cold War, the United

States Navy installed a network of passive hydrophones to monitor the movement of Soviet

submarines in strategic locations, first in the North Atlantic but later worldwide. That network,

known as SOSUS, an acronym for “SOund SUrveillance System”, is still operational, although

no longer permanently monitored as it was for so long. SOSUS has also been used for civilian

purposes such as monitoring whales and earthquakes (Nishimura 1994). The interest in passive

sonars for fishing is also increasing, both as a means of identifying species and for monitoring

fishing stocks (Mueller 1993).

Although papers on the subject have not, as far as we know, been published, we envision passive

sonar systems as backup for vessel traffic monitoring and anti-smuggling surveillance. These

systems traditionally rely on radar and, when necessary, on visual contact. However, radar

visibility can suffer degradation under heavy rain and radar cannot be used to positively

determine the identity of a ship. This is usually done by radio-contact between the surveillance

station and the ship. Smugglers will try to jam the radars with chaff which can be discreetly

dispersed by a small plane towing publicity banners. They will also use very fast small boats,

having a tiny radar cross-section that is easily lost in the midst of sea clutter. These boats are

however very noisy and will easily be spotted by passive sonar, no matter what the atmospheric

184 Part III, Chapter 1

conditions. Networks of hydrophones on the sea bottom of shallow waters are relatively

inexpensive to install and operate, and therefore there is potential for widespread use of passive

sonars and target identification systems such as the one developed in this thesis.

1.3 - Sound generated by ships

There are four main sound sources on a ship:

a) Machinery (main propulsion and auxiliary machines)

b) Propellers (or other forms of in-water propulsion)

c) Hydroacoustic noise generated by the flow of water on the hull

d) Other noise generated within the ship, specially under the water line

Figure 47 - Typical frequency ranges of different sources of ship noise (Collier 1998).

Ship noise and target identification 185

Each of these sources has a typical frequency band (see Figure 47) and exhibits different

behaviour under different conditions. Most of the information is in the 10 Hz to 2 kHz range,

although information also exists at other frequencies.

The volume and characteristics of noise

generated by a ship will depend on the direction

from where it is heard. Mainly due to the

propeller, ships tend to radiate more noise to

their stern than to the bow, as can be seen in

Figure 48.

1.3.1 - Machinery noise

Under normal operating conditions, machinery

noise is dominant over other sources in most

ships. Different types of machinery can generate

quite a variety of noise, as shown in Figure 49. Diesel engines, the most common type of engine,

have a number of cylinders and the firing rate of these will determine the dominant frequency of

the noise generated. However, very slight inbalances always occur between the cylinders, and a

small power peak is usually observed at the basic frequency of individual firings (Ross 1987). By

comparing these two frequencies, the number of cylinders of that particular engine can be

estimated. Turbine engines tend to be noisier than diesels but can be strongly damped if

necessary. Their main fundamental frequency is rotation speed, due to slight imbalances between

the blades. There will also be a strong component at a frequency corresponding to the number of

blades multiplied by the rotation speed, since this is the frequency at which hot air hits various

components. Electric motors and generators, either for the main propulsion or for auxiliary

systems, will generate noise at the basic shaft rate. They will also generate noise at basic shaft

rate multiplied by the number of poles on their armatures. Of the three most common types of

machinery, electric engines are by far the most silent. Conventional submarines use these engines

while submerged, making them very difficult to detect. After engines, the next most significant

sources of noise are the reduction gear boxes, that make the coupling between the propulsion

machines and the propeller shaft. Under certain circumstances, they may even produce more

noise than the engines. The fundamental frequency corresponds to the number of teeth contacted

Figure 48 - Acoustic power radiated by a
ship (Urick 1982)

186 Part III, Chapter 1

per second. Some types of engines, such as electric, can work at the relatively low rotation rates

of propellers, thereby forgoing the noisy reduction gears.

Noise generated by the ship’s machinery reaches the ocean water only after traversing its

structure and the hull/ocean interface. This transmission process has a huge impact on the sound.

Most ships have shock absorbers (or dampers) on the engine mounts. These reduce the tear and

wear and increase crew and passenger comfort. From a military perspective, shock absorbers are

essential in decreasing the ship’s acoustical signature, and thus increase its survivability in a war

scenario. The transmission of sound through the structure is an important part of naval

architecture. As far as we are concerned, the most important issues are that the transmission

process generates many harmonics due to non- linearity in many joints, and that internal

compartments can act as resonators, strongly distorting the sound’s spectra.

Most of the noise generated by machinery is concentrated at the precise frequencies described

above or at their harmonics. It is thus called tonal noise or narrow band noise, and appears as

narrow peaks in the spectra of the ship’s acoustical signature. As the operating conditions of the

ship changes, different machinery will have different behaviours. The machinery associated with

Figure 49 - Propulsion and auxiliary systems, and the fundamental frequency of noise generated by
them (Collier 1998).

Ship noise and target identification 187

the main propulsion will generate noise with a higher frequency as the ship’s speed increases,

while many auxiliary machines, such as generators or pumps will not change their acoustical

signatures. The exact frequencies at which these auxiliary machines generate sound, and the

stability of those frequencies, can reveal important information about the exact type of machine,

its maintenance status, and its age. Naturally, the ship’s signature will vary considerably as

different machines are turned on or off.

Machinery will also generate some broadband noise. Pistons will slap on the sides of the

cylinders producing irregular noise and, together with the shaft movement, will induce a

multitude of vibration modes in many different engine parts. This will give rise to a generally

broadband signal (Coates 1990).

1.3.2 - Propellers

Propellers will generate very different sounds depending on whether they are cavitating or not,

and on the level of cavitation (Urick 1982). Cavitation is the process that occurs when, due to

sudden changes in pressure, water vaporises and forms small bubbles. The bubbles will collapse

back into liquid state letting off a characteristic click. Recent design changes in propellers, a lot

of it due to research in aeronautics, has drastically reduced the cavitation of propellers under

normal circumstances. Unfortunately, total elimination is very difficult, since the propeller must

produce forward thrust, generating large forces that will inevitably lead to large changes in

pressure. To reduce cavitation, most modern submarines have large propellers with many blades,

a design that generates no macroscopically perceivable cavitation. However, as speed increases,

any propeller will start to cavitate, generating a distinctive loud broadband noise and the bubbles

will become larger. Although their collapse will make a louder noise, the main lobe of the

broadband noise generated will actually move to lower frequencies. This happens both because

their greater size will allow larger wavelength and because there will be less bubbles.

Poorly designed or damaged propellers and shafts, or damaged bearings, will start to resonate at

certain speeds, letting off a very loud and distinctive noise known as “singing”. While the causes

of singing can be corrected, given enough time and money, they are sometimes unavoidable in

the short run.

188 Part III, Chapter 1

1.3.3 - Hydroacoustic noise generated by water flow on the hull

The movement of a ship through water it will generate noise for many reasons. On one hand, it

generates very low frequency waves, due to the simple fact that it pushes water in the bow, sucks

it in the stern, and pushes it down and sideways in the bow side panels. The wake of turbulent

water will generate higher frequency noise, both by itself, and as it slaps on the sides of the hull.

Finally, small irregularities in the hull will give rise to cavitation as water rushes past them,

resulting in noise with even higher frequencies. The wake will also interfere with the propeller

making it suffer pressure changes. On the other hand, the propeller will induce noise in the hull

as it pushes water into it with varying pressure. As speed increases, the amplitude of the

hydroacoustic noise will rise considerably but, for the reasons explained in the previous section,

will tend to have its peak at lower frequencies.

1.3.4 - Other sources of noise

All noise generated within a ship will eventually find its way into the ocean. Some is made

directly by people inside the ship as they go about their daily chores. In a submerged submarine,

all these factors must be controlled, and modern submarines have insulating materials on the

inside hull to dampen noise. Loose or improperly fastened objects, such as dangling keys or

improperly secured fire extinguishers, will also produce considerable noise when a ship is rocked

by the waves. Finally, vibrating pipes (due to irregular flow), discharge of refrigeration water,

above or below surface exhaust of gases, and other similar effects all add up to produce

considerable noise.

Ship noise and target identification 189

Recently, there has been a lot of research into irregular or isolated sounds (or transients)

produced by ships or submarines, that may reveal important aspects of their operations. A typical

example is the opening of the torpedo hatches. It is a “one-shot” sound, but it will indicate that

the submarine is preparing to take offensive action. Firing canons or missiles will also produce

distinctive noises. One irregular sound that is very difficult to avoid is the one produced by

rudders and their associated machinery. To keep a ship’s course, constant adjustments must be

made to the rudders, turning on an off the motors that move them, and causing sudden

mechanical stress on the machinery and water flow.

The general behaviour of typical ship noise spectra with speed is summarized in Error!

Reference source not found..

Frequency

A
m

pl
itu

de
 o

f p
ow

er
 s

pe
ct

ra
l d

en
si

ty

Frequency

A
m

pl
itu

de
 o

f p
ow

er
 s

pe
ct

ra
l d

en
si

ty HIGH SPEED

LOW SPEED

Broadband noise (by interaction with water)
increases in amplitude, decreases in frequency

Tonal noise (main propulsion machinery)
increases in amplitude and frequency

Tonal noise (auxiliary
machinery): stays constant

Frequency

A
m

pl
itu

de
 o

f p
ow

er
 s

pe
ct

ra
l d

en
si

ty

Frequency

A
m

pl
itu

de
 o

f p
ow

er
 s

pe
ct

ra
l d

en
si

ty HIGH SPEED

LOW SPEED

Broadband noise (by interaction with water)
increases in amplitude, decreases in frequency

Tonal noise (main propulsion machinery)
increases in amplitude and frequency

Tonal noise (auxiliary
machinery): stays constant

Figure 50 - Typical power spectra of ship generated noise, and its change with speed.

190 Part III, Chapter 1

1.4 - Transmission of sound to the sonar equipment

After reaching the water, the sound generated by a ship will be propagated in quite strange ways

through the ocean, were it will be mixed with a variety of other sounds, until it finally reaches a

sonar equipment. Let us now see each of these effects.

1.4.1 - Ambient noise

Although known romantically as “the silent world”, the underwater environment is actually quite

noisy, due to a number of different causes (Urick 1986):

a) Human intervention. Due to the easy propagation of sound in water, even very distant

shipping noise will be felt. Even though individual ships may not be distinguishable, their

noises will blend together and produce a broadband humming sound. Shore facilities and

dredges can also produce distinctive sounds. Since this sound (as other ambient sounds)

has to travel long distances, its spectra is strongly distorted by the transfer function of the

ocean itself. Typically, the higher frequencies are greatly filtered, and the general effect is

a lower frequency hum than the one that would be observed if the sources were closer

(Dyer 1998).

b) Surface agitation (Dyer 1998). Surface agitation is mainly due to the interaction between

the atmospheric wind and the ocean water. Higher wind speed implies a correspondingly

higher level of sound produced by waves, spray, and bubbles.

c) Biological sources (Tyack and Howald 1993). Marine animals and even plants can

generate considerable noise. Many marine mammals deliberately generate sound for

navigation and other purposes, varying from short clicks to long and drawn out whale

songs. Many other marine animals perform regular movements, so as to be able to swim

or even just move water through their gills, and this movement produces a distinctive

sound. One of the most notorious is the “croaking shrimp” that violently snaps while it is

moving through the water, producing a very well known sound (Lohse, Schmitz et al.

2001).

d) Seismic activity (Keenan and Dyer 1984; Goodman and Yamamoto 1988; Gerstoft 1994).

Although major earthquakes or volcanoes are rare, there is quite a lot of low intensity

seismic activity going on at any one time. Due to the particular sound transmission

Ship noise and target identification 191

characteristics of the ocean, some sort of seismic activity can be heard almost anywhere

on the planet.

e) Ice breaking (Xie 1992). Temperature changes in polar ice causes great mechanical stress

that leads to cracks in ice. These cracks produce a loud noise.

f) Rain (Pumphrey, Crum et al. 1989; Scringer, Evans et al. 1989). Rain, together with snow

and ice storms, will induce considerable noise.

A good characterization of ambient noise is very important for anti-submarine warfare, and

charts with expected ambient noise levels are routinely distributed at navy briefings. One such

chart, known as “Knudsen curves” is presented in Figure 51. A very detailed account of the

spectra of ambient noise is given in (Wenz 1962), and a recent paper by (Andrew, Howe et al.

2001) shows and discusses some of the changes that have occurred over the last 40 years.

The ambient noise is not homogeneous in all directions, varying with azimuth and vertical angle

of arrival. Thus, when planning naval exercises, it is important to have a characterisation of

ambient noise in all directions.

Figure 51 - Typical ambient noise levels (NATO 1993)

192 Part III, Chapter 1

1.4.2 – Propagation of sound through the ocean

Propagation of underwater sound is the most important and probably best studied aspect of

underwater acoustics.

One of the most important

parameters to determine the

behaviour of sound in water it its

propagation speed. The speed of

sound in the ocean depends on the

density of the water, and it can vary

enormously with depth, location,

and time. Ocean water has high and

varying concentrations of various

organic and inorganic substances,

mainly salts. Furthermore, even

small changes in temperature will

induce changes in density and thus

in sound speed. The greater changes

in these parameters occur in the vertical direction, since the ocean is composed of a series of

layers of water with slightly different characteristics. Knowledge of these layers is extremely

important for anti-submarine warfare. The variation of sound speed with depth is known as

“bathythermic profile”. Special devices exist to determine it, called bathythermographs, which

can be expendable (i.e. thrown overboard and lost once used), or towed. The temperature

gradient tends to be less pronounced during mornings, allowing very long range detections.

During afternoons, a strong temperature gradient will tend to deflect the sound downwards.

Unfortunately, it is impossible to know the bathythermic profile along all the path between

emitter and receiver, since it changes along that path and internal waves (between the layers) will

make it vary with time.

As sound traverses across water with different densities it is reflected and refracted, giving rise to

curvilinear paths. Many models and computer programs exist to determine these paths, known as

ray-paths, but all these are only approximate. A specially adverse effect of these curvilinear

paths, is that multiple paths may (and usually do) exist between any two points. These multiple

Figure 52 - Typical bathythermic profiles (Apel 1990)

Ship noise and target identification 193

paths will interfere with one another, generating areas where the sound cancels out or multiplies

itself.

As it travels through the ocean, the sound will also reflect on the bottom and on the surface.

These reflections will further contribute to the existence of multiple paths, and can distort the

sound introducing phase changes. The sea surface is continuously moving, and thus reflections

on it will suffer slight Doppler shifts. The type of bottom (sand, rough or smooth rock) will

induce scattering in the sound waves, and water itself is a dispersive medium, scattering sound in

all directions. Finally, small bubbles of air will further interfere with the propagation, giving rise

to a medium far from the linear and time invariant model that some computer programs use. A

detailed account of the various aspects of sound propagation, including losses, distortions, and

ray-paths, may be found in (Giellis 1983) or (Urick 1982).

1.4.3 – Reception of the sound

After propagating in the ocean, the sound will eventually be received by the sonar’s

hydrophones, and processed. Sonars will usually have many individual hydrophones in order

perform beam forming and cancellation of spurious effects.

The position and quality of the hydrophones can influence tremendously the received signal. At a

very low level, molecular agitation due to temperature will induce spurious noise in the

hydrophones (Dyer 1998). At a more macroscopic level, pressure waves due to water movement

will also induce noise. This effect, together with technological limitations in the choice of

hydrophone sensors, makes it very difficult to obtain reliable measurements of sound at very low

frequencies (Tims and Henriquez 1979). The static pressure on the hydrophones will also

condition their performance, which generally improves as the pressure rises due to less

cavitation.

Finally, one of the most important factors in the reception is the receiver’s self-noise.

Isolated hydrophones, on the seabed or suspended from buoys, are naturally the ideal sensors, for

they have no machinery induced self-noise, and are affected only by possible residual

interference of their electronic amplifier systems or mount ing mechanisms. This type of

hydrophone is actually quite common, thanks to the use of sonobuoys by Maritime Patrol

194 Part III, Chapter 1

Aircraft. Sonobouys come in many types and shapes, but are all basically a hydrophone, a signal

amplifier, a buoy (from which the former two are suspended), a radio-frequency modulator and

an antenna. They are dropped by aircraft into the ocean, usually in groups or “fields” so as to be

able to perform triangulation. After hitting the water, the hydrophone itself is lowered to a pre-

defined depth, and the captured signal is transmitted by radio to the listening station on the

aircraft or nearby ship. For safety and security reasons, they will usually sink to the bottom after

a few hours. Although we present no results in this thesis, we used some of our techniques on

sonobuoy recordings made by the Portuguese Air Force.

Submarines are the next best platform for sonars. They are usually designed to be silent, and

when submerged (specially at great depths) produce little hydroacoustic noise. Submarines, as

surface ships, can operate two types of sonars: hull mounted sonars, and towed arrays. Hull

mounted sonars are very sensitive to self noise generated by the submarine. This self noise can

reach the hydrophones both through the water (using direct paths or reflecting off the surface and

bottom) and through the hull itself. Towed arrays are by far the best means of receiving sound,

both because they are not as influenced by the self noise and because their greater distance

between individual hydrophones allows better beam forming. Unfortunately, towed arrays are

quite expensive and cumbersome to operate, require very low speeds of the towing vessel, and

require estimating the exact position of each hydrophone (Jesus, Felisberto et al. 1994; Jesus,

Felisberto et al. 1996).

Surface ships are the worse platforms for passive sonar operation, specially when using hull-

mounted hydrophones. As the hull is constantly rocking in the waves, and is by nature near the

surface, hull-mounted hydrophones will suffer badly from noise induced by water movement and

cavitation near them. Furthermore, surface ships tend to be much noisier than any submarine.

However, in the early stages of our project, we did perform some passive sonar recordings with

hull-mounted hydrophones (using the French designed “Diodon” system that has since been de-

activated by the Portuguese Navy), and obtained encouraging results (Lobo 1995).

After reception, the sound usually goes through a signal processing pipeline that will perform

beam forming, to obtain directional readings, noise cancellation, and feature extraction. It can

then be presented to sonar operators in a number of forms. The one that is sill most reliable is as

sound. Passive sonar operators go through a lot of training to be able to identify different ships.

Ship noise and target identification 195

The quality of their identifications depends critically on their skill, experience, and state of mind.

It can be very difficult do distinguish between hundreds of very similar sounds, specially under

the stressful conditions under which they must operate. It is therefore remarkable how a good

sonar operator can accurately identify targets, even with low signal to noise ratios. Training

manuals and recordings for these operators are highly classified, but exist in almost any navy,

and contain a number of useful tricks and decision charts to help them. The sound can also be

represented graphically on screens or paper. The most common technique is to use spectrograms,

known in the submarine community as Lofargrams. These are simply successive spectra of the

received signal with some sort of colour coding. As time progresses, any tonal noise will give

rise to identifiable lines on the spectrogram. Changes in these lines usually correspond do

changes in their Doppler distortion, thus revealing the closest point of approach to the target.

Although highly classified, there is evidence that automatic identification systems are used by

major navies, and it is suspected that some use neural networks, similar to those used in this

thesis.

1.5 – Previous work in this area

As mentioned before, the identification of underwater noise sources has been studied for a long

time. After the Second World War and with the advent of the “Cold War”, it became a very

intensively researched subject. It also became a very sensitive one, and thus highly classified.

Even so, some publicly available papers have appeared dealing with this subject, and we shall

consider them here. We shall start by reviewing the research done on neural networks for sonar

processing, since it is closely related to the work we developed. We shall then briefly see other

approaches. A lot of research has been done on signal processing techniques for sonar

processing, but since it is not our main concern, we will just mention some of it.

1.5.1 - Neural Networks for Sonar Signal Classification

Over the last few years, and despite a period during which anti-submarine warfare no longer

seemed to be the main priority for most navies, quite a few papers have been presented where

neural networks have been used to classify sonar data. Although many of them do not deal with

passive sonar, which is our main interest, we will nevertheless mention them because they do

provide relevant contributions.

196 Part III, Chapter 1

When Rumelhart, Hinton and Williams (Rumelhart, Hinton et al. 1986) re-discovered the

Backpropation algorithm for training networks (it had been described 12 years earlier by Paul

Werbos (Werbos 1974)), the USA Department of Defense took a great interest in neural

networks, and DARPA sponsored quite a few projects in the area of neural networks. Due to the

fact that the “Cold War” was reaching a peak with President Regan’s push for SDI (Strategic

Defense Initiative, also known as “star wars”), most of the research effort was highly classified.

This is why in the 1988 DARPA study report (DARPA 1988), the use of neural networks for

sonar signal classification is mentioned, but not described in any detail.

The first paper describing the use of neural networks for sonar classification was published by

Terrance Sejnowski in 1988 (Sejnowski and Gorman 1988). In that paper a system to separate

cylinders (supposed to be mines) from rocks using an active sonar was described. The simple

FFT coefficients of the sonar echoes were used as features for a Backpropagation network with

60 input neurons, 25 hidden layer neurons, and two output neurons. The error rate was a

remarkably low 0.2%, even though human operators could do no better then 9%. These

impressive results sparked a lot of interest in the field.

In the same year, a South African team (which uses submarines and sonars exactly equal to those

in use in the Portuguese Navy) published a paper (Lourens) with a model for describing the

cavitation around the propeller, attempted to model the gearbox, and did some classification

based on AR models. Although at the time a fully automatic classification was still beyond the

foreseeable horizon, the same team went on to produce some very interesting classifiers of

passive acoustic signals (Lourens), that have, as ours, been used on real sonar data.

In 1990, several events led the end of the “Cold War”. With the threat of deep sea warfare largely

gone, the USA DoD lost most of its interest in classification of sonar data, which had several

implications: on one hand, research grants for this area were substantially reduced, but on the

other, the security clearance for research was lowered, leading to a large increase in published

works, and to the use of the developed technology in different areas (such as fish school

classification, Autonomous Underwater Vehicle (AUV) navigation, ship traffic monitoring, etc).

It is ironical, although very fortunate, that when technology was finally getting ready to meet the

challenge, the main motivation disappeared. The USA DoD did however maintain an interest in

the area, and recently it regained more importance, especially for identifying potential targets in

coastal environments. As for smaller navies, such as the Portuguese, their interest never

Ship noise and target identification 197

diminished, for coastal warfare (also known as brown water warfare) was always their prime

mission.

In 1991, the “IEEE Conference on Neural Networks for Ocean Engineering” was held in

Washington DC. There was one session dedicated only to “Classification of Acoustic Signals”,

where several relevant papers were presented, exploring most of the then popular neural network

paradigms, such as Hopfield Networks and BAM (Van-Houtte, Deegan et al. 1991),

Backpropagation (Casselman, Freeman et al. 1991; Russo 1991), Linear Vector Quantization and

Radial Basis Functions (Ghosh, Chakravarthy et al. 1991). Some papers also presented a

comprehensive comparison of different statistical and neural network based approaches (Pridham

and Hamilton 1991) (Solinsky and Nash 1991). While some authors managed to have very low

error rates on specific data sets (7% in (Russo 1991), down to 0% in (Pridham and Hamilton

1991)), the more realistic and general evaluation of (Solinsky and Nash 1991) showed error rates

between 15% and 39%. Virtually all authors used the FFT coefficients as features (never more

then 180), with some notable exceptions where wavelet coefficients where used (Ghosh,

Chakravarthy et al. 1991). While most papers dealt with basically stationary signals (DARPA

standard dataset 1), one ventured to classify transient signals (DARPA STDS-Standard Transient

Data Set) (Casselman, Freeman et al. 1991), but still using FFT coefficients.

The DARPA standard dataset 1 was a collection of very different sounds. There were 6 different

classes, two of them being short non-stationary signals, the other 4 being clear tonal sounds.

Depending on the preprocessing, various feature vectors could be obtained, but (Ghosh,

Chakravarthy et al. 1991), for example, obtained 42 training patterns and 179 test patterns, not

evenly distributed amongst the classes. In this thesis, we do not compare our results with the

DARPA sets because the data is too uneven to obtain what we feel is an honest evaluation of the

classifier algorithm.

In the same year (Burton 1991) published a very interesting paper where he classified transient

sonar signals (ice-breaking) with a vector quantizer (not Kohonen’s LVQ, but the one described

in (Linde, Buzo et al. 1980)). He used 15 point cepstra (equivalent to 6 ms) with a 83% overlap,

a rectangular windowing function (thus no window), and 64 codebooks. The data set consisted of

110 patterns evenly distributed amongst 7 classes, and using the leave-one-out technique

(Breiman, Friedman et al. 1984) he obtained a 29% error rate.

198 Part III, Chapter 1

In 1994, a paper even more similar to our work was published (Hemminger and Pao 1994) (only

recently have we found out that it was published the same month (Lobo 1995) was submitted).

He used 64 point Welsh periodograms, upon which a Vector-Quantizing type of clustering

algorithm was applied to create prototypes, followed by a supervised single layer network

(named Functional Link Net – FLN (Pao 1989)). The main contribution, however, was the use of

the Hausdorff Metric (Essex and M.A.H. 1990), which proved to be a very convenient way to

compare spectra. The error rate was an amazingly low 4%, with a relatively low computational

load thanks to the simple structure of the neural network.

The dependence of time in the acoustic signals (in this case whale songs) was addressed without

much success with Time Delay Neural Networks (TDNN) by (Waibel, Hanazawa et al. 1989) but

with very good results using a biologically inspired “habituation” pre-processor in (Stiles and

Ghosh 1995).

In the 1995 International Conference on Neural Networks (ICNN95), (Fujii 1995) presented a

general overview of the use of Neural Networks in Ocean Engineering, in which target

identification is mentioned, even though the main focus is to help the guidance system of

Autonomous Underwater Vehicles (AUV).

1.5.2 - Other related work

There has been, of course, a lot of work in signal processing, classical statistics and other

branches of artificial intelligence, that attempt to classify underwater acoustical signals, or to

give significant contributions towards it. A good, if general, overview of signal processing

techniques applied to sonar signal processing can be found in (Dwyer 1996), containing 76

references to papers published at the “IEEE/MTS Oceans” conferences during first half of the

90’s, all of them concerning classification and detection of sonar signals.

Various papers have shown that ARMA models, or some variation of them, can provide

satisfactory results in some cases. (Huang, Zhao et al. 1997) uses a 20-order pole model,

compressing the results to a 6 dimensional vector with a Karhunen-Loève transform.

Several techniques have been proposed to extract more and clearer information from the standard

spectrograms, or as they are usually called Lofargrams or simply “lofars” (Low Frequency

Spectrograms). (Jauffret and Bouchet 1996) proposed a new line extraction algorithm for single

Ship noise and target identification 199

tonal lofargrams (or at least single dominant), while (Oliveira and Barroso 1999) addresses the

multi-component case.

It has been shown (Tesei, Regazzoni et al. 1994; Lyons, Newton et al. 1995) that Higher Order

Spectra (HOS) can significant ly improve the characterization of the acoustic signature, when

compared to the standard Fourier Spectrum.

The importance of a correct characterization of background noise in designing an optimal

Generalized Likelihood Ratio Test (GLRT) has also been shown by (Messer 1994).

An information theory approach, using entropy and mutual information has also been used with

promising results (Ren and Willis 1995; Broadhead, Pflug et al. 1996; Quazi 1996).

Wavelets have been used to characterize sonar signals with good results (Ho, Chan et al. 1996),

especially when non-stationary phenomena are present.

Various methods have been suggested for breaking up the raw signals into more meaningful

features, in particular, separating broadband from narrowband effects can be very useful. Some

approaches use median filters to accomplish this task, while others develop optimal filters that

use not only the raw signal, but information from the beamforming sub-system (Mehta, Fay et al.

1996).

An optimized algorithm for Target Motion Analysis (TMA), that takes into account multipath

and Doppler effects was presented by (Blanc-Benon and Bienvenu 1995).

There have also been several contributions that address not only sonar based classification, but

the more general task of classification based on all possible sources. (Musman, Chang et al.

1990) for example, devised a real time control strategy for gathering evidence for a Bayesian

Belief Network, that considerably reduces the amount of computation necessary for a good

identification.

The vast amount of data necessary to train a classifier, and in many cases to assist it during

classification, have led to the development of specific database techniques. The British Defense

200 Part III, Chapter 1

Research Establishment (DREA) has been developing a very comprehensive database (Ebbeson,

Ozard et al. 1997), as has the Sweedish FOA (Bergsten, Schubert et al. 1997).

Ship noise and target identification 201

202 Part III, Chapter 1

 203

PART III

CHAPTER 2

The software used

2.1 – Introduction

During the course of this PhD program, a lot of software was written, tested, and used. Some of it

was just circumstantial and will not me mentioned in this thesis, but some of it forms a useful set

of tools that were very important for our work and may be used by other researchers.

We will first discuss the software written in C/C++ that forms a user friendly program to be used

both by researchers and end users, and then series of Matlab routines, that are more appropriate

for research only. We conclude with a brief reference to other software that was used.

204 Part III, Chapter 2

2.2 – The DSOM program

When the present research project started, there was a possibility that it would be used by the

Portuguese Navy in its submarine squadron. It was therefore important that all the software used

could be incorporated in an operational program (i.e. a program that would be used in everyday

operations aboard the submarine). This precluded the use of some very fine public domain

software that is distributed under the GNU license, and since we did not yet have a generous

budget, we could not use some also very good commercial libraries. We decided to write our own

code, from scratch in C/C++, for the following reasons:

a) We could have complete control over it. We may incorporate any part of it into whatever

software we choose to develop.

b) We would have a better understanding of various problems. Writing our own code from

scratch gives us first hand experience of all aspects of the implemented algorithms. This

not only weeds out potential bugs in 3rd party software10, but gives added understanding

and sensitivity to the problems associated with the implemented techniques.

c) Introducing new techniques would be easier. We expected to introduce considerable

changes to existing techniques, and having written all the code makes the introduction of

these techniques easier.

d) We could make a user- friendly program, tailored to the needs of the submarine squadron

personnel. It was important that even during the development phase of the project, so as

to have full support and feedback from the end users, that the program be very easy to

use. There are also certain tools and modes of operation with which the personnel is

familiar that should be incorporated. It would be very difficult to make such a front end

for very disparate software packages.

e) We like to code11. Being a PhD program in “Informatics Engineering”, we feel that is

important to show some proficiency in the most basic skills of computer science:

programming.

10 Even very good software packages, with excellent reputations have bugs. Matlab’s signal

processing toolbox, for example incorrectly implements the well known Hamming filter.
11 There is an interesting book, named “Born to code in C” Schildt, H. (1989). Born to Code in C,

McGraw Hill., that has a nice explanation of this phenomenon in its introduction.

The software used 205

Naturally, writing our own software from scratch has the big disadvantage of being extremely

time-consuming, and prone to our own bugs.

The next choice that had to be made was that of a hardware and software platform. Writing for a

generic UNIX environment is the preferred choice for many research projects, since it can easily

be ported to a very wide variety of machines, including very powerful mainframes and

supercomputers. Unix is also a very stable system well known to most researchers, and a large

selection of tested routines and software packages are available. However, UNIX presented a

series of disadvantages for this particular project:

a) The use of UNIX is not widespread amongst most end users: there are not many

available machines, and there is little expertise on their operation and maintenance. In

the Portuguese navy, that was meant to be the main user of the system, there are quite a

few UNIX systems. These are used mainly as dedicated machines on shore based units

and large ships, for control and communication systems. As dedicated systems, they

would not be available for use with our software, and are not available on submarines

anyway. Some years ago, many PC laptops, running a version of UNIX where

distributed to patrol craft used in fisheries control, as part of a monitoring project

sponsored by the governments fisheries department. Even though the software was

pretty good, even simple maintenance tasks were a nightmare for the crews that had to

operate them, which led to a relative disinterest and lack of use. Since the crew

members are far more proficient in using MS-Windows12 based machines, the next

versions of the system were developed for this operating system, and have been used

regularly. The lesson to be learned is that either the system has a professional support

and maintenance team and is used as a black box by the end users, or it has to be

developed in a system the end users are familiar with.

12 We choose to use the rather old term MS-Windows, standing for Microsoft Windows, to refer

to the family of operating systems produced by Microsoft that have the ir roots in the first graphic

interface produced by the company (MS-Windows), namely MS-Windows 3.11, Windows 95,

Windows 98, Windows ME, Windows NT, and Windows 2000.

206 Part III, Chapter 2

b) The graphical interfaces are not very well standardized, and developing software for

them can be quite troublesome. Even though there is widespread support for the X-

Windows interface, slightly different versions and implementations are used. Thus

porting to other platforms is seldom trouble free. Although there are quite a few good

toolkits for developing interfaces for X-Windows, the equivalent tools for the MS-

Windows environments are generally easier to use. Although too late to have been used

in this project, an interesting convergence of the tools available for both environments

is the Kylix system by Borland. This Pascal based development system allows, to a

certain extent, the development of programs with graphical interfaces that run both

under UNIX with X-Windows, and MS-Windows, and is very easy to use since it is

based on the popular and very intuitive Delphi system.

On the other hand there were a few good reasons for deve loping the software in a MS-Windows

environment, and in particular for Windows 9x (Windows 95 and Windows 98):

a) Widespread availability of machines and expertise. All ships in the Portuguese Navy have

some PC running MS-Windows aboard. In most cases, these PCs are available to be used,

as a secondary mission, to run our software. Thus, the critical problem of getting money

for machines to test and prove our system could be avoided. Moreover, MS-Windows

based machines are available in large quantities at the Naval Academy, at the New

University of Lisbon, Portugal, or any other school.

b) Easy to use development tools. There are a number of very good development systems

available for MS-Windows, and there is widespread support for sound-card programming

(which would be a requirement).

The final program proved to be quite reliable, and could perform classification in real time even

on some early Pentium PCs, running the original Pentium at 75 MHz clock speed. Due to the fact

that it runs on inexpensive and widely available computers, and can use any TCP/IP networked

computers to form a PVM cluster, we feel it can have a wide application both in educational

institutions (where computer classrooms are available), and in commercial enterprises (where the

networked office computers or points of sale are networked and largely unused during nights).

The software used 207

2.2.1 - Overview of DSOM

The program that was developed, was called DSOM for Distributed Self Organizing Map. It had

the following requirements, that where all met:

a) Record data from the sound card. We found that, although there are differences between

sound cards, most of them had quite reliable linear transfer functions in the frequency

ranges that we would be using. Thus, the program should use the MS-Windows

Multimedia Interface to control the sound card and read data directly from it.

b) Show a spectrogram of the sound being recorded in gray scale. This was required to give

the end users an interface they were familiar with. With it, we were able to check that the

recording was being done correctly, and a sliding ruler was provided to identify the exact

frequency of any feature that turned up on the spectrogram.

c) Read and write data from sound files (in the Microsoft .WAV format), and from feature

vector files in the format used by Kohonen’s SOMPAK (Kohonen, Hynninen et al. 1995).

d) Read and write SOM maps in the format used by Kohonen’s SOMPAK (Kohonen,

Hynninen et al. 1995).

e) Train SOMs either on a single computer, or over a distributed cluster of networked

computers. For reasons explained in part I, we chose to use PVM as the distributed

platform. The possibility of training a SOM over various computers made training very

large SOMs a possibility. Under operational conditions, this could mean using all the

vessel’s computers to re-train a network during missions, and ashore it meant being able

to train the large SOMs in reasonable time.

f) Show the user a color coded 2-dimensional SOM, highlighting the currently selected

winner neuron.

g) Generate U-Matrices of the SOM maps.

h) Prune a SOM using Q-Sets.

i) Be as simple as possible to use by non-trained personnel in operational conditions. This

required that with only a few keystrokes, a end user should have a meaningful output

from the program.

j) Be usable for research purposes. This require that various aspects of the software be as

customizable as possible, to accommodate experimentation with different techniques. It

also required that the core routines, including those involving the PVM interface, be well

208 Part III, Chapter 2

documented and written in generic C/C++ so that they could easily be ported to another

operating system, namely Linux.

It was decided to use the data format standardized by SOMPAK (Kohonen, Hynninen et al.

1995), for both the data pattern files and the SOM maps. We will refer to this format as “the

Kohonen format”, and detailed explanation of the format is available in the SOMPAK

documentation. Basically all files are text files, where the first lines contains the number of

features (and map characteristics if it is a map), and the next lines contain one pattern each, each

feature separated with a space, and the optional label as the last value. Comment lines are

available, and start with a “#”. We used these comment lines to include information specific to

our implementation, namely the type of distance function to be used. Thus, if we want to use a

non-Euclidean distance, the second line of the file must be a comment with the information as to

which function to use (as we will see later, only Hamming distances are currently available).

The program was written in Borland “C++Builder” a visual development system for MS-

Windows that is very similar to the popular Borland “Delphi”, with which most people involved

Figure 53 - Main window of the DSOM program.

Menu

Bars

SOM map

with color
Blinking

cursor

(winning unit)

Spectrogram

Frequency

slider

Frequency

indicator

Legend

The software used 209

in the project were familiar with, but that uses C++ instead of Pascal as its base language. The

PVM version used was the one developed in the University of Coimbra, that is fully compatible

with the original version for UNIX (at the time we started, the other version wasn’t even

available for MS-Windows).

The task of actually writing and program was almost entirely done by Nuno Bandeira, then in his

last year of undergraduate, as his “final project”13. His merit and very hard work cannot be

overstated, as it demonstrated not only great proficiency in C/C++ and using the sound card

windows API, but also programming and debugging PVM with very little in the way of support

tools. The following year, Raul Moizão coded the generation of U-Matrices and the Q-Set

simplification, adding on his initiative some enhancements to the U-Matrix visualization. A

separate auxiliary program, used to initialize the SOMs and named “Drandinit” was written by

Cadet Almas. The author of this thesis also wrote a few of the routines, but mainly set our

requirements and design guidelines and helped with debugging and testing. The development

process in described, in Portuguese, in the students final reports (Bandeira 1996), (Moizao 1997),

and (Almas 1998).

The main screen of the program can be seen in Figure 53, and appears as soon as the program is

started. The screen is divided into 4 main areas:

a) Top - Menu Bars . The top of the window has the menus which give access to all the

program’s options, including secondary windows. The most used options (creating a

new map, opening a trained map, saving a map, configuring a map, and configuring

the spectrogram) are available also with “fast buttons” under the menu bar. Although

the meaning of each option in the menu bars is self-explaining, we shall discuss them

later.

b) Center-left – SOM visualization. Each unit of the map is represented by a square in

this area. The units that have labels are color coded, according to the legend available

just below. When the program is running in real time classification mode, the winning

neuron is shown by a blinking circle. Left clicking this area will give available

13 In the New University of Lisbon, as in most science and engineering schools in Portuga l,

undergraduate students are required to do what is called a “final project”. This “final project” will

require most of their time during a semester to a year, and is treated like a graduation thesis.

210 Part III, Chapter 2

information on the underlying unit (its label and coordinates), while right clicking

pops up a menu that allows us to re-scale and re-draw the map.

c) Bottom-left – Legend. This area contains the color code legend used in the map.

Right clicking this pops up a menu with legend related tasks, such as gathering

legends from the SOM, changing the color a given label, creating/editing/deleting

labels, and finally loading and saving legend files.

d) Right – Spectrogram. This area shows the spectrogram of the sound being received.

The spectra are gray-scale coded, with white representing the highest intensity. Left

clicking in this area gives the option to start/stop processing the sound from the sound

card, and gives access to a menu with the signal processing options. A sliding ruler is

available, that can be moved with the mouse, and gives the exact frequency value

(shown above) of any area of the spectrogram. As the processing goes on, the

spectrogram slides upward, with the most recent spectra at the bottom.

2.2.2 - Main menu bar

The main menu bar has the following options:

a. File menu (FICHEIROS DE MAPAS)

i. Open (ABRIR) – Opens a SOM stored in Kohonen format.

ii. Save (GRAVAR) – Saves a SOM in Kohonen format.

iii. Save as (GRAVAR COMO) - Saves a SOM in Kohonen format with a

different name.

iv. Close (FECHAR) – Stops using the loaded SOM.

v. Exit (SAIR) – Terminates the program.

b. Actions (ACÇÕES)

i. Distribute (DISTRIBUIR) – Distributes the map amongst a PVM cluster,

sending neurons to other machines. A dialog box will ask how many

machines should be used, and the name of the executable in those

machines (default=”client.exe”)

ii. Recall (RECOLHER) – Recalls neurons from the PVM cluster, ending the

distribution process.

iii. Train (TREINAR) – Pops up a dialog box with the various options for

training the SOM.

The software used 211

c. Windows (JANELAS) – Gives access to windows with other functionalities. At

the moment.

i. Patterns (AMOSTRAS) – Pops up a window that allows processing of data

files with patterns or with recorded sounds. This is intended for off- line

data processing.

ii. U-matrices (U-MAT) – Pops up a window that allows the generation and

visualization of different U-Matrices.

In the version used for research purposes, a fourth menu entry was added, named “ABOUT”, that

has information about the authors and version numbers.

2.2.3 - Pattern Window

This window allows off- line processing of both data pattern files and sound files in Microsoft’s

.WAV format.

The top menu bar gives access to the various options, the middle edit box indicates which data

file is being used, and the bottom part shows the labels of each individual pattern.

In the label window, one may select one or a group of labels. Right clicking on the labels pops up

menu that allows:

a) Editing the label.

b) Visualizing the spectra of that

label.

c) Classifying that pattern on the

SOM (also Ctrl-C).

d) Deleting that pattern.

The FILE menu (Ficheiros), allows for the traditional file operations with data files in Kohonen

format, namely Open, Save, Save As, and Close

The EDIT menu allows editing the selected labels (as can be done by right clicking them), and

allows 2 options to work with sound files:

Figure 54 - The main Pattern Window

212 Part III, Chapter 2

a) Inserting a WAV file. The WAV file will be read and processed according to the selected

options, to produce a data pattern file in Kohonen format.

b) Recording a WAV file. This will produce a WAV file with the sound recoded from the

sound card. It is possible to hear the sound before or after saving it to disk.

The MAP (Mapa) menu has the following options:

a) Train a SOM. This brings up the standard training

dialog box.

b) Calibrate. This will label the SOM according to the

labels of a given set of patterns. For each unit of the

SOM, the labels of the patterns that have it as the

winner unit are recorded, and the label given to the

unit is the most occurring label amongst these.

c) Classify. This will classify a single pattern (as can

be done by right clicking the label).

d) Classify all. This will classify all selected patterns, and if they have labels, it will

calculate the error rate (i.e., the percentage of cases when the patterns label was different

from its winning unit label).

Figure 55 - Spectra visualization
from the Pattern Window

The software used 213

2.2.4 - Training dialog box

The training dialog box is

accessible both at the main

window and at the pattern

window. It is assumed that the

SOM training will always occur

in two phases, described in

(Kohonen 2001), and

parameters for each of the

phases can be introduced, as can

be seen in Figure 56.

The top area defines the default

label color to be assigned to the

units. The two areas concerning the 1st and 2nd phase of the training process contain the same

information.

The first dialog box defines the number of iterations (ITERAÇÕES). It must be noted that,

contrary to Kohonen’s convention, where an iteration is considered to be the presentation of a

single pattern, each of our iterations is a run through the entire training set. Accordingly, the

learning parameters are updated only when a complete run through these patterns is performed.

As a consequence, the number of iterations used by DSOM will always be much smaller than the

equivalent number of iterations in SOMPAK.

The distance functions currently available (FUNÇÃO DE DISTÂNCIA) are the Euclidean

distance and the Hamming distance. When using the Hamming distance, the random bit update

rule is used, as described in part II of this thesis.

Although there is a dialog box to change the rate of change of the alpha parameter (Kohonen

2001) (FUNÇÃO DE VARIAÇÃO DO ALFA), only a linear variation is currently possible.

Figure 56 - Training dialog box

214 Part III, Chapter 2

The two neighborhood functions available (FUNÇÃO DE VIZINHANÇA) are “Square”

(equivalent to Kohonen’s bubble), and “BinSquare”, which is similar but should be used for

binary maps.

Finally, two dialog boxes allow the introduction of the initial learning rate (alpha), and

neighborhood radius. It must also be noted that this implementation will force the radius down to

0, so that in the last iteration only the winning neuron is updated. This feature will compensate

the annoying outward boundary distortions that the traditional SOM has. Thus, even the units on

the extremes of the map will be correctly centered amongst the patterns that have them as

winners.

2.2.5 – Differences between DSOM and SOMPAK 3.11

Summarizing what has already been discussed, the main differences between DSOM and

SOMPAK 3.11 are (besides DSOM’s extra features):

a) The way iterations are counted. SOMPAK considers one iteration to be the

processing of a single pattern, while DSOM considers the processing of the

entire training set to be an iteration. Thus, the parameters are updated more

often in the original SOMPAK

b) The final radius of the neighborhood. SOMPAK makes the neighborhood

radius converge to 1, i.e., even in the last iteration some neighbors of the best

matching unit will be updated. DSOM makes the neighborhood converge to

zero, i.e., in the last iterations, only the best matching unit will be updated. This

will reduce the border effects that can be observed in the original SOMPAK.

c) The comments in the datafiles. DSOM uses the comment lines of the datafiles

to encapsulate information about it’s extra features, such as different similarity

measures. Since these lines are only comments, they will be ignored by

SOMPAK.

2.3 – MATLAB routines

MATLAB, a shortname for MATrix LABoratory, is one of the most used scientific computing

programs. It started as an interpreter that used the LINPAK library of matrix manipulation

The software used 215

routines, but has since grown into a full fledged development system. MATLAB is produced by

Mathworks Inc (www.mathworks.com), and is available for UNIX, MS-Windows, and

Macintosh (though the Macintosh version has been discontinued). The latest version, at the

moment, is version 6.1, that for internal reasons is also known as Release 12. The current version

includes, amongst other things, a compiler (to avoid run-time interpretation of the code), a

context sensitive editor, a visual debugger with an object inspector, and an excellent Graphic

User Interface (GUI). Since its start MATLAB has boasted very good data graphics, and a large

variety of MATLAB toolboxes are available from Mathworks for specific areas, such as the

Neural Network toolbox, the Financial Toolbox, the Fuzzy Set Toolbox, etc. There are also many

toolboxes written in MATLAB by researchers, that are freely available. Of these, we must

mention for SOM related tasks the SOM Toolbox for Matlab available

“http://www.cis.hut.fi/projects/somtoolbox/links”, that was developed by Kohonen’s group, and

contains links to many other Matlab packages. For classification tasks, we would recommend

NETLAB, available at www.ncrg.aston.ac.uk/netlab, that contains most of the code necessary to

solve the problems proposed by (Bishop 1995), and it’s companion book (Nabney 2001) that

contains additional exercises and examples.

We started to use MATLAB when the requirement to build an operational program disappeared

(due to uncertainty as to the future of the submarine squadron). The main reasons to use

MATLAB where:

a) Prototyping is much faster using MATLAB than using C. The language is more powerful

(since it is much more high- level), and the interpreter allows a interactive testing and

design of code. In fact, a lot of useful processing is done interactively without ever

writing a program.

b) The graphical outputs of MATLAB are very good and easy to use.

c) It has a huge amount of toolboxes and routines readily available.

d) Code developed in MATLAB can be incorporated in stand-alone C programs, using the

MATLAB compiler and run-time library. While the code may not be as fast as pure C

code, it is still amazingly fast, specially with matrix manipulations, due to very stable and

well developed libraries.

e) It is easy to share MATLAB programs with other researchers. MATLAB does not require

compiling, and when the code is properly written, it can safely and easily be used with

little or no knowledge of its inner workings.

216 Part III, Chapter 2

A lot of our software was originally written for version 5, but runs perfectly on the latest release.

Some minor (but very annoying and tiresome) adjustments had to be made to some routines,

since the version 6 Delauny triangulation does not reorder the triangles as version 5 did.

All the routines developed by us contain help information. This includes a one line description of

the purpose of the routine, a specification of input and output parameters, comments on its

internal workings when necessary, and always version and author information for configuration

management. Some of the MATLAB batch files we used are also provided as examples.

The complete listing of the functions is given in Appendix E, and we will only list the filenames

and purpose of each routine, grouped by purpose.

Q-set related routines

qs_mat_build.m Build the positive only Q-sets given a set of
candidate prototypes and a set of training patterns.
The Q-sets are given as a Boolean matrix.

qs_select_heuristic.m Select prototypes using the positive-only heuristic
described in chapter 2 of part II, given the positive
only q-sets. This function produces only the
numbers (or indexes) of the prototypes to select.

qsgc_mat_build.m Build the general case Q-sets given a set of
candidate prototypes and a set of training patterns.
The Q-sets are given as two matrices. The first
contains the indexes of the prototypes sorted by
proximity, while the second is a Boolean matrix
indicating whether they have the same class or not.

g2p.m Transform general case Q-sets to positive-only Q-
sets.

qs_select.m Select the minimum set of prototypes for positive-
only Q-sets, using branch and bound.

Prototype minimization routines

cnn.m Select prototypes using the CNN rule.
rnn.m Select prototypes using the RNN rule, given a set of

prototypes selected by the CNN rule.

The software used 217

Graphic routines

voronoi_boundary.m Plot the Voronoi boundary between classes, given the
2-dimensional prototypes of those classes .

class_plot.m Plot a set of 2-dimensional patterns, using different
markers for each class.

Classification and validation routines

knn.m Classify a pattern using the k-nearest neighbor rule.
The routine also produces a vector with the estimated
probabilities of that pattern belonging to each class

knn_mat.m Classify a set of patterns, using the k-nearest neighbor
rule

confusionMatrix.m Calculate the confusion matrix, given the true classes
and the assigned ones.

selfClassify.m Classify each pattern in a given dataset using all other
patterns as prototypes, with the nearest neighbor rule

splitData.m Produce a matrix to split a given dataset into training
and test sets for cross-validation.

buildTrainTestSet.m Build training and test sets, given a matrix produced by
“splitdata.m”.

Miscellaneous

read_koh.m Read a file in Kohonen’s format (Kohonen, Hynninen et
al. 1995).

write_koh.m Write to a file in Kohonen’s format (Kohonen, Hynninen
et al. 1995).

remove_col.m Remove a column from a matrix.
generate_2D_uniform_data.m Generate d-dimensional data with uniform distribution in

a given rectangle.
generate_double_f.m Generate data for the double F problem (Hart 1968).
generate_straight.m Generate data for the straight line problem described in

chapter 5 of part II.
spectra_wavfile.m Calculate spectra of data contained in a Microsoft WAV

format audio file, using windowing and averaging.
mHamming.m Correctly implemented Hamming window
hausdorff.m Calculate the Hausdorff distance between two sets of

points (or spectra)
findPrimes.m Find prime implicants, using Quine-McClusky’s method

218 Part III, Chapter 2

2.4 - Other software

Besides the abovementioned software that we ourselves developed, we used quite a lot of

software that is provided for free use amongst researchers. We will now mention the 2 software

packages that were more important for this thesis, and that will certainly be useful for other

researchers.

2.4.1 - SOMPAK

The SOMPAK has been developed at Helsinki University of Technology by Kohonen’s team at

the Neural Networks Research Center. The most popular version is version 3.1, available at

http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml , that has fairly good

documentation (Kohonen, Hynninen et al. 1995). It consists of a series of programs that run in

command line mode making it very easy to create batch files to perform a given processing

sequence. The software is written in C, and compiled versions are available for MS-Windows

based environments and for Linux. Since the code uses very standard C with very few system

calls, it is easy to compile under any other system.

The original documentation provides a good tutorial on how to use the system, but additional

information is available at SOMPAK unofficial site (http://www.cis.hut.fi/~hynde/lvq),

maintained by Jussi Hynninen, that includes information on how to modify SOMPAK, and recent

developments. An additional work-through tutorial with a simple example is available in (Lobo

1998).

Included in the package, are the following programs:

randinit – Initializes a SOM.

vsom – Trains a SOM.

qerror – Calculates the quantization error of a map for a given set of patterns.

vcal – Calibrates a SOM, assigning labels to the units, based on a file of patterns.

visual – Generates a file with the SOM mapping coordinates of each pattern of a data

file.

Sammon – Generates a postscript file with the Sammon mapping of the patterns.

planes – generates a postscript file with the gray-scale coded weights of one of the

features of the map.

The software used 219

umat – Generates a postscript file with a gray-scale U-Matrix of the SOM.

2.4.2 - RoughSetLab

For feature selection using Rough Set Theory, we used a program called RoughSetLab, that runs

under UNIX. This program started as a front end to the publicly available Rough Set Library

(RSL). The Rough Set Library is a collection of C routines and conventions, to perform various

tasks necessary to apply Rough Set theory. The original RSL was developed by M.Gawry,

M.Modrzejewski, and J.Sienkiewicz, and documented in a Users Manual (Gawrys and

Sienkiewicz 1993) and a research report (Gawrys and Sienkiewicz 1994). It has been

continuously upgraded to reflect recent development in Rough Set theory, but since its main

purpose is to provide researchers with C routines, it does not have a front end for users. Thus, a

few different front ends were developed, including GROBIAN

(http://www.infj.ulst.ac.uk/~cccz23/ grobian/grobian.html), and the RoughSetLab that we used.

RoughSetLab was originally developed as a MSc. Thesis by Frank Muller (Muller 1993), under

the supervision of Prof. Roman Swiniarski. Later other students under the supervision of

Swiniarki made considerable changes. These included re-writing the core functions in C++, and

thus separating it from the RSL library, providing a menu system to assist the users (making its

use almost trivial), and making a X-Windows interface that uses MOTIF. For this thesis we used

the menu driven version.

Rough set lab allows users to:

- Load a discrete information system

- Load discretized data set, and define a discrete information system

- Load a real-valued data set, and produce a discrete information system. To do this, the

number of discretization levels must be given. The program will calculate the various

parameters to perform that discretization.

- Find a relative reduct using heuristic.

- Find all relative reducts, using a complete search.

- Find all relative reducts smaller then a given one (using branch-and-bound)

- Find the core.

The Roughsetlab software is kept by Roman Swiniarski at San Diego State University (SDSU).

 220

 221

PART III

CHAPTER 3

The Submarine data

The author of this thesis has been cooperating with the Portuguese Navies Submarine Squadron

on ship noise recognition, since 1990. The project started with the construction of a

microcontroller based acquisition system, and proceeded with the first digital recordings

performed by the submarine squadron personnel and the author. The submarine squadron had

been doing analog recordings on tape for a long time, and some of those recordings were

cataloged and digitized. Thus, a digital database with “hydrophonic effects” (the technical term

used to refer to underwater sound) started to be constructed, and is now kept for military

purposes. Most of the data, and all the target and environment information associated with each

222 Part III, Chapter 3

recording are classified. However, we were allowed to use some of the recordings for research

purposes, provided we kept some basic safety precautions.

All the recordings were performed by the submarine’s passive sonar equipment. Some of the data

was recorded by high quality tape recorders and then digitized ashore, while other were digitized

aboard with PCs. Unfortunately, the exact frequency bands used, together with other important

details cannot be discussed in this thesis.

3.1 - First experiments

The first research done with those recordings was the base for a MSc. thesis (Lobo 1995), and a

conference paper (Lobo and Moura-Pires 1995), where the experiments are described in detail.

The data then consisted of 10 recordings of 6 different ships (two of the ships had 3 separate

recordings). Power spectra of small portions of these recordings where calculated, producing a

total of 210 patterns with 2048 features each. The main reason for using so many features was

that we knew from prior knowledge that the frequency resolution attained with that many

features was necessary, and we didn’t know which frequencies could be discarded. Another

reason was that we were trying to harness the ease of use of a SOM, even with many features, to

compensate a lack of feature extraction techniques that required deep expert knowledge in real

ship acoustic signatures, that we did not have.

So as to validate the results, we used a class based leave-one-out technique (Breiman, Friedman

et al. 1984), and obtained 21 training/test sets, each with 200 training patterns, and 10 test

patterns, one from each of the recordings. We then repeated the processing steps for each of these

training/test sets.

The submarine data 223

The patterns were used to train a rectangular SOM with 7x14 units, using SOMPAK. At the time,

we had to change SOMPAK’s input/output routines slightly to be able to use so many features,

but the core routines were untouched. For the first (unfolding) phase, we used α=0.2, r=12, and

1000 steps (aprox. 5 iterations through the training set), taking approximately 6 minutes on a

DecStation 5000. For the second phase, we used α=0.05, r=3, and 10000 steps (aprox. 50

iterations through the training set), taking approximately 1 hour on the same machines.

We then labeled the SOMs with the training set, and attempted to classify the test set with that

SOM. On average, the classification error was 8% if we considered each singular recording to be

a different target, and only 2% if we considered each ship (or torpedo) to be a class. The SOMs

obtained were almost identical for the 21 experiments, save for symmetries around the axes

which are irrelevant for topological ordering and unavoidable due to way a SOM is formed. A

typical SOM produced with this data is presented in Figure 57.

The main conclusion of these preliminary experiments were that:

a) – The submarine database can be used to train classifiers that successfully identify targets.

b) – SOMs could be used as classifiers for this task.

3.2 – Use of DSOM and distributed processing

One of the problems of the first experiments was that they were performed off- line, with tools

that although efficient were not user friendly. Moreover, the time necessary to train even a

relatively small map made it impractical to use the system for very large maps that would be

K-Map (M84A_2)

0
1
2
3
4
5
6

0 1 2 3 4 5 6 7 8 9 10111213

Alfa (n1)

Foxtrot (n10)

Bravo (n2)

Bravo (n3)

Bravo (n4)

Charlie (n5)

Charlie (n6)

Charlie (n7)

Delta (n8)

Echo (n9)

Figure 57 - Example of a SOM obtained with the first experiments with the submarine data.
Each name (alpha to echo) corresponds to a different ship or class of ships. Echo and Foxtrot are

two very similar types of torpedoes.

224 Part III, Chapter 3

necessary for operational use. Thus the DSOM program, described earlier, was developed, to

provide a real-time, user-friendly environment, with the possibility of training large maps over

networked computers. The performance of the distributed version of SOM has been discussed in

chapter 3 of Part II, and being distributed does not have any impact on classification accuracy, so

we will discuss the advantages of distributed processing no more, event though it was used in

many experiments. The real-time and user- friendly features of the program will also have no

impact on the classification accuracy, and these feature by themselves have also been seen

earlier.

Thus, and although the tools were crucial, we shall concentrate only on the classification results

obtained.

3.3 – Broadband vs. Tonal identification

As was seen in chapter 1, the noise generated by a ship moving in the ocean can be divided into

broadband components, and tonal components, that have quite different causes and behaviors.

The way we were using our SOMs, they were sensitive mainly to the broadband noise. This

happens because the broadband signal will, by its own nature, span a large number of bins,

contributing heavily for the distance measure (which was Euclidean). On the other hand, the

tonal components will have an impact on very few features, ideally only one, and thus contribute

little to the distance measure.

We decided to use feature extraction techniques to separate the two components, and design

separate SOM-based classifiers for each set of features. We then compared the performance of

each of these classifiers. When considering tonal noise, we did not know whether the frequency

at which the tonal noise occurred was the best feature, or whether the actual amplitude would

also be useful, so we tried both approaches.

To compare these techniques, we selected 5 ships available in the database, and extracted 33

patterns for each ship, producing a total of 165 patterns. Each pattern was the 2048 bin power

spectrum calculated over a certain time period, using a 4 segment Welsh periodograms with 50%

overlap, and a Hamming Window, as described in chapter 2 of part I. So as to be able to validate

the results, we divided the available data into 11 training/test sets, so that in each of the test sets

The submarine data 225

we had 3 different patterns of each class. Thus, each training set had a total of 150 patterns (30 of

each class), and each test set had a total of 15 patterns (3 of each class).

3.3.1 - Extraction of the tonal signal

The general idea of extracting the tonal signal, is to estimate the broadband signal for each point

in frequency, based on the frequency neighborhood, and then set a threshold above which we

consider that value as an outlier, and thus part of the tonal signal.

The first step to extract the tonal signal was to obtain the reference broadband signal for each

frequency bin. This was done by calculating for each bin, the median power, based on a 64 point

neighborhood around that point. This width of neighborhood was reached by experimentation:

we steadily increased the neighborhood radius, and visually inspected the spectra obtained, until

plausible (smooth yet detailed) broadband spectra were reached.

Assuming that at each point in frequency, the

broadband signal is contaminated with white

Gaussian noise, that our estimate is unbiased, and

that each of the four segments is statistically

independent, the spectral density estimate will

follow Chi-square statistics with 4 degrees of

freedom. Under these conditions, we can impose a

desired confidence level to find outliers, and obtain

the corresponding threshold value (Kay 1988). If we

impose a 99% confidence value, we will obtain a

value of 7dB. Thus, we considered any value more than 7dB above the median as a separate tonal

signal. On average, applying this process to the data yielded 0.81% of non-zero components, and

a visual inspection of this spectra (see Figure 58) showed that they were plausible tonal signals of

the ships.

3.3.2 – Experimental comparisons

From the original dataset we now have 3 datasets with different features:

Title:
bin_pat.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 58 - Binary patterns obtained

226 Part III, Chapter 3

a) Full patterns – The original patterns with 2048 features representing the full spectra. This

dataset was used to train a standard SOM, using Euclidean distances.

b) Amplitude tonal patterns – The original patterns with the broadband signal removed. The

tonal components kept their amplitude values. This dataset was used to train a standard

SOM, using Euclidean distances.

c) Binary tonal components – The tonal components of the spectra, with a value of 1 where

the amplitude was different from zero, and 0 otherwise. This dataset was used to train a

binary SOM, described in Part II.

After training and labeling a SOM, with 10x5 units, for each of the 11 training sets of the 3

datasets, we obtained the results shown in Table 10 and Table 11.

Dataset Error rate in each training set

 0 1 2 3 4 5 6 7 8 9 10 Average σ Min. Max.

Full Patterns 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Amplitudes 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Binary 0,0 2,6 0,0 0,0 1,4 1,1 0,9 0,0 0,7 0,0 0,0 0,6 0,8 0,0 2,6

Table 10- Error rates in the training sets

Dataset Error rate in each test set
 0 1 2 3 4 5 6 7 8 9 10 Average σ Min. Max.

Full Patterns 0,0 0,0 0,0 0,0 6,7 6,7 20,0 6,7 40,0 0,0 0,0 7,3 12,5 0,0 40,0
Amplitudes 13,4 13,4 0,0 6,7 0,0 6,7 0,0 13,4 6,7 0,0 0,0 5,5 5,9 0,0 13,4
Binary 0,0 1,1 6,7 0,0 0,0 0,0 0,0 6,7 6,7 0,0 0,0 1,9 3,1 0,0 6,7

Table 11 - Error rates in the test sets

The submarine data 227

An example of the SOMs obtained is

presented in Figure 59.

From the experimental results, we may take a

few conclusions:

a) The standard deviations are extremely

high. On one hand, this could be

explained by the relatively few number of training/test sets, and the existence of some

“anomalous” error rates for some of these sets. Nevertheless, it does reveal that the results

obtained with this data are very unstable, and should be used with caution.

b) The error rate for the training set dose not reach zero when using the binary features. If

the classes are not separable, this is desired result, since it reveals that the learning

process is not overfitting the data. However, if each pattern is unique, and no 3 patterns

are collinear (which cannot occur with binary data), the data must be separable, since we

have more features (2048) than patterns (165). The error rate could also be non-zero due

to insufficient training, but more training would not lower the error rate. A close look at

the data, revealed that in fact the patterns where not unique. This means that either the

tonal signal of different ships was identical. Due to the many differences in machinery

aboard different ships, this probably means that the method of extracting the tonal signal,

despite being useful at it is, could be improved.

c) The use of the amplitudes of the tonal signal brings no improvement over the use of the

simple binary features. Since processing real-valued features takes considerably more

resources than binary valued features, the use of the amplitudes of the tonal signal was

abandoned.

d) The results obtained with the binary features were significantly better than those obtained

with the full spectra. This shows that the tonal signal is in fact an important feature for the

problem at hand, and should be further explored.

It must be noted that some of work done on classification of ship noise mentioned earlier also use

the tonal signal to perform classification. (Meister 1993), for example, selects the most

significant peaks in the power spectrum, and uses their frequencies and amplitudes as inputs to a

Backpropagation Neural Network. For our objective, this method has two main drawbacks: it

forces us to select a fixed number of frequencies from the spectrum, and it is not a clustering

Figure 59 - A 10x5 unit SOM trained with
binary data. Each shade corresponds to a

different type of ship

228 Part III, Chapter 3

method, which we want so as to do some exploratory analysis of the data. Also, as we showed

experimentally, the presence of a spectral line seems to be a much more reliable feature than its

relative amplitude. This can be explained because the actual amplitude can be strongly distorted

by multipath interference.

3.4 – Clustering on a large dataset

To be of practical use, the system we were designing had to be able to work with very large

databases, containing many ships. To test the system, both methods and available data, under

these circumstances, we selected 2 hours of recordings, containing 33 different ships or types of

ships, From these recordings, we extracted 2342 patterns, containing spectra with 2048 frequency

bins, obtained using Welsh periodograms with 50% overlap and Hamming Windowing. The

actual number of patterns available for each class differed considerably, as would be expected

from a practical situation, where it is easy to record data from friendly ships, but hard to obtain

data from others.

We used the DSOM program to cluster this data with a 30 × 20 unit SOM, and obtained the U-

Matrix shown in Figure 60.

The submarine data 229

A careful inspection of the U-Matrix shows 38 reasonably bounded areas, and thus 38 clusters.

When labeling the SOM, almost all units were winners for a single class of ship, and only a few

had a mixture of classes, and thus a label chosen by majority vote. This let to a 2.4% error rate in

the training set, corresponding to 57 patterns. Given the very large amount of data, and the fact

that its quality (signal to no ise ratio) was sometimes quite bad, the results are remarkably good.

It can also be observed that some classes of ships, namely those that had several recordings, had

more than one cluster, corresponding to different environment conditions during the recording.

This explains why we obtained 38 clusters for only 33 classes.

Three of the corners of the U-Matrix have very well defined borders, and are quite different from

the rest. The upper left corner corresponds to various types of very large merchant vessels

(tankers, bulk carriers), that do indeed have a very distinguishable acoustic signature. The lower

left corner, corresponds to torpedoes, whose signatures had also proved to be very different from

the rest in our first experiments. Finally, the upper right corners contains ships that were recorded

Figure 60 - The U-Matrix obtained after clustering the 33 ship dataset with a SOM.

230 Part III, Chapter 3

under circumstances that are unusual for the recording platform, and thus are mainly due to

considerable changes in the self- induced noise.

3.4.1 – Fusing information from the standard SOM and the binary SOM

We repeated the experiment with the binary version of the SOM, and as would be expected from

the previous section, the error rate in the training set was considerably higher. However, even in

these circumstances, as long as a classifier performs better than random choice, it can be used to

improve the performance of another one (Schurmann 1996; Gama 2000; Alexandre, Campilho et

al. 2001; Demirekler and Altincay 2002). Since we only have two classifiers (standard SOM and

binary SOM), we would only obtain confirmations or ties if we used their final output to vote for

the final decision. Thus, we used the following method:

a) When labeling the SOMs, keep the classes of every training pattern that has a given unit

as its winner in the units label. The label thus ceases to be a simple class, but will be a

vector with the number of patterns of each class. As discussed previously, this can be

taken as an estimate for the probability density at that point.

b) When classifying, use the label given by the standard SOM, if only class is represented in

it. Elsewise (i.e. if the standard SOM is not 100% sure of the class), use the label vectors

of both the standard SOM and the binary SOM to decide on the class.

Using this method, the error rate on the training set went down to 1,9%, thus improving slightly

the results obtained.

Due to the fact that we were already using all the available data, we could not estimate the error

outside the training set. Due to the fact that some classes had very few patterns, a leave-one-out

cross validation, besides being extremely time-consuming, would be very biased. Thus we where

satisfied with the results obtained, and proceeded to perform experiments with a larger, if slightly

less realistic set of recordings.

 231

 233

PART III

CHAPTER 4

Acoustic Tank Data

4.1 - Introduction

The data obtained by the submarine squadron, undoubtedly the one with real practical interest,

are not the best to conduc t experiments on, or to use in a thesis such as this. This happens mainly

due to 3 reasons:

a) Security classification

 The data collected by the submarine squadron has great military value, and thus is

classified. Some of the results obtained with those data are not classified, and have been

234 Part III, Chapter 4

presented earlier, but the raw data itself, and many intermediate and final results remain

classified. Thus, in this thesis, we were not able to present all interesting results, and worse than

that from an academic point of view, we cannot provide means for other researchers to replicate

our results.

b) Uncontrolled environment

 Having been recorded at sea, on an “opportunity basis” as a “secondary mission”, over a

large span of time, and by different operators, the submarine data often lack a detailed

description of the environment and scenario of each recording. The complete description of the

environment and scenario is all but impossible in real life situation, since it requires not only a

very thorough observation of all variables involved, but an efficient and fluid communication

between the recording vessel and the “target”. Indeed, sometimes the actual user-given

classification might be wrong, given conditions under which those classifications were made.

Thus, it is very difficult to isolate the contribution of different factors towards the performance of

the system.

c) Scarcity of data

 Although the submarine database is already quite large, there are relatively few

recordings available for each separate ship, resulting in a low statistical significance for the

results. Those data have to be enough for designing an operational classifier, but an academic

project should try to demonstrate statistical significance.

Thus, it was decided to perform recordings on unclassified “targets” in controlled environments.

As mentioned earlier, we did not want to use computer-generated data, and the next cleanest data

that we could obtain would be in an acoustic tank. Such a tank exists in one of the departments of

the Portuguese Navy’s shipyard (named “Arsenal do Alfeite”), where it is used to calibrate

sonars. Every year, in July, that tank is emptied for cleaning and maintenance. Thanks to the

good will and collaboration of a few officers (namely Captain Ferreira de Sousa, and, Lieutenant-

Commander Deusdado), we obtained permission to use the tank for a week in July 1999, just

before the tank was to be emptied. We could set up our equipment, as long as we could make the

tank available for its main purpose in a few hours if it were necessary. This situation actually

occurred one day, when a ship’s sonar array was brought for a quick fix, and we were pleased to

find out that it was easy to accommodate both tasks.

Acoustic Tank data 235

A complete and very detailed report of the preparation and recording of the signals is available as

a technical report from the Naval Academy, but is written in Portuguese (Lobo and Oliveira

1999). The report is also available in a 3CD set, that contains all the data along with programs to

help process it, and various information.

4.1 - Data gathering

4.1.1 - The tank and recording equipment

The acoustic tank is an anechoic tank built under the supervision of the now Rear-Admiral Silva

Nunes in 1976, and can me seen in Figure 61. It measures 8 m × 5 m × 5 m, and its walls are

covered with a mixture of cork and rubber (with a density of approximately 0.8 g/cm2), that form

small spikes. Floating boards usually cover the tank, to absorb sound in every direction, but we

did not use them, both because we wanted to simulate the sea surface, and because they

interfered with our equipment. There is a sliding bridge over the tank that was used to hold the

hydrophone and other equipment when necessary. One of the corners of the tank has a small

compartment, with a sliding door, where the outboard motors where fixed. Other two corners

have fixed hoses that are used to fill the tank and recycle its water. On one of the sides of the

tank, there is a glass cabin where the measuring equipment is kept and operated.

Figure 61 - Various aspects of the acoustic tank. Note the sliding bridge and the outboard motor fixation on

the top photographs, and in the bottom ones, the acoustical isolation visible when the tank was emptied.

236 Part III, Chapter 4

The sonar division is equipped with

high quality hydrophones and

amplifiers, build by Bruel. The

hydrophone used in our tests was a

reference “Bruel & Kjaer 8104” (see

Figure 62), which is passive and

omnidirectional, weighing 1,3 Kg, and

is basically a 12 cm long cylinder with

2 cm diameter. It is sensitive to signals

from 0.1Hz up to 200 kHz, and had

recently been confirmed to have

perfectly flat transfer function up to 20

kHz (the highest frequency we would

try to measure).

The signal amplifier is a Bruel & Kjaer

2636, which is a 2 stage variable gain

amplifier with various filters. We always used a high quality low-pass filter set to 20 kHz, to act

as an anti-aliasing filter. The gain varied from recording to recording, being set manually after

observing the signal for a short while, so as to maximize the dynamical range. Most of the time,

the gain was around 30 dB.

After the amplifier, we had a high quality HP oscilloscope and spectral analyzer to monitor the

signals that where being measured. This allowed us

to manually set the optimal amplification to use all

the available dynamic range without saturating,

confirm that the signals were band limited, and

correct any anomalies.

Finally, the audio signal was fed to a 16 bit Sound

Blaster compatible sound card installed in a Pentium

200MMX computer, with 64 Mb RAM and a 8 Gb

hard disk. Lab tests showed that the transfer function of the sound card was reasonably flat in the

Figure 62 - Bruel & Kjaer 8104 passive
omnidi rectional hydrophone

Figure 63 - Bruel 2636 amplifier

Acoustic Tank data 237

50 Hz to 20 kHz range, and could digitize very low frequency signals under 1 Hz. Since the same

sound card was used in all recordings, all signals in the very low frequency range were affected

in the same way. All recordings were done with a 44.1 kHz sampling rate, in mono channel

mode.

4.1.2 - The hidrophonic effects generated

So that the data could be useful for our purposes, we had to generate noise similar to that of a real

ship, and then introduce background noise similar to that found in the ocean, and finally, so that

the data could also be used for other work, introduce transients similar to those that are

interesting from a military or security point of view.

Since the main sources of noise in a ship are its main propulsion engines and auxiliary machines,

we opted to use maritime outboard motors to simulate the “target” ships. The background noise

was simulated with air bubbles and running water falling into the tank, simulating in some way

the effect produced by waves and water movement. Finally, banging objects or shots of air

pressure rifles provided the transients.

It must be clearly stated that these effect are not equivalent to the real effects they stand for, and

their specific characteristics may differ considerably from them. They do however have the same

general behavior, and the techniques developed for them can be re-applied to operational data, to

obtain operational classifiers. Similarly, the accuracy results obtained are an indication for the

performance of the operational system.

4.1.2.3 - The motors

We used 5 different types of motors: 4 outboard motors, and one small electrical motor of a

radio-controlled model boat. Since the electric motor is significantly different from the others,

and the amount of data recorded with it are considerably less, only the outboard motors are used

in most of the tests with this dataset.

Motor 1

Motor 1 is a 4.5 horsepower Mercury, with one cylinder, and a right hand 3 blade propeller,

belonging to the Portuguese Naval Academy’s NRP Vega Yacht.

238 Part III, Chapter 4

Motor 2

Motor 2 is a 18 horsepower Mercury, with two cylinders, with a right hand 3 blade propeller,

belonging to the Officers Club of the Portuguese Navy - CNOCA.

Motor 3

Motor 3 is a 8 horsepower Yamaha, with one cylinder, and a right hand 3 blade propeller,

belonging to the Naval Academy’s NRP Polar Yacht 14.

Figure 67 _ Various aspects of the electric model boat (motor 5)

14 Curiously, this Yacht is a somewhat imperfect copy of the America, that won the first America

Cup.

Figure 64 - Motor 1, a 4.5 hp
Mercury

Figure 65 - Motor 4, a 3.6 hp
Mercury

Figure 66 - Motor 3, a 3.6 hp
Yamaha

Acoustic Tank data 239

Motor 4

Motor 4 is a 3.6 horsepower Mercury, with one cylinder, and a right hand 3 blade reinforced

rubber propeller, belonging to the Officers Club of the Portuguese Navy - CNOCA.

Motor 5

Motor 5 belongs to a small radio-controlled boat that is used in the Naval Architecture classes at

the Naval Academy. It is shown in Figure 67, and has a left hand 3 bale plastic propeller. The

servos that power the rudder make noise that is louder than the main motor, and so must also be

taken into consideration.

4.1.2.4 - The interferences

To simulate the ocean background noise, two devices where used, each with two variants.

The first was to pour water into the tank using the fixed hoses. The pumps are reasonably far

away and well isolated acoustically, so that when they were used we were able to hear only the

water falling in the tank. We used two different intensities, to simulate different sea states.

The second, was to make air bubbles. These were produced with the help of the compressed air

system available throughout the shipyard. A rubber hose was connected to the air outlet, and the

other end of the hose was lowered from the sliding bridge of the tank, with a metal weight to take

it close to the bottom of the tank. The weight was sufficiently heavy to stop the hose from

moving around in the tank, even when air was pumped at full pressure. Again, two different air

pressures were used to simulate different sea states.

240 Part III, Chapter 4

4.1.2.5 - The transients

Besides what we

considered “steady state”

interferences, we also

wanted to provoke

transients. Event the

steady state interferences

are many times a sum of

many distant transients,

but isolated transients are

important both to identify

ships and their operation,

and to identify certain

natural sources, as for example marine mammals. In this thesis we are not interested in pursuing

the latter objectives, and treat the transients as just another interference in the desired signals,

namely the motor noise. This interference is, naturally, quite different from that produced by the

“steady state” sources.

We produced 5 types of transients:

Figure 68 – Transients c and
d: hitting metal tubes

Figure 69 - Transient a : bursts
of compressed air.

Acoustic Tank data 241

a) Compressed air bursts. Produced with the

compressed air setup described earlier, we

simply turned the air on and back off very fast,

generally producing a single large bubble that

broke out into smaller ones. This transient

simulated the effect that is produced when a

ship produces air discharges under the surface,

such as expelling gases or even firing

torpedoes.

b) Water splash. This was obtained by throwing a

bucket full of water on the surface. The splash

obtained simulated the effect of throwing

liquids or even solid objects into the water.

c) Hit of a metal tube with wood. This was

obtained by hanging a metal tube with a rope, and hitting it with a wooden hammer. It

simulates a number of effects that are produced by men and machinery inside a ship.

d) Hit of a metal tube with iron. This was obtained by hanging a metal tube with a rope,

and hitting it with a metal hammer. Since both objects are metallic, the sound is

distinctly different from transient c. Like transient c it simulates a number of effects

that are produced by men and machinery inside a ship.

e) Air pressure shot. This was obtained using a air pressure shotgun. The barrel was

inserted in the water, so that the air was all expelled through it. It is a much shorter

than that produced by transient a, though a short bubbly noise can be heard. This

noise may simulate a very violent air discharge, such as expelling small objects from

a submarine, or dropping something from a ship.

4.1.3 - The recordings

Each of the above effects was recorded individually, and in conjunction with others. In all almost

5 hours of recordings were obtained (4 h 58 min 30 s to be precise). For the comparisons carried

out in this thesis, we considered the “targets” to be the four internal combustion motors, named

“motor1”, “motor2”, “motor3”, and “motor4”. All recordings where a single of these internal

combustion motor was used, with and without various interferences and transients, where used.

All the recordings of interferences, both with and without various transients, were used as

Figure 70 - Transient b :
splashing water

242 Part III, Chapter 4

background noise, and for the sake of simplicity named “motor5”. We also used some recordings

of transients by themselves (without steady state interferences) as background noise. The total

recoding time used was 4 h 30 min, totaling 1.457 GB, and the actual filenames of the recordings

used are in the Appendix C.

When extracting data patterns from the recordings, we chose to use always segments of

approximately 3 seconds. This choice was based on our experience and that of sonar operators,

and it is the bare minimum required by a human operator, even under very favorable conditions.

Using the same time interval, and thus approximately the same amount of data patterns in

different experiments makes comparisons easier. Finally, this choice of time intervals provides

what we think is a reasonable amount of data patterns. Information about the data used is

presented in Table 12.

Effect Nº of Patterns Time Size /MB

motor 1 1263 1 h 03 min 333.606

motor 2 949 47 min 249.587

motor 3 968 48 min 254.763

motor 4 1045 52 min 275.536

motor 5

(background)

1291 1 h 04 min 343.890

TOTAL 5516 5 h 01 min 1.457.382

Table 12 - General information about the Acoustic Tank data. The number of patterns correspond to 3s
segments of the original signal. These will later be subject to different feature extraction techniques, to

produce the final patterns.

4.2 - Datasets and experiments

Each raw pattern is a segment of a time-series stored in a Microsoft WAV file. Since the sample

rate is 44 kHz and each sample requires 16 bits, each pattern consists of approximately 258 K. A

number of feature extraction and selection techniques must be applied to both reduce the size of

the patterns and strip them from irrelevant information.

Acoustic Tank data 243

4.2.1 - General overview of the signals

Before going into a detailed analysis of the data, we started by plotting the power spectra of the

different motors, which are presented in Appendix D. These plots where obtained by computing

the power spectra of each raw pattern with 5.3 Hz resolution15, corresponding to 4096 frequency

bins, from 0 to 22 kHz. A Hamming window and 50% overlap Welsh periodograms were used,

so each spectrum presented is the average of 32 individual spectra16. Although this resolution is

coarser than that used in the experiments described in Chapter 3, it does provide a good overview

of the signals and, as we shall see later, is more than enough for an accurate classification.

From these figures, it is clear that the noise produced by the motors is felt in the low and very

low frequency ranges. There is almost no visible signal above 12 kHz, and it seems possible to

distinguish the various motors using only the frequency range from 0 to 270 Hz.

We chose to use only two different frequency resolutions in our tests. The finer resolution

dataset, using 5.3 Hz per bin, was called dataset 1, while the coarser resolution, with 690 Hz per

bin was called dataset 2.

4.2.1.1 - Dataset 1

Dataset 1 consists of the power spectra used for the general overview of the signal. Each pattern

is thus a vector with 4096 real-valued components, corresponding to the power spectra with 5.3

Hz per bin.

To check if the data clustered according to the desired classes, we trained a 15x20 unit SOM. The

results are shown in Figure 71. The resubstitution error obtained when using this SOM as a

15 For the sake of simplicity we use the term resolution when we really are referring to the width

of each bin. Due to the fact that we used a Hamming Window, the true resolution is actually quite

lower, and corresponds roughly to 2.6 times more than the frequency width of each bin.
16 We broke up the original recordings into separate 3 s chunks only when we extracted the actual

data patterns. This allows us optimize the usage of recording time by allowing very slight

overlaps between data patterns. It we isolated the 3 s chunks before extracting the spectra, we

would only be able to average 31 spectra per pattern. Allowing a slight overlap, we can use 32

spectra, which is more convenient.

244 Part III, Chapter 4

classifier is only 0.96%, which is remarkably low considering SOM is a clustering technique.

This reveals that this representation of the data should make the classes separable. However, a

visual inspection of the SOM presented shows the classes are not grouped together, but are

instead dispersed over the map. Tracing the origins of the various patterns, we can observe that

the interferences (air bubbles, water flow, etc) are having a very strong influence in the

distribution of data. This influence would be expected and can only be eliminated using signal

processing techniques aimed at canceling it.

Figure 71 - SOM with 20x15 units trained with all the patterns of dataset 1, and the corresponding U-
matrix. For the unfolding phase we used α=0.2, rinit=18, and 10 iterations through the dataset. For the

second, we used α=0.05, rinit=8, and 100 iterations through the dataset.

Figure 72 - SOM with 40x30 units trained with all the patterns of dataset 1, and the corresponding U-
matrix. For the unfolding phase we used a=0.2, rinit=38, and 10 iterations through the dataset. For the

second, we used a=0.05, rinit=12, and 100 iterations through the dataset

Acoustic Tank data 245

To further distinguish each cluster, we trained another SOM that was four times bigger, having

40x30 units. The results are presented in Figure 72, and clearly show well defined clusters, both

in the colored SOM map, where there are unlabeled (white) units between each of the labeled

groups of units, and in the U-matrix, where there are several well defined clusters. The

resubstitution error for this larger map was 0.1%.

To perform cross-validation we randomly selected 10 pairs of training and test sets. All those 10

pairs have exactly the same name number of patterns, and all classes are represented in the same

proportion as in the original known set. Each training set consisted of 4599 patterns, and each test

set consisted of 511 patterns. The results are shown in Table 13.

Method Nº Prototypes Error rate Training time / s

NN 4941.0 ± 0.0 0.0 ± 0.0 0

CNN 72.8 ± 1.5 0.1 ± 0.2 926.65 ± 310.36

RNN 63.0 ± 2.9 0.2 ± 0.2 63833.85 ± 2409.19

QSet-P 64.5 ± 1.9 0.3 ± 0.3 26756.85 ± 11325.93

Table 13 - Results of cross-validation on dataset 1.

4.2.1.1.1 - Dataset 1 with small training set

In most practical situations, the amount of acoustic data available for training is quite limited. To

simulate this situation, we inverted the role of training and test sets, i.e., we trained 10 different

classifiers with 511 patterns, and tested them with the remaining 4599. The results are shown in

Table 14.

Method Nº Prototypes Error rate Training time / s

NN 549.0 ± 0.0 0.5 ± 0.2 0

CNN 48.4 ± 3.0 1.4 ± 0.2 51.65 ± 12.82

RNN 43.1 ± 3.4 1.8 ± 0.4 2759.63 ± 1057.01

QSet-P 43.1 ± 2.3 1.6 ± 0.6 195.26 ± 1.47

246 Part III, Chapter 4

Table 14 - Results of cross-validation on dataset 1, using small training sets.

4.2.1.1.2 - Dataset 1 with reduced features

Due to the very large number of features, rough set techniques cannot be used to find a reduced

set of features for classification. Following the classical approach, we tried to use scatter matrix

techniques. Using full scatter matrices is computationally very demanding, so we have to work

with each feature separately. For each feature, we computed it’s within class variance (Sw), and

it’s variance between the class means (Sb). We then chose sequentially the 32 features that had

greatest value of Sb/Sw, excluding those that had a correlation coefficient greater than 0.8 with

any of the already selected features. The features chosen, together with their correlation

coefficients, are presented in Table 15.

Order

of

choice

Bin Frequency

/Hz

Order

of

choice

Bin Frequency

/Hz

Order

of

choice

Bin Frequency

/Hz

1 227 1,219 12 204 1,095 23 36 189

2 258 1,387 13 28 146 24 23 119

3 10 49 14 370 1,991 25 45 237

4 267 1,435 15 175 939 26 192 1,031

5 3866 20,854 16 215 1,155 27 43 227

6 324 1,743 17 33 173 28 477 2,568

7 306 1,646 18 273 1,468 29 165 885

8 446 2,401 19 291 1,565 30 284 1,527

9 244 1,311 20 9 43 31 30 156

10 404 2,174 21 522 2,811 32 610 3,286

11 234 1,257 22 12 59

Table 15 - Features selected from dataset 1, using scatter matrices.

Acoustic Tank data 247

Training a 20x15 unit SOM with this data and using it as a classifier yields a resubstitution error

of 2.19 %.

Method Nº Prototypes Error rate Training time / s

NN 4941.0 ± 0.0 0.1 ± 0.1 0

CNN 100.3 ± 3.5 0.5 ± 0.3 9.53 ± 1.31

RNN 85.6 ± 3.0 0.5 ± 0.3 228.04 ± 13.60

QSet-P 94.9 ± 2.0 0.4 ± 0.4 2728.17 ± 700.96

Table 16 - Results of cross-validation on dataset 1 with reduced features.

Method Nº Prototypes Error rate Training time / s

NN 549.0 ± 0.0 1.2 ± 0.3 0

CNN 53.5 ± 3.9 2.4 ± 0.5 0.76 ± 0.17

RNN 46.7 ± 3.6 2.7 ± 0.5 7.42 ± 1.16

QSet-P 48.1 ± 2.3 2.6 ± 0.5 1.84 ± 0.04

Table 17 - Results of cross-validation on dataset 1 with reduced features, using small training sets.

Figure 73 - SOM with 20x15 units trained with all the patterns of dataset 1 using reduced features, and the
corresponding U-matrix. For the unfolding phase we used α=0.2, rinit=18, and 10 iterations through the

dataset. For the second, we used α=0.05, rinit=8, and 100 iterations through the dataset

248 Part III, Chapter 4

4.2.1.2 - Dataset 2

Dataset 2 was obtained by calculating 64 point FFTs of the original signal, using a Hamming

window, and 50% overlap between spectra. We then averaged 4096 consecutive spectra to obtain

each data pattern. Each data pattern is thus the spectrum of approximately 3 s of the original

signal, with 690 Hz per bin. Although such a coarse resolution goes against common wisdom

amongst the submariner’s community, we will show that fairly good classification accuracy can

be obtained with it. The consequence is that far less computing power is required than when fine

resolution is used. In a practical application, a low-resolution system may be used as a permanent

vigilance system, while a finer resolution system will be used only to identify the targets where

the first system has low confidence.

Figure 74 - SOM with 20x15 units trained with all the patterns of dataset 2, and corresponding U-
matrix. For the unfolding phase we used a=0.2, rinit=18, and 10 iterations through the dataset. For

the second, we used a=0.05, rinit=8, and 100 iterations through the dataset

Figure 75 - SOM with 40x30 units trained with all the patterns of dataset 2, and corresponding U-
matrix. For the unfolding phase we used a=0.2, rinit=38, and 10 iterations through the dataset. For

the second, we used a=0.05, rinit=12, and 100 iterations through the dataset

Acoustic Tank data 249

When we train a SOM with all the patterns of this dataset, we obtain the map shown in Figure 74.

The various classes do not seem to form well defined clusters, which would suggest that some

pre-processing should be added. Even so, if we use this map as a classifier, we obtain a

resubstitution error of 6.6% (339/5110). Considering that this is a clustering technique, that error

can be considered quite good.

Applying 10-fold cross-validation, just as it was applied to dataset 1 discussed earlier, we

obtained the results shown in Table 18.

Method Nº Prototypes Error rate Training time / s

NN 4599.0 ± 0.0 1.2 ± 0.4 0

CNN 266.6 ± 8.4 2.0 ± 0.4 22.99 ± 1.19

RNN 227.2 ± 6.3 2.4 ± 0.6 1517.16 ± 104.17

QSet-P 252.1 ± 7.3 2.1 ± 0.6 1496.04 ± 507.88

SOM (10x) 300.0 ± 0.0 8.4 ± 3.6 80.96 ± 1.47

SOM (100x) 300.0 ± 0.0 6.6 ± 3.6 844.56 ± 21.00

Table 18 - Results of cross-validation on dataset 2.

4.2.1.2.1 - Dataset 2 with small training sets

Using the same 10 fold partition of the dataset, but using only 1/10 of it for training and the rest

for testing, we obtained the results shown in Table 19.

250 Part III, Chapter 4

Method Nº Prototypes Error rate Training time

/ s

NN 511.0 ± 0.0 4.0 ± 0.5 0

CNN 84.1 ± 7.1 6.0 ± 0.6 0.92 ± 0.14

RNN 73.8 ± 5.4 6.4 ± 0.8 17.10 ± 2.56

QSet-P 77.0 ± 4.9 6.3 ± 1.0 1.66 ± 0.03

SOM (10x) 300.0 ± 0.0 22.6 ± 1.2 12.27 ± 3.03

SOM (100x) 300.0 ± 0.0 18.8 ± 1.4 86.66 ± 1.98

Table 19 - Results of cross-validation on dataset 2, using small training sets.

4.2.1.2.2 – Reduced features dataset 2

From the general overview of the signals, we suspect that it is possible to classify them using

only the lower frequency ranges. Since dataset 2 has only 32 features, we can use roughsets to

find which are dispensable for classification. Using 10 levels for discretization, the roughsetlab

program found 16 reducts. Two of them have 22 features, while the rest have 23. The core

consists of 20 of those features, corresponding to frequency bins 1 to 10, 12 to 14, 16 to 20, 23

and 31. The complete results are presented in table Table 20.

Acoustic Tank data 251

Frequency bins selected

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 22 23 26 31 32

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 22 23 27 31 32

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 22 23 28 31 32

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 23 24 26 31 32

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 23 24 27 31 32

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 23 24 28 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 23 25 31

1 2 3 4 5 6 7 8 9 10 12 13 14 16 17 18 19 20 23 25 31 32

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 22 23 26 31 32

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 22 23 27 31 32

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 22 23 28 31 32

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 23 24 26 31 32

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 23 24 27 31 32

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 23 24 28 31 32

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 23 25 31

1 2 3 4 5 6 7 8 9 10 12 13 15 16 17 18 19 20 23 25 31 32

Table 20 - Reducts for dataset 2 produced by Roughsetlab, using 10 levels of discretization.

Re-applying the cross validation process applied earlier, we will have the results shown in Table

21 and Table 22.

Method Nº Prototypes Error rate Training time / s

NN 4599.0 ± 0.0 1.3 ± 0.4 0

CNN 288.3 ± 6.0 2.4 ± 0.6 18.98 ± 3.33

RNN 243.0 ± 3.4 2.7 ± 0.6 1198.91 ± 54.51

QSet-P 266.9 ± 7.2 2.6 ± 0.6 1027.31 ± 68.74

Table 21- Results of cross-validation on the reduced dataset 2.

252 Part III, Chapter 4

Method Nº Prototypes Error rate Training time

/ s

NN 511.0 ± 0.0 4.3 ± 0.4 0

CNN 85.3 ± 6.6 6.3 ± 0.6 0.70 ± 0.11

RNN 71.9 ± 5.3 6.8 ± 0.7 11.15 ± 1.50

QSet-P 77.1 ± 6.4 6.9 ± 1.1 1.22 ± 0.04

Table 22- Results of cross-validation on the reduced dataset 2, using small training sets

 253

APPENDIX A

Experiments with Hart’s double F problem

254 Appendix A

This appendix presents the detailed results of

applying a series of prototype minimization

techniques to Hart’s double F problem, as described

in Chapter 1 of part II.

This problem, initially proposed by (Hart 1968),

consists of two classes of bi-dimensional patterns

with a uniform distribution in two interlocked F

shapes, as seen in Figure 76. The two classes lie in

the 22.5 x 20 rectangle with the bottom left corner

at the origin (0,0), and have boundaries defined by the line that joins (7.5,0), (7.5,5), (15,5),

(15,10), (7.5,10), (7.5,15), (15,15), (15,20).

In the following experiments, 30 different datasets, randomly generated with the described

probability density function, are used for each size of training set. For each of those datasets,

classifiers were designed using standard nearest neighbors (NN), Condensed Nearest Neighbors

(CNN), Reduced Nearest Neighbors (RNN), positive-only Q-Set heuristic (QSET-P or Q-Set (P)

), general case Q-Set heuristic with 1 acceptable error (QSET-N or Q-Set (N1)), and general case

Q-Set heuristic with no acceptable errors (QSET-N0 or Q-Set (N0)).

A large test set, consisting of 100.000 patterns, was then classified with each of the 6 classifiers,

so as to estimate the generalization error.

The average number of prototypes, error rate, training time, and classification times (for the test

set), are presented, together with the standard deviation of those values.

Since the patterns are 2-dimensional, it is easy to graph them, and these graphs can give us

insight into the problem. The graphs presented do not show the individual patterns chosen in each

case, but superimpose the borders between classes, obtained for the 30 trials performed. Over

each of the graphs, the name of the method used is given, followed by the average number of

prototypes and average error, in parenthesis.

0 5 1 0 1 5 2 0
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8

2 0

Figure 76 - Hart's Doubl e F problem.
Class 1 has a uniform distribution in
the rightmost F shape, while class 2 has
the same type of distribution in the
leftmost, inverted, F shape.

Experiments with Hart’s double F problem 255

100 patterns

Method Nº Prototypes Error rate Training time Classification time

NN 100.0 ± 0.0 5.9 ± 1.1 0.00 ± 0.00 6.15 ± 0.02

CNN 18.6 ± 3.6 7.2 ± 1.5 0.05 ± 0.02 1.17 ± 0.22

RNN 14.6 ± 3.1 7.4 ± 1.5 0.10 ± 0.04 0.92 ± 0.18

Q-Sets (P) 17.0 ± 2.4 7.2 ± 1.4 0.03 ± 0.03 1.07 ± 0.14

Q-Sets (N1) 15.3 ± 2.3 7.4 ± 1.2 0.67 ± 0.23 0.96 ± 0.14

Q-Sets (N0) 16.6 ± 2.5 7.2 ± 1.3 0.39 ± 0.21 1.05 ± 0.14

Figure 77 - Borders between classes in the double F problem using 100 training patterns

256 Appendix A

200 patterns

Method Nº Prototypes Error rate Training time Classification time

NN 200.0 ± 0.0 4.5 ± 0.7 0.00 ± 0.00 12.27 ± 0.03

CNN 30.2 ± 3.4 5.5 ± 1.1 0.12 ± 0.02 1.85 ± 0.20

RNN 23.4 ± 2.8 5.6 ± 1.1 0.35 ± 0.07 1.45 ± 0.17

Q-Sets (P) 26.8 ± 3.2 5.7 ± 1.0 0.10 ± 0.02 1.65 ± 0.19

Q-Sets (N1) 25.0 ± 3.0 5.6 ± 0.9 3.97 ± 1.65 1.55 ± 0.19

Q-Sets (N0) 26.4 ± 3.2 5.7 ± 0.9 2.25 ± 1.19 1.62 ± 0.19

Figure 78 – Borders between classes in the double F problem using 200 training patterns a

Experiments with Hart’s double F problem 257

400 patterns

Method Nº Prototypes Error rate Training time Classification time

NN 400.0 ± 0.0 3.2 ± 0.3 0.00 ± 0.00 24.33 ± 0.13

CNN 46.1 ± 6.1 4.0 ± 0.5 0.29 ± 0.05 2.77 ± 0.37

RNN 34.3 ± 4.2 4.2 ± 0.7 1.20 ± 0.26 2.08 ± 0.25

Q-Sets (P) 39.6 ± 4.0 4.2 ± 0.7 0.39 ± 0.03 2.38 ± 0.23

Q-Sets (N1) 37.6 ± 4.2 4.2 ± 0.7 24.17 ± 10.72 2.26 ± 0.24

Q-Sets (N0) 39.3 ± 4.0 4.2 ± 0.7 12.60 ± 7.85 2.37 ± 0.23

Figure 79 – Borders between classes in the double F problem using 400 training patterns

258 Appendix A

800 patterns

Method Nº Prototypes Error rate Training time Classification time

NN 800.0 ± 0.0 2.3 ± 0.3 0.00 ± 0.00 48.92 ± 0.22

CNN 66.0 ± 7.2 2.8 ± 0.4 0.75 ± 0.11 3.98 ± 0.47

RNN 47.0 ± 5.3 2.9 ± 0.4 3.98 ± 0.78 2.80 ± 0.33

Q-Sets (P) 56.3 ± 4.6 3.0 ± 0.5 1.60 ± 0.06 3.35 ± 0.28

Q-Sets (N1) 54.2 ± 4.5 3.0 ± 0.4 146.04 ± 71.77 3.23 ± 0.28

Q-Sets (N0) 55.9 ± 4.5 3.0 ± 0.5 74.15 ± 40.27 3.34 ± 0.27

Figure 80 – Borders between classes in the double F problem using 800 training patterns

Experiments with Hart’s double F problem 259

1600 patterns

Method Nº Prototypes Error rate Training time Classification time
NN 1600.0 ± 0.0 1.7 ± 0.2 0.00 ± 0.00 109.99 ± 0.34
CNN 93.8 ± 7.9 2.1 ± 0.2 1.83 ± 0.27 5.69 ± 0.48
RNN 66.3 ± 5.3 2.2 ± 0.2 14.20 ± 2.15 3.98 ± 0.34
Q-Sets (P) 80.8 ± 4.9 2.1 ± 0.2 6.93 ± 0.15 4.89 ± 0.30
Q-Sets (N1) 78.5 ± 4.8 2.1 ± 0.2 777.00 ± 354.19 4.74 ± 0.30
Q-Sets (N0) 80.6 ± 4.9 2.1 ± 0.2 378.99 ± 129.93 4.88 ± 0.30

Figure 81 – Borders between classes in the double F problem using 1600 training patterns

260 Appendix A

1600 patterns:

Method Nº Prototypes Error rate Training time Classification time
NN 1600.0 ± 0.0 1.7 ± 0.2 0 116.21 ± 4.10
CNN 95.0 ± 6.8 2.1 ± 0.3 2.43 ± 0.36 5.79 ± 0.43
RNN 66.9 ± 5.5 2.1 ± 0.3 15.52 ± 2.18 4.04 ± 0.37
Q-Sets 80.6 ± 4.3 2.2 ± 0.3 9.95 ± 0.66 4.91 ± 0.27

Figure 82 - Borders between classes in the double F problem, using 1600 patterns

Experiments with Hart’s double F problem 261

3200 patterns:

Method Nº Prototypes Error rate Training time Classification time
NN 3200.0 ± 0.0 1.2 ± 0.1 0 385.88 ± 19.08
CNN 135.5 ± 12.2 1.5 ± 0.1 6.57 ± 0.87 8.31 ± 0.72
RNN 93.7 ± 8.3 1.5 ± 0.2 57.44 ± 9.64 5.68 ± 0.49
Q-Sets 112.8 ± 6.9 1.5 ± 0.1 41.40 ± 2.22 6.83 ± 0.42

Figure 83 - Borders between classes in the double F problem, using 3200 patterns

 263

APPENDIX B

Experiments with the straight line problem

264 Appendix B

This problem consists of two classes

with uniform distribution in the unit

square limited by (0,0) and (1,1).

Those that lie in the left side of that

square (i.e., with x<0.5) are considered

to belong to class 1, and the others to

class 2, as seen in Figure 84. A

summary of the results, and their

discussion can be found in Chapter

1.6.3 of part II.

In the following experiments, 30 different datasets, randomly generated with the described

probability density function, are used for each size of training set. For each of those datasets,

classifiers were designed using standard nearest neighbors (NN), Condensed Nearest Neighbors

(CNN), Reduced Nearest Neighbors (RNN), positive-only Q-Set heuristic (QSET-P or Q-Set (P)

), general case Q-Set heuristic with 1 acceptable error (QSET-N or Q-Set (N1)), general case Q-

Set heuristic with no acceptable errors (QSET-N0 or Q-Set (N0)), and positive-only Q-sets with a

branch-and-bound search for the optimal solution (QSET-BB).

A large test set, consisting of 100.000 patterns, was then classified with each of the 6 classifiers,

so as to estimate the generalization error.

The average number of prototypes, error rate, training time, and classification times (for the test

set), are presented, together with the standard deviation of those values.

Unlike Appendix A, where the graphs presented superimposed the borders obtained with the 30

trials, we here present only one of those trials. We do however show individual prototypes

chosen, and how they generate the border for that particular trial. The complete training set can

naturally be seen in the graph of the nearest neighbor classifier. This is only possible here, since

for all experiments the total number of patterns is relatively small.

Figure 84 - The straight line problem. Patterns
belonging to class 1 are represented by "+", and

patterns belonging to class 2 by “x”

Experiments with the straight line problem 265

4 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 4.0 ± 0.0 17.4 ± 8.1 0.00 ± 0.00 0.54 ± 0.02
CNN 2.8 ± 0.8 19.3 ± 9.9 0.00 ± 0.01 0.40 ± 0.09
RNN 2.4 ± 0.7 18.9 ± 11.2 0.00 ± 0.01 0.36 ± 0.08
QSet-P 2.5 ± 0.7 18.9 ± 11.2 0.00 ± 0.00 0.37 ± 0.08
QSet-N 2.0 ± 0.0 21.5 ± 10.7 0.01 ± 0.02 0.32 ± 0.02
QSet-N0 2.4 ± 0.7 17.7 ± 10.3 0.01 ± 0.02 0.36 ± 0.09
QSet-BB 2.5 ± 0.7 18.9 ± 11.2 0.00 ± 0.01 0.37 ± 0.09

Figure 85 – Borders for the straight line problem, with a training set of 4 prototypes

266 Appendix B

8 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 8.0 ± 0.0 10.9 ± 5.1 0.00 ± 0.00 0.98 ± 0.02
CNN 3.7 ± 1.4 11.6 ± 5.8 0.00 ± 0.01 0.51 ± 0.14
RNN 3.1 ± 1.0 12.9 ± 5.8 0.00 ± 0.01 0.45 ± 0.11
QSet-P 3.2 ± 1.0 12.4 ± 5.2 0.00 ± 0.01 0.45 ± 0.11
QSet-N 2.3 ± 0.7 12.6 ± 8.1 0.01 ± 0.02 0.35 ± 0.07
QSet-N0 2.9 ± 1.1 10.9 ± 6.2 0.02 ± 0.03 0.42 ± 0.12
QSet-BB 3.2 ± 1.0 12.4 ± 5.2 0.00 ± 0.01 0.46 ± 0.11

Figure 86 – Borders for the straight line problem, with a training set of 8 prototypes

Experiments with the straight line problem 267

16 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 16.0 ± 0.0 8.0 ± 4.0 0.00 ± 0.00 1.84 ± 0.03
CNN 4.6 ± 1.3 10.0 ± 5.6 0.00 ± 0.01 0.60 ± 0.15
RNN 3.5 ± 1.1 11.0 ± 7.5 0.01 ± 0.02 0.48 ± 0.12
QSet-P 4.1 ± 0.9 11.8 ± 7.5 0.01 ± 0.02 0.54 ± 0.10
QSet-N 2.8 ± 0.7 10.4 ± 6.7 0.04 ± 0.03 0.39 ± 0.09
QSet-N0 3.8 ± 0.8 11.6 ± 7.9 0.02 ± 0.03 0.52 ± 0.10
QSet-BB 4.0 ± 0.9 11.8 ± 7.5 0.10 ± 0.14 0.54 ± 0.09

Figure 87 – Borders for the straight line problem, with a training set of 16 prototypes

268 Appendix B

24 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 24.0 ± 0.0 6.1 ± 1.9 0.00 ± 0.00 2.72 ± 0.03
CNN 5.9 ± 1.9 8.1 ± 2.8 0.01 ± 0.02 0.75 ± 0.21
RNN 4.5 ± 1.3 8.0 ± 3.0 0.01 ± 0.02 0.59 ± 0.14
QSet-P 5.2 ± 1.0 8.3 ± 2.8 0.00 ± 0.01 0.66 ± 0.11
QSet-N 4.1 ± 1.4 8.1 ± 2.9 0.08 ± 0.06 0.55 ± 0.16
QSet-N0 4.8 ± 1.5 7.7 ± 2.7 0.05 ± 0.06 0.62 ± 0.16
QSet-BB 5.1 ± 1.0 8.2 ± 2.7 7.75 ± 34.79 0.65 ± 0.11

Figure 88 – Borders for the straight line problem, with a training set of 24 prototypes

Experiments with the straight line problem 269

32 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 32.0 ± 0.0 5.7 ± 1.8 0.00 ± 0.00 3.58 ± 0.02
CNN 7.0 ± 2.0 6.9 ± 3.2 0.01 ± 0.02 0.86 ± 0.23
RNN 5.0 ± 1.3 7.5 ± 3.3 0.02 ± 0.03 0.64 ± 0.14
QSet-P 5.9 ± 1.2 7.4 ± 3.1 0.00 ± 0.01 0.76 ± 0.14
QSet-N 4.6 ± 1.4 7.1 ± 3.3 0.12 ± 0.08 0.60 ± 0.15
QSet-N0 5.4 ± 1.5 6.7 ± 2.7 0.06 ± 0.06 0.70 ± 0.16
QSet-BB 5.7 ± 1.3 7.4 ± 3.0 4.37 ± 10.97 0.73 ± 0.15

Figure 89 – Borders for the straight line problem, with a training set of 32 prototypes

270 Appendix B

40 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 40.0 ± 0.0 5.3 ± 1.4 0.00 ± 0.00 4.44 ± 0.02
CNN 7.5 ± 2.6 6.7 ± 2.2 0.01 ± 0.02 0.92 ± 0.28
RNN 5.4 ± 1.6 6.7 ± 2.1 0.02 ± 0.03 0.68 ± 0.18
QSet-P 6.6 ± 1.0 6.6 ± 2.8 0.01 ± 0.02 0.82 ± 0.12
QSet-N 5.2 ± 1.2 6.8 ± 2.8 0.18 ± 0.13 0.67 ± 0.13
QSet-N0 6.1 ± 1.2 7.1 ± 2.5 0.09 ± 0.08 0.77 ± 0.13
QSet-BB 6.3 ± 1.0 6.6 ± 2.7 111.95 ± 422.53 0.79 ± 0.11

Figure 90 – Borders for the straight line problem, with a training set of 40 prototypes

Experiments with the straight line problem 271

48 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 48.0 ± 0.0 4.8 ± 1.3 0.00 ± 0.00 5.34 ± 0.24

CNN 8.9 ± 1.9 5.9 ± 2.1 0.02 ± 0.03 1.04 ± 0.20

RNN 6.2 ± 1.3 5.9 ± 2.2 0.03 ± 0.03 0.75 ± 0.13

QSet-P 7.1 ± 1.3 6.0 ± 1.9 0.01 ± 0.02 0.85 ± 0.15

QSet-N 5.6 ± 1.2 6.2 ± 2.5 0.25 ± 0.17 0.69 ± 0.13

QSet-N0 6.8 ± 1.4 5.7 ± 2.0 0.11 ± 0.13 0.84 ± 0.17

Figure 91 – Borders for the straight line problem, with a training set of 48 prototypes

272 Appendix B

56 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 56.0 ± 0.0 4.2 ± 0.7 0.00 ± 0.00 6.19 ± 0.10
CNN 10.0 ± 2.9 4.9 ± 1.7 0.02 ± 0.03 1.16 ± 0.31
RNN 7.4 ± 2.0 5.3 ± 1.9 0.03 ± 0.03 0.89 ± 0.21
QSet-P 8.4 ± 1.5 5.7 ± 1.7 0.01 ± 0.02 1.00 ± 0.15
QSet-N 7.0 ± 1.7 5.0 ± 1.9 0.26 ± 0.19 0.85 ± 0.17
QSet-N0 7.9 ± 1.6 5.4 ± 1.5 0.14 ± 0.13 0.95 ± 0.20

Figure 92 – Borders for the straight line problem, with a training set of 56 prototypes

Experiments with the straight line problem 273

64 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 64.0 ± 0.0 4.0 ± 1.1 0.00 ± 0.00 7.17 ± 0.28
CNN 9.7 ± 2.9 5.3 ± 1.6 0.03 ± 0.03 1.13 ± 0.31
RNN 7.0 ± 1.7 5.5 ± 1.6 0.05 ± 0.04 0.84 ± 0.18
QSet-P 8.5 ± 1.5 5.4 ± 1.6 0.02 ± 0.03 1.00 ± 0.16
QSet-N 6.7 ± 1.6 6.2 ± 1.9 0.35 ± 0.25 0.80 ± 0.17
QSet-N0 8.2 ± 1.7 5.3 ± 1.5 0.15 ± 0.12 0.96 ± 0.17

Figure 93 – Borders for the straight line problem, with a training set of 64 prototypes

274 Appendix B

96 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 96.0 ± 0.0 3.3 ± 0.8 0.00 ± 0.00 10.67 ± 0.05
CNN 12.0 ± 2.3 4.3 ± 1.1 0.04 ± 0.02 1.37 ± 0.24
RNN 8.5 ± 1.8 4.5 ± 1.4 0.07 ± 0.03 0.99 ± 0.18
QSet-P 9.9 ± 1.2 4.0 ± 1.2 0.03 ± 0.03 1.15 ± 0.13
QSet-N 8.3 ± 1.5 4.3 ± 1.4 0.63 ± 0.56 0.98 ± 0.16
QSet-N0 9.5 ± 1.1 4.1 ± 1.4 0.26 ± 0.13 1.11 ± 0.11

Figure 94 – Borders for the straight line problem, with a training set of 96 prototypes

Experiments with the straight line problem 275

128 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 128.0 ± 0.0 2.9 ± 0.7 0.00 ± 0.00 14.24 ± 0.05
CNN 14.3 ± 4.2 3.5 ± 0.9 0.06 ± 0.02 1.60 ± 0.44
RNN 9.7 ± 2.8 3.7 ± 0.9 0.11 ± 0.04 1.12 ± 0.29
QSet-P 12.2 ± 2.2 3.6 ± 0.8 0.05 ± 0.01 1.38 ± 0.23
QSet-N 10.3 ± 1.7 3.9 ± 0.9 1.81 ± 1.43 1.19 ± 0.18
QSet-N0 11.3 ± 2.2 3.8 ± 0.7 1.11 ± 1.14 1.29 ± 0.24

Figure 95 – Borders for the straight line problem, with a training set of 128 prototypes

276 Appendix B

256 patterns

Method NºPrototypes Error rate Training t /s Test t /s
NN 256.0 ± 0.0 2.1 ± 0.4 0.00 ± 0.00 30.93 ± 12.25
CNN 21.4 ± 3.6 2.5 ± 0.5 0.15 ± 0.03 2.33 ± 0.38
RNN 14.3 ± 2.0 2.7 ± 0.6 0.31 ± 0.07 1.58 ± 0.21
QSet-P 17.0 ± 2.3 2.6 ± 0.4 0.19 ± 0.03 1.89 ± 0.24
QSet-N 14.9 ± 2.9 2.7 ± 0.6 10.35 ± 7.25 1.66 ± 0.30
QSet-N0 15.8 ± 2.3 2.5 ± 0.5 5.30 ± 2.88 1.75 ± 0.24

Figure 96 – Borders for the straight line problem, with a training set of 256 prototypes

 277

APPENDIX C

List of data recorded in the acoustical tank

278 Appendix C

Nº File Name Length

/bytes

Duration

/s

Target Transient Interference

1 A00000T00R01x1.wav 5292058 60.00066 None - Air (strong)

2 A00000T00R01x2.wav 5292058 60.00066 None - Air (strong)

3 A00000T00R02x1.wav 5292058 60.00066 None - Ar (weak)

4 A00000T00R02x2.wav 5292058 60.00066 None - Ar (weak)

5 A00000T00R08x1.wav 5292058 60.00066 None - Water (strong)

6 A00000T00R08x2.wav 5292058 60.00066 None - Water (strong)

7 A00000T00R04x1.wav 5292058 60.00066 None - Water (weak)

8 A00000T00R04x2.wav 5292058 60.00066 None - Water (weak)

9 A10000T00R00x1.wav 5292058 60.00066 Motor 1 (desengaged) - -

10 A10000T00R00x2.wav 5292058 60.00066 Motor 1 (desengaged) - -

11 A10000T00R00x3.wav 5292058 60.00066 Motor 1 (desengaged) - -

12 A10000T00R00x4.wav 5292058 60.00066 Motor 1 (desengaged) - -

13 A10000T00R00x5.wav 5292058 60.00066 Motor 1 (desengaged) - -

14 E20000T00R00x1.wav 5292058 60.00066 Motor 1(very slow) - -

15 E20000T00R00x2.wav 5292058 60.00066 Motor 1(very slow) - -

16 E20000T00R00x3.wav 5292058 60.00066 Motor 1(very slow) - -

17 E20000T00R00x4.wav 5292058 60.00066 Motor 1(very slow) - -

18 E20000T00R00x5.wav 5292058 60.00066 Motor 1(very slow) - -

19 E30000T00R00x1_R.wav 5292058 60.00066 Motor 1 (lento-ré) - -

20 A30000T00R00x1.wav 5292058 60.00066 Motor 1 (slow) - -

21 A30000T00R00x2.wav 5292058 60.00066 Motor 1 (slow) - -

22 A30000T00R00x3.wav 5292058 60.00066 Motor 1 (slow) - -

23 A30000T00R00x4.wav 5292058 60.00066 Motor 1 (slow) - -

24 A30000T00R00x5.wav 5292058 60.00066 Motor 1 (slow) - -

25 A40000T00R00x1.wav 5292058 60.00066 Motor 1 (half) - -

26 A40000T00R00x2.wav 5292058 60.00066 Motor 1 (half) - -

27 A40000T00R00x3.wav 5292058 60.00066 Motor 1 (half) - -

28 A40000T00R00x4.wav 5292058 60.00066 Motor 1 (half) - -

29 A40000T00R00x5.wav 5292058 60.00066 Motor 1 (half) - -

30 A20000T00R01x1.wav 5292058 60.00066 Motor 1(very slow) - Air (strong)

31 A20000T00R01x2.wav 5292058 60.00066 Motor 1(very slow) - Air (strong)

32 A20000T00R01x3.wav 5292058 60.00066 Motor 1(very slow) - Air (strong)

33 A20000T00R01x4.wav 5292058 60.00066 Motor 1(very slow) - Air (strong)

34 A20000T00R01x5.wav 5292058 60.00066 Motor 1(very slow) - Air (strong)

35 A20000T00R02x1.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak)

36 A20000T00R02x2.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak)

List of data recorded in the acoustic tank 279

37 A20000T00R02x3.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak)

38 A20000T00R02x4.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak)

39 A20000T00R02x5.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak)

40 A20000T00R04x1.wav 5292058 60.00066 Motor 1(very slow) - Water (weak)

41 A20000T00R04x2.wav 5292058 60.00066 Motor 1(very slow) - Water (weak)

42 A20000T00R04x3.wav 5292058 60.00066 Motor 1(very slow) - Water (weak)

43 A20000T00R04x4.wav 5292058 60.00066 Motor 1(very slow) - Water (weak)

44 A20000T00R04x5.wav 5292058 60.00066 Motor 1(very slow) - Water (weak)

45 A20000T00R08x1.wav 5292058 60.00066 Motor 1(very slow) - Water (strong)

46 A20000T00R08x2.wav 5292058 60.00066 Motor 1(very slow) - Water (strong)

47 A20000T00R08x3.wav 5292058 60.00066 Motor 1(very slow) - Water (strong)

48 A20000T00R08x4.wav 5292058 60.00066 Motor 1(very slow) - Water (strong)

49 A20000T00R08x5.wav 5292058 60.00066 Motor 1(very slow) - Water (strong)

50 A50000T00R00x1.wav 5292058 60.00066 Motor 5 (changing) - -

51 A50000T00R00x2.wav 5292058 60.00066 Motor 5 (changing) - -

52 A00000T16R00x01.wav 909538 10.31222 None Gunshot -

53 A00000T16R00x02.wav 915050 10.37472 None Gunshot -

54 A00000T16R00x03.wav 843394 9.56229 None Gunshot -

55 A00000T16R00x04.wav 915050 10.37472 None Gunshot -

56 A00000T16R00x05.wav 915050 10.37472 None Gunshot -

57 A00000T16R00x06.wav 893002 10.12474 None Gunshot -

58 A00000T16R00x07.wav 920562 10.43721 None Gunshot -

59 A00000T16R00x08.wav 915050 10.37472 None Gunshot -

60 A00000T16R00x09.wav 915050 10.37472 None Gunshot -

61 A00000T16R00x10.wav 837882 9.499796 None Gunshot -

62 A00000T16R00x11.wav 920562 10.43721 None Gunshot -

63 A00000T16R00x12.wav 920562 10.43721 None Gunshot -

64 A00000T16R00x13.wav 926074 10.49971 None Gunshot -

65 A00000T16R00x14.wav 926074 10.49971 None Gunshot -

66 A00000T16R00x15.wav 915050 10.37472 None Gunshot -

67 A00000T16R00x16.wav 926074 10.49971 None Gunshot -

68 A00000T16R00x17.wav 920562 10.43721 None Gunshot -

69 A00000T16R00x18.wav 920562 10.43721 None Gunshot -

70 A00000T16R00x19.wav 948122 10.74968 None Gunshot -

71 A00000T16R00x20.wav 920562 10.43721 None Gunshot -

72 A00000T16R00x21.wav 926074 10.49971 None Gunshot -

73 A00000T16R00x22.wav 843394 9.56229 None Gunshot -

74 A00000T16R00x23.wav 920562 10.43721 None Gunshot -

75 A00000T16R00x24.wav 909538 10.31222 None Gunshot -

280 Appendix C

76 A00000T16R00x25.wav 920562 10.43721 None Gunshot -

77 A00000T16R00x26.wav 920562 10.43721 None Gunshot -

78 A00000T16R00x27.wav 915050 10.37472 None Gunshot -

79 A00000T16R00x28.wav 920562 10.43721 None Gunshot -

80 A00000T16R00x29.wav 920562 10.43721 None Gunshot -

81 A00000T16R00x30.wav 920562 10.43721 None Gunshot -

82 A00000T16R00x31.wav 832370 9.437302 None Gunshot -

83 A00000T16R00x32.wav 898514 10.18723 None Gunshot -

84 A00100T00R00.wav 26507340 300.5367 Motor 3 (desengaged) - -

85 A00200T00R00.wav 26556948 301.0992 Motor 3(very slow) - -

86 A00300T00R00.wav 26512852 300.5992 Motor 3 (slow) - -

87 A00400T00R00.wav 26512852 300.5992 Motor 3 (half) - -

88 A00200T00R01.wav 26540412 300.9117 Motor 3(very slow) - Air (strong)

89 A00400T00R01.wav 26507340 300.5367 Motor 3 (half) - Air (strong)

90 A00200T00R08.wav 26512852 300.5992 Motor 3(very slow) - Water (strong)

91 A00400T00R08.wav 26667188 302.3491 Motor 3 (half) - Water (strong)

92 A00500T00R00x1.wav 5357796 60.74599 Motor 3 (changing) - -

93 A00500T00R00x2.wav 5335748 60.49601 Motor 3 (changing) - -

94 A01000T00R00.wav 26512852 300.5992 Motor 2 (desengaged) - -

95 A02000T00R00.wav 26540412 300.9117 Motor 2(very slow) - -

96 A03000T00R00.wav 26512852 300.5992 Motor 2 (slow) - -

97 A04000T00R00.wav 26507340 300.5367 Motor 2 (half) - -

98 A02000T00R01.wav 26545924 300.9742 Motor 2(very slow) - Air (strong)

99 A02000T00R08.wav 26518364 300.6617 Motor 2 (half) - Water (strong)

100 A04000T00R01.wav 26793964 303.7864 Motor 2(very slow) - Air (strong)

101 A04000T00R08.wav 26507340 300.5367 Motor 2 (half) - Water (strong)

102 A05000T00R00x1.wav 5352284 60.68349 Motor 2 (changing) - -

103 A05000T00R00x2.wav 5335748 60.49601 Motor 2 (changing) - -

104 A20000T00R00.wav 26518364 300.6617 Motor 1 (half) - -

105 A40000T00R01.wav 26540412 300.9117 Motor 1 (half) - Air (strong)

106 A40000T00R08.wav 26529388 300.7867 Motor 1 (half) - Water (strong)

107 A02000T16R00.wav 5292058 60.00066 Motor 2(very slow) Gunshot -

108 A02000T08R00.wav 5292058 60.00066 Motor 2(very slow) Metal hammer -

109 A02000T04R00.wav 5292058 60.00066 Motor 2(very slow) Rubber hammer -

110 A02000T01R00.wav 5292058 60.00066 Motor 2(very slow) Air -

111 A02000T02R00.wav 5292058 60.00066 Motor 2(very slow) Bucket of water -

112 A22000T00R00.wav 5292058 60.00066 Motor1+Motor2 - -

113 A02200T00R00.wav 5292058 60.00066 Motor2+Motor3 - -

114 E02040T00R00.wav 5292058 60.00066 Motor2+Motor4 - -

List of data recorded in the acoustic tank 281

115 A00200T16R00.wav 5292058 60.00066 Motor 3(very slow) Gunshot -

116 E00220T00R00.wav 5292058 60.00066 Motor3+Motor4 - -

117 A00200T08R00.wav 5292058 60.00066 Motor 3(very slow) Metal hammer -

118 A00200T04R00.wav 5292058 60.00066 Motor 3(very slow) Rubber hammer -

119 A00200T01R00.wav 5292058 60.00066 Motor 3(very slow) Air -

120 A00200T02R00.wav 5292058 60.00066 Motor 3(very slow) Bucket of water -

121 A02002T00R00.wav 5292058 60.00066 Motor2+Model boat - -

122 A02020T00R00.wav 5292058 60.00066 Motor2+Motor4 - -

123 A20200T00R00.wav 5292058 60.00066 Motor1+Motor3 - -

124 A00220T00R00.wav 5292058 60.00066 Motor3+Motor4 - -

125 E00200T00R00.wav 5292058 60.00066 Motor 3(very slow) - -

126 A20220T00R00.wav 5292058 60.00066 Motor1+3+4 - -

127 A20020T00R00.wav 5292058 60.00066 Motor1+Motor3 - -

128 E20000T16R00.wav 5292058 60.00066 Motor 1(very slow) Gunshot -

129 A20000T16R00.wav 5292058 60.00066 Motor 1(very slow) Gunshot -

130 A20000T08R00.wav 5292058 60.00066 Motor 1(very slow) Metal hammer -

131 A20000T04R00.wav 5292058 60.00066 Motor 1(very slow) Rubber hammer -

132 A20000T01R00.wav 5292058 60.00066 Motor 1(very slow) Air -

133 A20000T02R00.wav 5292058 60.00066 Motor 1(very slow) Bucket of water -

134 A00010T00R00.wav 31528772 357.4691 Motor 4 (desengaged) - -

135 A00020T00R00.wav 32702828 370.7804 Motor 4(very slow) - -

136 A00030T00R00.wav 39603852 449.0233 Motor 4 (slow) - -

137 A00040T00R00.wav 29097980 329.9091 Motor 4 (half) - -

138 A00020T00R01.wav 26667188 302.3491 Motor 4(very slow) - Air (strong)

139 E00040T00R01.wav 9144540 103.6796 Motor 4 (half) - Air (strong)

140 A00040T00R01.wav 27312092 309.6609 Motor 4 (half) - Air (strong)

141 A00020T00R08.wav 26523876 300.7242 Motor 4(very slow) - Water (strong)

142 A00040T00R08.wav 26738844 303.1615 Motor 4 (half) - Water (strong)

143 A00020T16R00.wav 5065586 57.43295 Motor 4(very slow) Gunshot -

144 A00020T08R00.wav 5292058 60.00066 Motor 4(very slow) Metal hammer -

145 A00020T04R00.wav 5275042 59.80773 Motor 4(very slow) Rubber hammer -

146 A00020T01R00.wav 5292058 60.00066 Motor 4(very slow) Air -

147 A00020T02R00.wav 5292058 60.00066 Motor 4(very slow) Bucket of water -

148 A00011T00R00.wav 5292058 60.00066 Motor4+Model boat - -

149 A00022T00R00.wav 5292058 60.00066 Motor3+Model boat - -

150 A20002T00R00.wav 5292058 60.00066 Motor 1 (half) - -

151 A00000T08R00.wav 28601900 324.2846 None Metal hammer -

152 A00000T04R00.wav 28353860 321.4723 None Rubber hammer -

153 A00000T01R00.wav 28342836 321.3473 None Air -

282 Appendix C

154 A00000T02R00.wav 29368068 332.9713 None Bucket of water -

155 A00002T16R00.wav 5292058 60.00066 Model boat Gunshot -

156 A00002T08R00.wav 5292058 60.00066 Model boat Metal hammer -

157 A00002T04R00.wav 5292058 60.00066 Model boat Rubber hammer -

158 A00002T01R00.wav 5292058 60.00066 Model boat Air -

159 A00002T02R00.wav 5292058 60.00066 Model boat Bucket of water -

160 A00001T00R00.wav 5335748 60.49601 Model boat (slow) - -

161 A00002T00R00.wav 5539692 62.8083 Model boat (rapido) - -

162 A00003T00R00.wav 5335748 60.49601 Model boat (re lento) - -

163 A00004T00R00.wav 5886948 66.74544 Model boat (re rápido) - -

164 A00005T00R00.wav 6945252 78.74435 None - -

165 E00006T00R00.wav 7292508 82.6815 None - -

166 A00006T00R00.wav 5341260 60.5585 None - -

167 A00000T00R09.wav 26601044 301.5991 None - Air + Water

168 A00000T00R01.wav 1.12E+08 1265.699 None - Air (strong)

 283

APPENDIX D

Overview of the signals recorded in the acoustic tank

284 Appendix D

This appendix presents an overview of the signals recorded in the acoustic tank, as described in

Chapter 4 of part III, and used in the experiments contained in that Chapter.

Each data pattern was extracted from approximately 3 s of raw signal. The total number of

patterns available is presented in Table 12.

Effect Nº of Patterns Time Size /MB
motor 1 1263 1 h 03 min 333.606
motor 2 949 47 min 249.587
motor 3 968 48 min 254.763
motor 4 1045 52 min 275.536
motor 5
(background)

1291 1 h 04 min 343.890

TOTAL 5516 5 h 01 min 1.457.382

Table 23 - General information about the Acoustic Tank data. The number of patterns correspond to 3 s
segments of the original signal. These will later be subject to different feature extraction techniques, to

produce the final patterns.

The plots presented in the following pages where obtained by computing the power spectra of

each raw pattern with 8192 points (4096 positive frequency bins), corresponding to 5.3 Hz per

bin from 0 to 22 kHz. A Hamming window and 50% overlap Welsh periodograms were used, so

each spectrum used is the average of 32 individual spectra.

Overview of the data recorded in the acoustic tank 285

Figure 97 - Spectra of Motor 1. The black line represents the average, the dark gray area represents the
region of average ± standard deviation, and the light gray area encompasses all observed signals (from

maximum to minimum values)

286 Appendix D

Figure 98 -Spectra of Motor 2. The black line represents the average, the dark gray area represents the region
of average ± standard deviation, and the light gray area encompasses all observed signals (from maximum to

minimum values).

Overview of the data recorded in the acoustic tank 287

Figure 99 -Spectra of Motor 3. The black line represents the average, the dark gray area represents the region
of average ± standard deviation, and the light gray area encompasses all observed signals (from maximum to

minimum values).

288 Appendix D

Figure 100 - Spectra of Motor 4. The black line represents the average, the dark gray area represents the
region of average ± standard deviation, and the light gray area encompasses all observed signals (from

maximum to minimum values).

Overview of the data recorded in the acoustic tank 289

Figure 101 - Spectra of background noise (or motor 5). The black line represents the average, the dark gray
area represents the region of average ± standard deviation, and the light gray area encompasses all observed

signals (from maximum to minimum values).

 291

APPENDIX E

Matlab routines

292 Appendix E

function qs=qs_mat_build(prototype, label_prototype, pattern ,label_pattern)

% qs=qs_mat_build(prototypes, label_prototypes,patterns ,label_patterns)

%

% OBJECTIVE

% Build the Q-set matrix for the patterns in PATTERNS. This routine

% caclulates the Q-set of order 0, necessary for the positive-only

% Q-set approach descibed in (Lobo).

%

% INPUT PARAMETERS

% prototype - Candidate prototypes (one per column)

% label_prototype - Labels of the prototypes

% pattern - Data patterns (one per column) for which the

% Q matrix is calculated

% label_pattern - Labels of the patterns

%

% OUTPUT PARAMETERS

% qs - Boolean matrix where each row corresponds to

% a data pattern, and each column to a prototype

% A value of 1 indicates that the prototype

% corresponding to that columns belongs to the

% Q-set of the data pattern corresonding to the row

%

% V.1.0.0 - 00-JUN-2000 - V.Lobo, Home

% V.1.1.0 - 08-AUG-2002 - V.Lobo, SDSU

[numFeatures,numPatterns]=size(pattern);

[numFeatures2,numPrototypes]=size(prototype);

if numFeatures ~= numFeatures2

 disp('ERROR in qs_mat_build: number of features does not agree.');

 return ;

end;

d = dist(pattern',prototype);

 % sameClass is 1 if pattern and prototype

 % have the same label

sameClass = (repmat(label_prototype,numPatterns,1) ==

(repmat(label_pattern,numPrototypes,1))');

 % we shall now find the nearest prototype with

 % WRONG class

Matlab Routines 293

warning off;

wrongDistances = min((d ./ ~sameClass)')';

warning on;

qs= sameClass & (d<repmat(wrongDistances,1,numPrototypes));

294 Appendix E

function chosenPrototypes=qs_select_heuristic(qset)

% chosenPrototypes=qs_select_heuristic(qset)

%

% OBJECTIVE

% This function selects the classifiying prototypes, given

% a matrix with their Q-sets, using the positive-only

% heuristic descibed in (Lobo)

%

% INPUT PARAMETERS

% qset Binary matrix with qsets, produced by "qs_mat_build"

%

% OUTPUT PARAMETERS

% chosenPrototypes Indexes of the chosen prototypes

%

% COMMENTS

%

% V.1.0.0 - 00-000-2001 - V.Lobo

% V.1.1.0 - 08-AUG-2002 - V.Lobo

[numPatterns,numPrototypes]=size(qset);

indexPrototypes=1:numPrototypes;

 % find how many prorotypes classify each pattern

sumPrototypes=sum(qset,2);

 % Find patterns that are classified by a single prototype

singlyClassifiedPatterns = find(sumPrototypes==1);

 % Store the candidate Prototypes that classify those patterns

[dummy,candidatePrototype] = find(qset(singlyClassifiedPatterns,:)==1);

 % Remove repeated prorotypes from the list

candidatePrototype = unique(candidatePrototype);

 % make the choice permanent

chosenPrototypes = candidatePrototype;

[numChosenPrototypes,dummy] = size(chosenPrototypes);

 % clear the qs_matrice of the already dealt with patterns

remainingPatterns = find(sumPrototypes > 1);

qset = qset(remainingPatterns,:);

Matlab Routines 295

 % find the indexes of patterns already covered by the chosen prototypes

tmpQset=qset(:,chosenPrototypes);

sumPrototypes=sum(tmpQset,2);

remainingPatterns = find(sumPrototypes < 1);

qset = qset(remainingPatterns,:);

 % At this moment, all patterns in QSET are classified by at leat 2 protot.

while(size(qset)>0)

 frequency = sum(qset,1);

 [dummy,candidatePrototype]=max(frequency);

 remainingPatterns = find(qset(:,candidatePrototype) == 0);

 qset = qset(remainingPatterns,:);

 chosenPrototypes = [chosenPrototypes ; candidatePrototype];

end;

296 Appendix E

function [qsgc,qsgc_lv]=qsgc_mat_build(prototype, label_prototype, pattern

,label_pattern)

% [qsgc,qsgc_lv]=qsgc_mat_build(prototype, label_prototype, pattern

,label_pattern)

%

% OBJECTIVE

% Build the generalised Q set matrix for the patterns in PATTERNS,

% according to [Lobo 02]. From this matrix, the various Q and R sets

% can easlily be computed

%

%

% INPUT PARAMETERS:

% prototype - Candidate prototypes (one per column)

% label_prototype - Labels of the prototypes

% pattern - Data patterns (one per column) for which the

% Q matrix is calculated

% label_pattern - Labels of the patterns

%

% OUTPUT PARAMETERS

%

% qsgc - Q-Set-General-Case: Matrix with the indexes of the

% nearest prototypes, sorted by distance. Each row

% corresponds to a given pattern

% qsgc_lv -Q-Set-General-Case-Logical-Values: companion matrix

% to qsgc, has 1 if the corresponding variable is

% affirmative (same classes), and 0 it they are not

% (different classes)

%

% V.1.0.0 - 00-JUN-2000 - V.Lobo, Home

% V.1.1.0 - 08-APR-2002 - V.Lobo, SDSU

[numFeatures,numPatterns]=size(pattern);

[numFeatures2,numPrototypes]=size(prototype);

if numFeatures ~= numFeatures2

 disp('ERROR in qsgc_mat_build: incorrect number of features');

 return ;

end;

qsqc_lv=zeros(numPatterns,numPrototypes);

d = dist(pattern',prototype);

 % Sort the distances into the Qset

Matlab Routines 297

[lixo, qsgc] = sort(d, 2);

for i=1:numPatterns

 tmp=label_prototype(qsgc(i,:));

 qsgc_lv(i,:)=tmp==label_pattern(i);

end;

298 Appendix E

function [qs,removedP]=g2p(qsgc,qsgc_lv,amer)

% [qs,removedP]=g2p(qsgc,qsgc_lv,amer

%

% OBJECTIVE

% Transform a general-case Q-set to a positive-only, usin amer

%

% INPUT PARAMETERS:

% qsgc - Q-Set-General-Case: Matrix with the indexes of the

% nearest prototypes, sorted by distance. Each row

% corresponds to a given pattern

% qsgc_lv -Q-Set-General-Case-Logical-Values: companion matrix

% to qsgc, has 1 if the corresponding variable is

% affirmative (same classes), and 0 it they are not

% (different classes)

% amer - Maximum number of errors allowed

%

% OUTPUT PARAMETERS

% qs - Boolean matrix with the positive-only q-sets

% removedP- Indexes of the patterns removed

%

% V.1.0.0 - 08-APR-2002 - V.Lobo, SDSU

% Variables:

% gsgc_valid - boolean matrix that is a companion to qsgc and qsgc_lv

% if it is 1, that combination of pattern/prototype is sill

% possible, because the prototype hasen't been excluded

[numPatterns,numPrototypes]=size(qsgc);

qsgc_valid=ones(numPatterns,numPrototypes);

P=1:numPrototypes; % indexes of prototypes that can be included

removedP=[]; % indexes of prototypes that are excluded

%calculate the original error rate

errors=not(qsgc_lv(:,1)); % if the first entry in the Qset has the same

class

 % then there is no error. Otherwise, there is. The

 % variable "errors" is a vector that that has a

"1"

 % in the positions corresponting to patterns that

are

Matlab Routines 299

 % badly classified

validPatterns=find(errors==0); % "validPatterns" contains indexes of valid

Patt.

numValidPatterns=length(validPatterns);

numErrors=numPatterns-numValidPatterns;

oldRemovedP=removedP; % we might have to backtrack 1 step

oldqsgc_valid=qsgc_valid;

olderrors=errors;

oldvalidPatterns=validPatterns;

while numErrors <= amer

% First search for obvious candidates for exlusion

candidateP=zeros(1,numValidPatterns);

for i=validPatterns' % Search all still valid patterns

 bad=and(qsgc_valid(i,:),not(qsgc_lv(i,:)));

 ibad=find(bad==1); % indexes of prototypes with wrong class

 thisCandidate=ibad(1); % index of FIRST prototype with wrong class

 candidateP(i)= qsgc(i,thisCandidate); % add that prototype to the

candidate list

end;

candidateP=unique(candidateP); % Remove duplicate candidates

if candidateP(1)==0 % pathological case 1: one pattern has no bad prot.

 candidateP=candidateP(2:end);

end;

if candidateP==[] % pathological case 2: there are no mode candidates

 break;

end;

% calculate min cost/benefit for each of the candidates

minCB=10000; % dummy initial value for minumum Cost/Benefit found

minCBP=0; % dummy initial value for the index of the best prototype

for j=candidateP % for every candidate...

 cost=1;

 benefit=1;

 for i=validPatterns' % check effect on all remaining Patterns

 position=find(qsgc(i,:)==j); % position of candidate prototype in

Qset

300 Appendix E

 if qsgc_lv(i,position)==1

 %if they have the SAME class

 valid=qsgc_valid(i,1:position-1);

 right=qsgc_lv(i,1:position-1);

 previous_right=and(valid,right);

 if not(any(previous_right))

 %if it is the first right

 if qsgc_lv(i,position+1)==0

 % if the next has the wrong label

 % in this case, the cost would be increased

 cost=cost+1;

 end;

 end;

 else % if they have different classes

 %find out if it's the first of the wrong class

 valid=qsgc_valid(i,1:position-1);

 wrong=not(qsgc_lv(i,1:position-1));

 previous_wrong=and(valid,wrong);

 if not(any(previous_wrong))

 % if this is the first wrong

 % we will count how may benefits we have

 % 1-go to the next valid

 position=position+1;

 while ((position < numPrototypes) &

(qsgc_valid(i,position)==0))

 position=position+1;

 end;

 while (position < numPrototypes) & (qsgc_lv(i,position)==1)

 benefit=benefit+1;

 position=position+1;

 while (position < numPrototypes) &

(qsgc_valid(i,position)==0)

 position=position+1;

 end;

 end;

 end;

 end;

 end; % end of for validPatterns (the effect of this prototype "j" on all

 % remaining patterns is accounted for.

 % We shall now see if it is better than all previous candidates...

Matlab Routines 301

 CB=cost/benefit;

 if CB<minCB

 minCB=CB;

 minP=j;

 end;

end;

%We have now selected the best prototype

oldRemovedP=removedP; % we might have to backtrack 1 step

oldqsgc_valid=qsgc_valid;

olderrors=errors;

oldvalidPatterns=validPatterns;

removedP=union(removedP,minP); % we add it to the removed set;

P = setdiff(P,minP); % ... and remove it from the prototype

%We will now remove it from the Qsets and which are not errors

errors=zeros(1,numPatterns);

for i=1:numPatterns'

 removedIndex=find(qsgc(i,:)== minP);

 qsgc_valid(i,removedIndex)=0;

 % now lets check if Ro={}

 good=and(qsgc_valid(i,:),qsgc_lv(i,:));

 igood=find(good==1);

 if igood==[]

 errors(i)=1;

 else

 igood=igood(1);

 bad=and(qsgc_valid(i,:),not(qsgc_lv(i,:)));

 ibad=find(bad==1);

 if ibad~=[]

 ibad=ibad(1);

 if ibad < igood

 % in this case there is a bad one before the good one

 errors(i)=1;

 end;

 end;

 end;

end;

% calculate the error

302 Appendix E

validPatterns=find(errors==0)';

numErrors=numPatterns-length(validPatterns);

end; % do amer...

% now we must construct the boolean positive-only functions

errors=olderrors;

qsgc_valid=oldqsgc_valid;

validPatterns=oldvalidPatterns;

% initialize qs

qs=zeros(length(validPatterns),numPrototypes);

% fill qs eith the appropriate ones

for i=1:length(validPatterns)

 patternIndex=validPatterns(i);

 bad=and(qsgc_valid(patternIndex,:),not(qsgc_lv(patternIndex,:)));

 ibad=find(bad==1);

 ibad=ibad(1);

 good=and(qsgc_valid(patternIndex,1:ibad-1),qsgc_lv(patternIndex,1:ibad-

1));

 igood=find(good==1);

 iprototypes=qsgc(patternIndex,igood);

 qs(i,iprototypes)=1;

end;

return;

Matlab Routines 303

function [chosenPrototypes]=qs_select(qset)

% [chosenPrototypes]=qs_select(qset)

%

% OBJECTIVE

% This function selects the classifiying prototypes, given

% a matrix with their Q-sets, using branch-and-bound described

% in [Lobo 2002]

%

% INPUT PARAMETERS

% qset Binary matrix with qsets, produced by "qs_mat_build"

%

% OUTPUT PARAMETERS

% chosenPrototypes Indexes of the chosen prototypes

%

% COMMENTS

% This functions contains "sub-functions", and uses global variables

%

% V.1.0.0 - 00-000-2001 - V.Lobo

global originalQs;

global indexPrototypes;

global stopCost; % cost of bestsolution MINUS 1

global selectedPrototypes

originalQs = qset;

clear qset;

[numPatterns,numPrototypes]=size(originalQs);

indexPrototypes=1:numPrototypes;

 % find how many prorotypes classify each pattern

sumPrototypes=sum(originalQs,2);

 % Find patterns that are classified by a single prototype

singlyClassifiedPatterns = find(sumPrototypes==1);

 % Store the candidate Prototypes that classify those patterns

[dummy,candidatePrototype] = find(originalQs(singlyClassifiedPatterns,:)==1

);

 % Remove repeated prorotypes from the list

304 Appendix E

candidatePrototype = unique(candidatePrototype);

 % make the choice permanent

selectedPrototypes = candidatePrototype;

[numChosenPrototypes,dummy] = size(selectedPrototypes);

 % clear the qs_matrice of the already dealt with patterns

remainingPatterns = find(sumPrototypes > 1);

originalQs = originalQs(remainingPatterns,:);

 % find the indexes of patterns already covered by the chosen prototypes

tmpQset=originalQs(:,selectedPrototypes);

sumPrototypes=sum(tmpQset,2);

remainingPatterns = find(sumPrototypes < 1);

if ~isempty(remainingPatterns)

 % originalQs = originalQs(remainingPatterns,:);

 remainingPrototypes = setdiff(indexPrototypes,selectedPrototypes);

 stopCost = inf ;

 IterateSearch(remainingPatterns,remainingPrototypes,selectedPrototypes,1)

end;

chosenPrototypes = selectedPrototypes;

return

%---

--

% now the iterative part

%---

--

function

IterateSearch(remainingPatterns,remainingPrototypes,candidateSelectedPrototype

s,cost)

% ITERATIVE SEARCH - Iterative part of the QS selection with Branch&Bound

%

global originalQs;

global indexPrototypes;

global stopCost; % cost of bestsolution MINUS 1

global selectedPrototypes

frequency = sum(originalQs(remainingPatterns,remainingPrototypes),1);

Matlab Routines 305

 % frequency will contain the relative frequencies of remaining prot.

localPrototypes = indexPrototypes(remainingPrototypes);

 % localPrototypes will contain the numbers of the remaining prototypes,

 % in the same order as they appear in frequency

 [maxFrequency,candidatePrototypePosition]= max(frequency);

while(maxFrequency > 0)

 % select that candidate prototype

 candidatePrototype = localPrototypes(candidatePrototypePosition);

 removedPatterns = find(originalQs(:,candidatePrototype));

 localRemainingPatterns = setdiff(remainingPatterns,removedPatterns);

 if isempty(localRemainingPatterns)

 % in this case, the search has ended.

 stopCost = cost-1;

 selectedPrototypes = [candidateSelectedPrototypes ; candidatePrototype

];

 %disp('found a new solution');

 %selectedPrototypes'

 return;

 end;

 % if the set isen't empty, is it worthwhile continuing this branch ?

 if cost < stopCost

 % if all is OK, let us iterate down one level

 localRemainingPrototypes =

setdiff(remainingPrototypes,candidatePrototype);

 IterateSearch(localRemainingPatterns,localRemainingPrototypes,[candidate

SelectedPrototypes ; candidatePrototype],cost+1);

 end;

 if cost == stopCost

 return; %in this case, it's no use trying more at this level

 end;

 frequency(candidatePrototypePosition)=0;

 [maxFrequency,candidatePrototypePosition]= max(frequency);

end;

%disp('finished a branch');

return;

306 Appendix E

function [cnn,cnn_label]=cnn(train, train_label)

% [cnn,cnn_label]=Cnn(train, train_label)

%

% OBJECTIVE

% This function selects the Condensed Nearest Neighbor classifiying

% patterns, acording to the CNN rule givem in [Hart 67]

%

% INPUT PARAMETERS

% train Matrix with the initial trining set

% (one pattern per column)

% train_label Row vector with the lables (1:Nclasses)

% of the training set

%

% OUTPUT PARAMETERS

% cnn Matrix with de CNN (one pattern per column)

% cnn_label Row vector with the labels of cnn

%

% COMMENTS

% Uses the knn function by VSL

%

% V.1.0.0 - 00-FEB-2000 - V.Lobo

[num_features,num_patterns]=size(train);

% The first CNN is the first training pattern.

cnn = train(:,1);

cnn_label = train_label(1);

additions=1;

while additions~=0

 additions=0;

 for k=2:num_patterns

 class = knn(cnn, cnn_label, train(:,k), 1);

 if class ~= train_label(k)

 cnn=[cnn train(:,k)];

 cnn_label=[cnn_label train_label(k)];

 additions=1;

 end;

 end;

end;

Matlab Routines 307

function [rnn,rnn_label]=rnn(train,train_label,cnn,cnn_label)

% [rnn,rnn_label]=rnn(train,train_label,cnn,cnn_label)

%

% OBJECTIVE

% This function selects the Reduced Nearest Neighbor classification

% set from a previously obtained Condensed Nearest Neighbor set,

% acording to the RNN rule givem in [Gates 72]

%

% INPUT PARAMETERS

% train Matrix with the initial trining set

% (one pattern per column)

% train_label Row vector with the lables (1:Nclasses)

% of the training set

% cnn Matrix with the CNN

% (one pattern per column)

% cnn_label Row vector with the lables (1:Nclasses)

% of the CNN

%

% OUTPUT PARAMETERS

% rnn Matrix with de RNN (one pattern per column)

% rnn_label Row vector with the labels of rnn

%

% COMMENTS

%

% V.1.0.0 - 00-FEB-2000 - V.Lobo

[num_features,num_cnn]=size(cnn);

rnn = cnn;

rnn_label=cnn_label;

rnn_index=1;

for m=1:num_cnn

 try_rnn = Remove_col(rnn,rnn_index); % remove pattern

 try_rnn_label = Remove_col(rnn_label,rnn_index); % remove label

 c=knn_mat(try_rnn,try_rnn_label,train); % classify all patterns with

 % new set

 if c==train_label % if there are no errors...

 rnn=try_rnn; % Accept the new RNN

 rnn_label = try_rnn_label;

 else % If not...

 rnn_index=rnn_index+1; % pass on to next candidate

 end;

308 Appendix E

end;

return;

Matlab Routines 309

function [vxx,vy] = voronoi_boundary(x,y,class,arg3,arg4)

%VORONOI Voronoi boundary diagram.

% VORONOI_BOUNDARY(X,Y,CLASS) plots the Voronoi diagram for the points X,Y.

%

% VORONOI(X,Y,TRI) uses the triangulation TRI instead of

% computing it via DELAUNAY.

%

% H = VORONOI(...,'LineSpec') plots the diagram with color and linestyle

% specified and returns handles to the line objects created in H.

%

% [VX,VY] = VORONOI(...) returns the vertices of the Voronoi

% edges in VX and VY so that plot(VX,VY,'-',X,Y,'.') creates the

% Voronoi diagram.

%

% See also DELAUNAY, TRIMESH, TRISURF, DSEARCH, CONVHULL.

% Clay M. Thompson 7-15-95.

% Copyright (c) 1984-98 by The MathWorks, Inc.

% $Revision: 1.7 $ $Date: 1997/11/21 23:46:58 $

% V.2.0.0 - 00-FEB-2000 - V.Lobo. Changes Voronoi do draw bondaries

% V.2.2.0 - 00-MAY-2002 - V.Lobo. Re-orders trainges for compatibility

% with MATLAB 6

error(nargchk(3,5,nargin)); % 1 more parameter than Voronoi

if nargin==3, % 1 more parameter than

Voronoi

 tri = delaunay(x,y);

 ls = '';

elseif nargin==4, % 1 more parameter than Voronoi

 if isstr(arg3),

 tri = delaunay(x,y);

 ls = arg3;

 else

 tri = arg3;

 ls = '';

 end

else

 tri = arg3;

 ls = arg4;

end

310 Appendix E

% re-orient the triangles so that they are all clockwise

xt = x(tri); yt=y(tri);

ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ...

 xt(:,2).*(yt(:,3)-yt(:,1)) + ...

 xt(:,3).*(yt(:,1)-yt(:,2));

bt = find(ot<0);

tri(bt,[1 2]) = tri(bt,[2 1]);

% ----------------------------- End reorientation

n = prod(size(x));

ntri = size(tri,1);

t = (1:ntri)';

T = sparse(tri,tri(:,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j)

 %NOTA: T is a nxn matrix, where every col/row intersection corresponds

 % to 0 if the points are adjacent in the triangulation

E = (T & T').*T; % Voronoi edge if E(i,j)

[i,j,v] = find(triu(E));

[i,j,vv] = find(triu(E'));

c1 = circle(tri(v,:),x,y);

c2 = circle(tri(vv,:),x,y);

vx = [c1(:,1) c2(:,1)].';

vy = [c1(:,2) c2(:,2)].';

% we shall now eliminate the v and vv that belong to isoclass triangles

[numlines dummy]=size(i);

indexes=1:numlines;

selection = ((class(i)~= class(j))');

selection = selection'.*indexes;

selection = find(selection);

vx = vx(:,selection);

vy = vy(:,selection);

if nargout<2

 if isempty(ls),

 co = get(gcf,'defaultaxescolororder');

Matlab Routines 311

 h = plot(vx,vy,'-',x,y,'.','color',co(1,:));

 else

 [l,c,m,msg] = colstyle(ls); error(msg)

 if isempty(m), m = '.'; end

 h = plot(vx,vy,ls,x,y,[c m]);

 end

 if ~ishold,

 view(2), axis([min(x(:)) max(x(:)) min(y(:)) max(y(:))])

 end

 if nargout==1, vxx = h; end

else

 vxx = vx;

end

function c = circle(tri,x,y)

%CIRCLE Return center and radius for circumcircles

% C = CIRCLE(TRI,X,Y) returns a N-by-3 vector containing [xcenter(:)

% ycenter(:) radius(:)] for each triangle in TRI.

% Reference: Watson, p32.

x = x(:); y = y(:);

x1 = x(tri(:,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3));

y1 = y(tri(:,1)); y2 = y(tri(:,2)); y3 = y(tri(:,3));

% Set equation for center of each circumcircle:

% [a11 a12;a21 a22]*[x;y] = [b1;b2] * 0.5;

a11 = x2-x1; a12 = y2-y1;

a21 = x3-x1; a22 = y3-y1;

b1 = a11 .* (x2+x1) + a12 .* (y2+y1);

b2 = a21 .* (x3+x1) + a22 .* (y3+y1);

% Solve the 2-by-2 equation explicitly

idet = a11.*a22 - a21.*a12;

% Add small random displacement to points that are either the same

% or on a line.

d = find(idet == 0);

if ~isempty(d), % Add small random displacement to points

312 Appendix E

 delta = sqrt(eps);

 x1(d) = x1(d) + delta*(rand(size(d))-0.5);

 x2(d) = x2(d) + delta*(rand(size(d))-0.5);

 x3(d) = x3(d) + delta*(rand(size(d))-0.5);

 y1(d) = y1(d) + delta*(rand(size(d))-0.5);

 y2(d) = y2(d) + delta*(rand(size(d))-0.5);

 y3(d) = y3(d) + delta*(rand(size(d))-0.5);

 a11 = x2-x1; a12 = y2-y1;

 a21 = x3-x1; a22 = y3-y1;

 b1 = a11 .* (x2+x1) + a12 .* (y2+y1);

 b2 = a21 .* (x3+x1) + a22 .* (y3+y1);

 idet = a11.*a22 - a21.*a12;

end

idet = 0.5 ./ idet;

xcenter = (a22.*b1 - a12.*b2) .* idet;

ycenter = (-a21.*b1 + a11.*b2) .* idet;

radius = (x1-xcenter).^2 + (y1-ycenter).^2;

c = [xcenter ycenter radius];

Matlab Routines 313

function class_plot(x,y,class)

% class_plot(x,y,class)

%

% OBJECTIVE

% Plot prototypes of different classes using different colors and

% markers

%

% INPUT PARAMETERS

% x - x coordinates of the patterns

% y - y coordinates of the patterns

% class - classes of the patterns

%

% OUTPUT PARAMETERS

%

% COMMENTS

%

% V.1.0.0 - 00-MAR-2000 - V.Lobo

class_index=find(class==1);

classx = x(class_index);

classy = y(class_index);

plot(classx,classy,'+b');

hold on

class_index=find(class==2);

classx = x(class_index);

classy = y(class_index);

plot(classx,classy,'xr');

class_index=find(class==3);

classx = x(class_index);

classy = y(class_index);

plot(classx,classy,'oy');

314 Appendix E

function [c,cp] = knn(t_data, t_label, x, k)

% [c,cp] = knn(t_data, t_label, x, k)

%

% OBJECTIVE

% This function classifies a data patterns using a training set and

% the k-nn rule [Bishop 95]

%

% INPUT PARAMETERS

% t_data Training data matrix with one pattern per column

% t_label Row vector containg the labels of the T_DATA

% x Colum vector with the sample to classify

% k Number of neighbours to consider

%

% OUTPUT PARAMETERS

% c Class of the sample

% cp Row vector with the class probability for

% each class

% COMMENTS

% Classes are supposed to be labeled 1...N

%

% V.1.0.0 - 00-FEB-2000 - V.Lobo

% Euclidean distances from x to all t_data patterns

% 'distance' is a row vector with the discances

distance = dist(x',t_data);

cp(max(t_label))=0;

% Get the indexes

for j=1:k % do it K times

 [tmp,i]=min(distance); % i is the index of the NNeighbour

 cp(t_label(i))=cp(t_label(i))+1;

 distance(i)=inf; % don't use this distance again

end;

[tmp,c]=max(cp); % choose class

cp=cp./k;

return;

Matlab Routines 315

function [c] = knn_mat(t_data, t_label, x)

% [c] = knn(t_data, t_label, x)

%

% OBJECTIVE

% This function classifies a matrix of data patterns using a training

% set and the 1-nn rule [Bishop 95].

%

% INPUT PARAMETERS

% t_data Training data matrix with one pattern per column

% t_label Row vector containg the labels of the t_data

% x Matrix with the patterns to classify (1 per column)

%

% OUTPUT PARAMETERS

% c Row vector with the classes of the patterns in x

% cp Row vector with the class probability for

% each class

% COMMENTS

% Classes are supposed to be labeled 1...N

%

% V.1.0.0 - 00-FEB-2000 - V.Lobo

% Euclidean distances from x to all t_data patterns

% 'distance' is a row vector with the discances

distance = dist(x',t_data);

[values,index]=min(distance,[],2);

c=t_label(index);

return;

316 Appendix E

function confusion=confusionMatrix(correct_class, given_class, num_classes)

% confusion=confusionMatrix(correct_class, given_class, num_classes)

%

% OBJECTIVE

% To compute the confusion matrix (Fukunaga 1990), that shows which patterns

% were correclty classified (in the diagonal), and between which classes the

% errors occured

%

% INPUT PARAMETERS

% correct_class - vector with the correct class of each pattern

% given_class - vector with the class given by the classifier

% num_classes - number of classes present

%

% COMMENTS

% nil

%

% V 1.0.0 - 00-000-1999 - V.Lobo

% V 1.1.0 - 22-MAY-2002 - V.Lobo

[tmp num_patterns]=size(correct_class);

confusion=zeros(num_classes);

for k=1:num_patterns

 m=correct_class(k);

 index=given_class(k)-correct_class(k);

 confusion(m,m+index)=confusion(m,m+index)+1;

 % k

end;

Matlab Routines 317

function outclass=selfClassify(dataset,inclass,k)

% outclass=SelfClassify(dataset,inclass,k)

%

% OBJECTIVE

% This Function will classify every pattern in DATASET

% using the knn rule (with K neighbors), using as training

% set all remaining patterns of DATASET. The correct class

% for each pattern must be passed in INCLASS, and the

% function returns the vector OUTCLASS with the classifications

%

% INPUT PARAMETERS

% dataset Training data matrix with one pattern per column

% inclass Row vector containg the labels of "dataset"

% k Number of neighbours to consider

%

% OUTPUT PARAMETERS

% outclass Row vector with the given classes

%

% COMMENTS

% Classes are supposed to be labeled 1...N

%

% V.1.0.0 - 00-JUN-2000 - V.Lobo

[nfeatures,npatterns]=size(dataset);

[c,cp] = knn(dataset(:,2:npatterns), inclass(2:npatterns), dataset(:,1),

k);

outclass(1)=c;

for a=2:npatterns-1

 xd=[dataset(:,1:a-1) dataset(:,a+1:npatterns)];

 xc=[inclass(1:a-1) inclass(a+1:npatterns)];

 [c,cp] = knn(xd, xc, dataset(:,a), k);

 outclass(a)=c;

 a

 disp(c);

end

[c,cp] = knn(dataset(:,1:npatterns-1), inclass(1:npatterns-1),

dataset(:,npatterns), k);

outclass(npatterns)=c;

318 Appendix E

function splitData=splitData(numParts,class)

% splitData=splitData(numParts,class)

%

% OBEJCTIVE:

% Split a given dataset into small sets for cross-validation.

%

% INPUT PARAMETERS

% numParts Number of parts into which the data set is to be partitioned

%

% class A ROW vector, with the class of the pattern

%

% OUTPUT PARAMETERS

% splitData A matrix with "numParts" Columns, corresponding to each of the

% sets. The values in the matrix are the intexes into the

% original "data" and "class" sets.

%

%

% V. 1.0.0 V.Lobo, May 2002

numPatterns=length(class); % Find the total number of patterns

indexes=1:numPatterns; % Identify each pattern by it's index num.

sortNum=rand(1,numPatterns); % Build a random sort index

classes=unique(class); % Find which classes exist

numClasses=max(classes); % Find how many classes exist

classNumbers=hist(class,numClasses); % find how many patterns per

class

classNumbers=floor(classNumbers/numParts); % find how many pat/class per part

patternsPerPart=sum(classNumbers); % find the total n.patt. per part

splitData=zeros(patternsPerPart,numParts); % initialize the splitData Matrix

for i=classes'

 thisClassIndexes=find(class==i); % Select the indexes that belong to C

 sortmatrix=[sortNum(thisClassIndexes)' indexes(thisClassIndexes)'];

 sortmatrix=sortrows(sortmatrix);

 stopIndex=sum(classNumbers(1:i));

 startIndex=stopIndex-classNumbers(i)+1;

 for part=1:numParts

 fst=(part-1)*classNumbers(i)+1;

 lst=part*classNumbers(i);

 splitData(startIndex:stopIndex,part)=...

Matlab Routines 319

 sortmatrix(fst:lst,2);

 end;

end;

return;

320 Appendix E

function [train,trainClass,test,testClass]=...

 buildTrainTestSet(data,class,splitData,k)

% [train,trainClass,test,testClass]=buildTrainTestSet(data,class,splitData,k)

%

% OBEJCTIVE:

% Build a training and test set, based on the information contained in

% the matrix splitData (produced by the routine SplitData)

%

% INPUT PARAMETERS

% data Matrix with one pattern per COLUMN

% class ROW vector with the class of each patterns

% k the number of the train/test set. Must be one of the rows

% of the matrix splitData

%

%

% OUTPUT PARAMETERS

% train

% test

%

%

% V. 1.0.0 V.Lobo, May 2002

train=data(:,splitData(:,k));

trainClass=class(splitData(:,k));

tmpMat=removeCol(splitData,k);

[x,y]=size(tmpMat);

numElements=x*y;

tmpMat=reshape(tmpMat,[1 numElements]);

test=data(:,tmpMat);

testClass=class(tmpMat);

return

Matlab Routines 321

function [data,class] = read_koh(filename)

% [data,class] = read_koh(filename)

%

% OBJECTIVE

% Read an ASCII file in KOHONEN format

% This function will read an ASCII file using KOHONEN format [Kohonen 93]

%

% INPUT PARAMETERS

% filename String with the name of the file to read

%

% OUTPUT PARAMETERS

% y Matlab matrix with the data in the file

%

% COMMENTS

% Still is not universal, does not read classes, etc,etc

%

% V.1.0.0 - 00-FEB-2000 - V.Lobo

 fin=fopen(filename,'r');

 % read first line

x = fgetl(fin);

num_colunas = sscanf(x,'%g',1);

data = [];

class = [];

while ~feof(fin)

 x = fgetl(fin);

 if x(1)=='#'

 break;

 end;

 [y, count, errmsg, nextindex] = sscanf(x,'%g',num_colunas);

 if count==num_colunas

 data = [data ; y'];

 x=x(nextindex:end);

 [label,count,errmsg,nextindex] = sscanf(x,'%g',1);

 if count==1

 class = [class ; label];

 else

 class = [class ; 0];

 end;

322 Appendix E

 end;

end;

fclose(fin);

Matlab Routines 323

function write_koh(filename,data,class)

% write_koh(filename,data,class)

%

% OBJECTIVE

% Write an ASCII file in KOHONEN format

% This function will write an ASCII file using KOHONEN format [Kohonen 93]

%

% INPUT PARAMETERS

% filename String with the name of the file to write

% data Matrix with one pattern per row

% class Class (label) given to each pattern

%

% OUTPUT PARAMETERS

% nil

%

% COMMENTS

%

% V.1.0.0 - 00-FEB-2000 - V.Lobo

[num_patt,num_features]=size(data);

fout=fopen(filename,'w');

fprintf(fout,'%d\n',num_features);

for i=1:num_patt

 fprintf(fout,'%f ',data(i,:));

 fprintf(fout,'%d\n',class(i));

end;

fclose(fout);

324 Appendix E

function data=remove_col(data,index)

% data=remove_col(data,index)

%

% OBJECTIVE

% This function will remove a single column from a matrix

%

% INPUT PARAMETERS

% data - Matrix from where the column is removed

% index - Index of the column to remove

%

% OUTPUT PARAMETERS

% data - Output matrix

% each class

% COMMENTS

%

% V.1.0.0 - 00-MAR-2000 - V.Lobo

[num_row,num_col]=size(data);

if index==1

 data=data(:,2:end);

else

 if index==num_col

 data=data(:,1:index-1);

 else

 data=[data(:,1:index-1) data(:,index+1:end)];

 end;

end;

return;

Matlab Routines 325

function data=generate_2D_uniform_data(x1,x2,y1,y2,n)

% data=generate_2D_uniform_data(x1,x2,y1,y2,n)

%

% OBJECTIVE

% Generate 2-dimensional data with a uniform distribution

% in a specified area

%

% INPUT PARAMETERS

% x1,x2,y1,y2 - x and y coordinates of the rectange where the

% data is to be generated

% n - number od data points

%

% OUTPUT PARAMETERS

% data - Output matrix, with one poiont per column

%

% COMMENTS

%

% V.1.0.0 - 00-MAR-2000 - V.Lobo

data=rand(2,n);

data(1,:)=data(1,:)*(x2-x1)+x1;

data(2,:)=data(2,:)*(y2-y1)+y1;

326 Appendix E

function [data,class]=generate_double_f_validation(totalpoints)

% [data,class]=generate_double_f_validation(totalpoints)

%

% OBJECTIVE

% Generate 2-dimensional data for Hart's doube F problem

%

% INPUT PARAMETERS

% totalpoints - Total number of data patterns. Thus must be an

% even number, and prefably devidable by 12

%

% OUTPUT PARAMETERS

% data - Data matrix, with one pattern per column

% class - Class of the patterns contain in "data"

%

% COMMENTS

%

% V.1.0.0 - 00-MAR-2000 - V.Lobo%

error(nargchk(1,1,nargin));

nsmall = floor(totalpoints/12);

nlarge = floor(totalpoints/6);

nlast = (totalpoints/2) - 2*nsmall-nlarge;

a1=generate_2D_uniform_data(0,7.5,0,5,nsmall);

a2=generate_2D_uniform_data(0,15,5,10,nlarge);

a3=generate_2D_uniform_data(0,7.5,10,15,nsmall);

a4=generate_2D_uniform_data(0,15,15,20,nlast);

b1=generate_2D_uniform_data(7.5,22.5,0,5,nlarge);

b2=generate_2D_uniform_data(15,22.5,5,10,nsmall);

b3=generate_2D_uniform_data(7.5,22.5,10,15,nlast);

b4=generate_2D_uniform_data(15,22.5,15,20,nsmall);

data=[a1 a2 a3 a4 b1 b2 b3 b4];

class = [ones(1,totalpoints/2) 2*ones(1,totalpoints/2)];

return

Matlab Routines 327

function [data,class]=generate_straight(totalpoints)

% [data,class]=generate_straight(totalpoints)

%

% OBJECTIVE

% Generate 2-dimensional data for the straight line problem

%

% INPUT PARAMETERS

% totalpoints - Total number of data patterns. Thus must be an

% even number.

%

% OUTPUT PARAMETERS

% data - Data matrix, with one pattern per column

% class - Class of the patterns contain in "data"

%

% COMMENTS

%

% V.1.0.0 - 00-AUG-2002 - V.Lobo

error(nargchk(1,1,nargin));

nsmall = floor(totalpoints/12);

nlarge = floor(totalpoints/6);

nlast = (totalpoints/2) - 2*nsmall-nlarge;

a1=generate_2D_uniform_data(0,0.5,0,1,totalpoints/2);

b1=generate_2D_uniform_data(0.5,1,0,1,totalpoints/2);

data=[a1 b1];

class = [ones(1,totalpoints/2) 2*ones(1,totalpoints/2)];

return

328 Appendix E

function spec=spectra_wavfile(wavname,npontos,num_average,pontosUteis,useLog)

% spec=spectra_wavfile(wavname,npontos,num_average,pontosUteis,log)

%

% OBJECTIVE

% Calculate the spectra of a signal contained a WAV file

%

% INPUT PARAMETERS

%

% wavname - Ascii text with the name of the wav file to open. The full

% name must be given, including the .wav extension.

% npontos - Number of points that will be used to calculate each spectra

% num_average - Number of raw spectra that will be averaged to produce a

final

% spectrum. There will be a 50% overlap between them.

% pontosUteis - Number of points of the spectra that will be output. Only

the

% first "pontosUteis" will be used, and the higher

frequencies

% will be ignored. This is used to compensate for bad analog

% filtering.

% useLog - LOGARITHM, set to "0" for linear amplitude, or "1" to

produce a spectra

% where the values are equal to LOG(amplitude+1)

%

% OUTPUT PARAMETERS

%

% spec - Spectra of the signal. The number of columns will be equal

to

% "pontosUteis", and the number of rows will be as many as

can

% be extracted from the file.

%

% COMMENTS

% The power is normalized to the number of bins (so that the average power

per bin is 1

% The spectra will always be positive, since 1 is added when calculating

LOGARITHMS

%

% USES

% mHamming

%

Matlab Routines 329

% V 1.0.0 - 00-000-2000 - V.Lobo

% V 1.0.0 - 00-MAY-2002 - V.Lobo

npontos2=npontos/2;

nHamming=mHamming(npontos);

wavsize=wavread(wavname,'size');

ntotal=wavsize(1); % Total number of samples in file

num_spectra=floor(ntotal/npontos2)-1;

num_patterns=floor(num_spectra/num_average);

spec=zeros(num_patterns,pontosUteis);

tmp_spec=zeros(num_average,pontosUteis);

iter=1;

for iter_pattern=1:num_patterns

 for i=1:num_average

 tmpt=wavread(wavname,[(iter-1)*npontos2+1 (iter+1)*npontos2])';

 tmpf=abs(fft((tmpt-mean(tmpt)).*nHamming));

 tmpf=tmpf(1:pontosUteis); % Extract only the first points

 tmpf=tmpf./mean(tmpf); % Normalize power to n.of bins

 if useLog

 tmpf=log(tmpf+1); % Calculate the LOG (+1 to avoid neg)

 end;

 tmp_spec(i,:)=tmpf;

 iter=iter+1;

 end;

 spec(iter_pattern,:)=mean(tmp_spec);

end;

330 Appendix E

function window=mHamming(N)

% window=hamming(N)

%

% OBJECTIVE

% Calculate Hamming's window

%

% INPUT PARAMETERS

% N - Number of points (must be even)

%

% OUTPUT PARAMETERS

% window - Hamming's window

%

% COMMENTS

% This version implements the correct Hamming window

%

% V.1.0.0 - 25-APR-1996 - P.Monica de Oliveira

window=0.54-0.46*cos(2*pi*(0:N-1)/N);

Matlab Routines 331

function hausdorff=hausdorff(A, B)

% hausdorff=hausdorff(A, B);

%

% OBJECTIVE

% Calculate the Hausdorff distance between two sets of points

%

% INPUT PARAMETERS

% A,B - Vectors with data

%

% OUTPUT PARAMETERS

% hausdorff - The Hausdorff distance

%

% COMMENTS

%

% V.1.0.0 - 00-AUG-1998 - V.Lobo

max_i = max(size(A)); % Find the dimension of the vectors

dist_vectorA = zeros(1,max_i); % Initialize parital distance vector

dist_vectorB = zeros(1,max_i); % Initialize parital distance vector

min_distA = zeros(1,max_i); % Initialize the minimum dist.vector

min_distB = zeros(1,max_i); % Initialize the minimum dist.vector

for i=1 : max_i

 for j=1 : max_i

 dist_vectorA(j) = sqrt((A(i)-B(j)).^2 + (i-j).^2) ;

 dist_vectorB(j) = sqrt((B(i)-A(j)).^2 + (i-j).^2) ;

 end;

 min_distA(i) = min (dist_vectorA);

 min_distB(i) = min (dist_vectorB);

 end;

hausdorff = max(max(min_distA), max(min_distB));

332 Appendix E

function primes=findPrimes(inmat)

% primes=findPrimes(inmat) - Finds Prime implicants

%

% OBECTIVE:

% Given a number of minterms of a Boolean function, this routine

% calculates all prime implicants of that function

%

% INPUT PARAMETERS:

% inmat Matrix with one minterm per line. Each row corresponds

% to a different variable, which must have the value 1 or 0

%

% OUTPUT PARAMETERS:

% outmat Matrix with one implicant per line.Variables that

% are not contained in the implicant (that are Don't

% cares) are represenented by NAN (not-a-number).

% Thus, this matrix has the same number of columns as inmat

%

% USES:

% SolveImplicant, Dual3Single,DistHamming, & common Matlab routines.

%

% V.1.0.0 - 00-APR-2002 - V.Lobo

finish=0;

inmatc=ones(size(inmat));

primes=[];

primesc=[];

while not(finish)

 [o, oc, n, nc]=SolveImplicant(inmat,inmatc);

 primes = [primes ; o];

 primesc= [primesc ; oc];

 if n==[]

 finish=1;

 else

 inmat=n;

 inmatc=nc;

 end;

end;

primes=Dual2Single(primes, primesc);

Matlab Routines 333

return

function [outmat,outmatc,nextmat, nextmatc]=SolveImplicant(inmat,inmatc)

% [outmat,outmatc,nextmat, nextmatc]=SolveImplicant(inmat,inmatc)

%

% OBJECTIVE

% Given a matrix with implicants, try to form larger implicants, and return

% those implicants, together with another matrix with the implicants that

% cannot be simplified. This implements the QUINE-McCLUSKY method of

% simplification

%

% INPUT PARAMETERS

% inmat matrix where each row is an implicant. Each column corresponds

% to a different boolean variable. If a variable is not specified,

% (i.e. if it is a don't care), that column should contain a 0,

% and the corresponding element of the companion matrix inmatc

should

% also have a 0.

% inmatc companion matrix to inmat, that contains 1 for each column where

% the value of inmat "counts" (it is CARE as opposed do a don't

care)

%

% OUTPUT PARAMETERS

% outmat matrix with the implicants that cannot be solved further

% outmatc companion matrix to outmat, indicating which variables are to

% be considered (i.e., are NOT don't cares)

% nextmat matrix with the simplified implicants, that may be passed again

% to this routine to attempt further simplification

%

% by V.Lobo, April 2002, SDSU

[implicants,x]=size(inmat);

nextmat=[];

nextmatc=[];

prime=ones(1,implicants);

for i=1:implicants-1

 for j=i+1:implicants

 if inmatc(i,:)==inmatc(j,:);

334 Appendix E

 %if i and j have the same don't care

 d=DistHamming(inmat(i,:),inmat(j,:));

 if d==1 % now we'll build a new implicant

 newImplicant=inmat(i,:);

 newImplicantc=inmatc(i,:);

 toRemove=find(xor(inmat(i,:),inmat(j,:)));

 newImplicant(toRemove)=0;

 newImplicantc(toRemove)=0;

 nextmat= [nextmat ; newImplicant];

 nextmatc= [nextmatc ; newImplicantc];

 prime(j)=0;

 prime(i)=0;

 end;

 end;

 end;

end;

[x,i,j]=unique([nextmat nextmatc],'rows');

nextmat=nextmat(i,:);

nextmatc=nextmatc(i,:);

outmat=inmat(find(prime),:);

outmatc=inmatc(find(prime),:);

return;

function outmat=Dual2Single(inmat,inmatc)

% outmat=Dual2Single(inmat,inmatc)

%

% OBJECTIVE

% Convert between the two formats used to represent implicants

% of Boolean functions. In both formats, each implicant is

% represented by a row, and each column corresponds to a different

% variable.In the SINGLE format,each element is a 1, a 0 or a NAN

% (matlab's Not-A-Number) to represent don't care (an indetermined

% value).In the double format,the matrix representing the implicant

% has only 1 and 0, and when the value is don't care it uses also a

% 0. To distinguish between these two values, another, so called

% COMPANION MATRIX (whose name ends with a C) is used that has 1

% when the corresponding value in the implicant matrix is to be taken

% as 1 or 0, and 0 when it is a "Don't care".

%

% INPUT PARAMETERS

Matlab Routines 335

% inmat matrix where each row is an implicant. Each column corresponds

% to a different boolean variable. If a variable is not specified,

% (i.e. if it is a don't care), that column should contain a 0,

% and the corresponding element of the companion matrix inmatc

should

% also have a 0.

% inmatc companion matrix to inmat, that contains 1 for each column where

% the value of inmat "counts" (it is CARE as opposed do a don't

care)

%

% OUTPUT PARAMETERS

% outmat Matrix with one implicant per line.Variables that

% are not contained in the implicant (that are Don't

% cares) are represenented by NAN (not-a-number).

% Thus, this matrix has the same number of columns as inmat

%

% by V.Lobo, April 2002, SDSU

outmat=inmat;

outmat(find(inmatc==0))=nan;

 337

 339

References

Aamodt, A. and E. Plaza (1994). "Case-based reasoning; Foundational issues, methodological variations, and system
approaches." AI Communications 7(1): 39-59.

Aha, D. W. (1991). Case-Based Learning Algorithms . DARPA Case Based Reasoning WorkShop, Washington DC,
Morgan Kaufman.

Aha, D. W., D. Kibler and M. K. Albert (1991). "Instance-based learning algorithms." Machine Learning 6: 37-66.
Aha, D. W. (1995). An implementation and experiment with the nested generalized exemplars algorithm, Naval

Research Laboratory, Navy Center for Applied Research in Artificial Intelligence.
Aha, D. W. (1997). Lazy Learning, Kluwer Academic Publishers.
Alexandre, L. A., A. C. Campilho and M. Kamel (2001). "On combining classifiers using sum and product rules."

Pattern Recognition Letters 22(12): 1283-1289.
Alhoniemi, E., J. Hollmén, O. Simula and J. Vesanto (1999). "Process Monitoring an Modeling using the Self-

Organizing Map." Integrated Computer Aided Engineering 6(1): 3-14.
Almas (1998). Relatorio do projecto de Estatistica. Portugal, Escola Naval.
Alves, A. (1997). WPVM Manual (version 2.0), Universidade de Coimbra.
Andrew, R. K., B. M. Howe, J. A. Mercer and M. A. Dzieciuc (2001). "Ocean ambient sound: Comparing the 1960s

with the 1990s for a receiver off the California coast." Acoustics Research Letters Online 3(2): 65-70.
Anthony, M. and P. L. Bartlett (1999). Learning in Neural Networks: Theoretical Foundations, Cambridge

University Press.
Anzai, Y. (1992). Pattern recognition and machine learning, Academic Press Inc.
Apel, J. R. (1990). Principals of Ocean Physics, Academic Press.
Atlas, K., L. Owsley, J. McLaughlin and G. Bernard (1996). Automatic feature-sindinf for time -frequency

distributions. IEEE-SP : International Conference on Time-Frequency and Time-Scale Analysis, Newark,
N.J., USA, Gordon & Breach.

Baase, S. and A. V. Gelder (2000). Computer Algorithms , Addison-Wesley.
Bandeira, N. (1996). Projecto Final de Curso. Departamento de Informatica. Lisbon, Universidade Nova de Lisboa.
Baram, Y. (2000). "A geometric approach to consistent classification." Pattern Recognition 33: 177-184.
Barreto, G. and A. Araújo (1999). Unsupervised Context-based Learning of Multiple Temporal Sequences .

IEEE-INNS Intl. Joint Conf. on Neural Networks (IJCNN’99), Washington, DC, USA.
Barth, P. (1995). A Davis -Putnam based enumeration algorithm for linbear pseudo-Boolean optimization, Max Plank

Institute for Computer Science: 13.
Bax, E. (2000). "Validation of Nearest Neighbor Classifiers." IEEE Transactions on Information Theory 46(7):

2746-2752.
Behme, H., W. D. Brandt and H. W. Strube (1993). Speech Recognition by Hierarchical Segment Classification.

ICANN 93, Springer.
Bendat, J. S. and A. G. Piersol (1993). Engineering Applictions of Correlations and Spectral Analysis , John Wiley &

Sons.

340 References

Bergsten, U., J. Schubert and P. Svensson (1997). Applying Data Mining and Machine Learning Techniques to
Submarine Intelligence Analysis . KDD'97 - Third International Conference on Knowledge Discovery and
Data Mining, Newport Beach, USA, AAAI Press.

Bezdek, J. C., T. R. Reichherzer, G. S. Lim and Y. Attikiouzel (1998). "Multiple-prototype classifier design." IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 28(1): 67 - 79.

Bezdek, J. C., J. Keller, R. Krisnapuram and M. Pal (1999). Fuzzy models and algorithms for pattern recognition and
image processing, Kluwer Academic Publishers.

Bezdek, J. C., J. M. Keller, R. Krishnapuram, L. I. Kuncheva and N. R. Pal (1999). "Will the real iris data please
stand up?" IEEE Transactions on Fuzzy Systems 7(3): 368 - 369.

Bezdek, J. C. and L. I. Kuncheva (2001). "Nearest Prototype Classifier Designs: An experimental study."
International Journal of Intelligent Systems 16: 1445-1473.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition, Oxford University Press.
Bishop, C. M., M. Svensén and C. K. I. Williams (1996). GTM: A Principled Alternative to the Self-organizing

Map.
Bishop, C. M., M. Svensen and C. K. I. Williams (1998). "GTM: The Generative Topographic Mapping." Neural

Computation 10(1): 215-234.
Blanc-Benon, P. and G. Bienvenu (1995). Passive target motion analysis using multipath differential time -delay and

differential Doppler shifts. ICASSP-95.
Bogert, B. P., M. J. R. Healy and J. W. Tukey (1963). The Quefrequency Analysis of Time Series for Echoes:

Cepstrum, Pseudo-Auto Covariances, Cross-Ceptrum, and Saphe Cracking. Symposium on Time Series
Analysis.

Boser, B. E., I. M. Guyon and V. N. Vapnik (1992). A training algorithm for optimal margin classifiers. Workshop
on Computational Learning Theory, 5th Annual, Pittsburgh, Pennsylvania, United States, ACM Press.

Breiman, L., J. H. Friedman, R. A. Olsen and C. J. Stone (1984). Classification and Regression Trees, Chapman &
Hall.

Brighton, H. and C. Mellish (2002). "Advances in Instance Selection for Instance-Based Learning Algorithms." Data
Mining and Knowledge Discovery 6: 153–172.

Broadhead, M. K., L. A. Pflug and R. L. Field (1996). Minimum entropy filtering for improving nonstationary sonar
signal classification. IEEE Signal Processing Workshop on Statistical Signal and Array Processing.

Broomhead, D. S. and D. Lowe (1988). "Multivariable functional interpolation and adaptive networks." Complex
Systems 2: 321-355.

Bruckner, B., M. Franz and A. Richter (1992). A modified Hypermap Architecture for Classification of Biological
Signals. Artificial Neural Networks 2. I. Aleksander and J. Taylor. Amsterdam, Netherlands: 1167-1170.

Bryant, R. (1986). "Graph-Based Algorithms for Boolean Function Manipulation." IEEE Transactions on Computers
C-35(8): 677-691.

Burdic, W. S. (1991). Underwater acoustic system analysis. Prentice Hall signal processing series. Englewood Cliffs,
N.J. :, Prentice Hall,: xiii, 466 p. : ill. ; 25 cm.

Burges, C. J. C. (1998). "A Tutorial on Support Vector Machines for Pattern Recognition." Data Mining and
Knowledge Discovery 2(2): 121-167.

Burton, D. (1991). Acoustic transient classification of passive sonar signals by using vector quantization. ICASSP-
91, Toronto, Canada.

Carpinteiro, O. A. (1998). A Hierarchical Self-Organizing Map Model for Sequence Recognition. ICANN98, the 8th
International Conference on Artificial Neural Networks, Springer.

Carpinteiro, O. A. S. (1998). A Self-Organizing Map Model for Analysis of Musical Time Series. Vth Brazilian
Symposium on Neural Networks, Belo Horizonte, Brasil.

Carpinteiro, O. A. S., A. P. A. Silva and C. H. L. Feichas (2000). A hierarchical neural model in short-term load
forecasting. IJCNN00, Como, Italy, IEEE Press.

Casselman, F. L., D. F. Freeman, D. A. Kerrigan, S. E. Lane, N. H. Millstrom and W. G. Nichols, Jr. (1991). A
neural network-based passive sonar detection and classification design with a low false alarm rate. IEEE
Conference on Neural Networks for Ocean Engineering, 1991.

Cerverón, V. and A. Fuertes (1998). Parallel Random Search and Tabu Search for the Minimal Consistent Subset
Selection Problem. Random 98.

Cerverón, V. and F. J. Ferri (2001). "Another Move Toward the Minimum Consistent Subset: A Tabu Search
Approach to the Condensed Nearest Neighbor Rule." IEEE Transactions on Systems, Man, and Cybernetics
- Part B:Cybernetics 31(3): 408-412.

Chandrasekaran, V. and M. Palaniswami (1995). "Spatio-temporal Feature Maps using Gated Neuronal
Architecture." IEEE Transactions on Neural Networks 6(5): 1119-1131.

Chandrasekaran, V. and Z.-Q. Liu (1998). "Topology Constraint Free Fuzzy Gated Neural Networks for Pattern
Recognition." IEEE TRANSACTIONS ON NEURAL NETWORKS 9(3): 483-502.

References 341

Chang, C.-L. (1974). "Finding Prototypes for nearest neighbor Classifiers." IEEE Transactions on Computers
23(11): 1179-184.

Chang, E. I. and R. P. Lippmann (1991). Using genetic algorithms to improve pattern classification performance.
Advances in Neural Information Processing Systems. R. P. Lippman, J. E. Moody and S. Touretzky. San
Mateo, CA, Morgan Kaufman. 3: 797-803.

Chang, K. and J. Ghosh (2001). "A unified model for probabilistic principal surfaces." IEEE Transactions on Pattern
Analysis and Machine Intelligence 23(1): 22-41.

Chappelier, J. and A. Grumbach (1995). A Kohonen Map for Temporal Sequences. NEURAP'95, Marseilles, France.
Chappell, G. J. and J. G. Taylor (1993). "The Temporal Kohonen Map." Neural Networks 6: 441-445.
Child, D. (1990). The Essentials of Factor Analysis , Cassel.
Choi, S.-H. and P. Rockett (2002). "The training of Neural Classifiers with Condensed Datasets." IEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybernetics 32(2): 202-206.
CIE (1986). Colorimetry, CIE Publication 15.2 (1986), International Cmmission on Illumination, CIE.
Cios, K. J., W. Pedrycz and R. Swiniarski (1998). Data Mining Methods for Knowledge Discovery, Kluwer.
Coates, R. F. W. (1990). Underwater acoustic systems . Basingstoke, Hampshire :, Macmillan,.
Collier, R. D. (1998). Ship and platform noise, propeller noise. Handbook of acoustics. M. J. Crocker, John Wiley &

Sons.
Cook, S. A. (1971). The complexity of theorem proving procedures. Annual ACM Symposium on Theory of

Computing.
Cook, S. A. (1983). "An overview of computational compexity." Communications of the ACM 26(6): 400-408.
Cooley, J. W. and J. W. Tukey (1965). "An algorithm for the machine calculation of the complex Fourier series."

Mathematics of Computation 19: 297-301.
Cottrell, M., J. C. Fort and G. Pages (1998). "Theoretrical Aspects of the SOM algorithm." Neurocomputing,

Elsevier 21: 119-138.
Coultrip, R. (1998). "A CMOS binary pattern classifier based on Parzen's Method." IEEE Transactions on Neural

Networks 9(1): 2-10.
Council, U. S. N. R. (1994). Low-frequency sound and marine mammals : current knowledge and research needs.

Washington, D.C. :, National Academy Press,.
Cover, T. M. (1965). "Geometrical and statistical properties of systems of linear inequalities with application in

pattern recognition." IEEE Transactions on Electronic Computers 14: 326-334.
Cover, T. M. and P. E. Hart (1967). "Nearest Neighbor Pattern Classification." IEEE Transactions on Information

Theory 13(1): 21-27.
Cristianini, N. and J. Shawe -Taylor (2001). An introduction to Support Vector Machines, Cambridge University

Press.
Critchley, D. A. (1994). Extending the Kohonen Self-Organizing Maps by use of adaptive parameters and temporal

neurons. London, University College London.
Crocker, M. J. (1998). Handbook of acoustics, John Wiley.
Damon, R. A. (1987). Experimental design, ANOVA, and regression, Harper & Row.
DARPA (1988). DARPA Neural Network Study, AFCEA International Press.
Dasarathy, B. V. and L. J. White (1978). "A characterization of nearest neighbor rule decision surfaces and a new

approach to generate them." Pattern Recognition 10: 41-46.
Dasarathy, B. V. (1991). Nearest Neighbor Pattern Classification techniques , IEEE Computer Society Press.
Dasarathy, B. V. (1994). "Minimal consistent set (MCS) identification for optimal nearest neighbor decision systems

design." IEEE Transactions on Systems, Man, and Cybernetics 24(3): 511-517.
Dasarathy, B. V. and J. S. Sanchez (2000). Tandem fusion of nearest neighbor editing and condensing algorithms -

data dimensionality effects. 15th International Conference on Pattern Recognition, 2000, Barcelona, Spain.
Daubechies, I. (1990). "The Wavelet Transform, Time-Frequency Localization and Signal Analysis." IEEE

Transactions on Information Theory 36(5): 961-1005.
Davey, N., S. P. Hunt and R. J. Frank (1999). " Time Series Prediction and Neural Networks." Proc. 5th

International Conference on Engineering Applications of Neural Networks (EANN'99): 93-98.
Davis, M. and H. Putnam (1960). "A computing procedure for Quantification Theory." Journal of the Association for

Computing Machinery 7: 201-215.
De, R. K. and S. K. Pal (2001). "A connectionist model for selection of cases." Information Sciences(132).
Decaestecker, C. (1997). "Finding prototypes for nearest neighbor classification by means of gradient descent and

deterministic annealing." Pattern Recognition 30(2): 281-288.
Demirekler, M. and H. Altincay (2002). "Plurality voting-based multiple classifier systems: statistically independent

with respect to dependent classifier sets." Pattern Recognition 35(11): 2365-2379.
Dempster, A. P., N. M. Laird and D. B. Rubin (1977). "Maximum Likelihood from imcomplete data via the EM

algorithm." Journal of the Royal Statistical Society 39(1): 1-38.

342 References

Devi, V. S. and M. N. Murty (2002). "An incremental prototype set building technique." Pattern Recognition 53:
505-513.

Devijver, P. A. and J. Kittler (1982). Pattern Recognition - A Statistical Approach, Prentice-Hall.
Devroye, L. and T. J. Wagner (1979). "Distribution-free inequalities for the deleted and holdout error estimates."

IEEE Transactions on Information Theory 25: 202-207.
Devroye, L., L. Gyorfi and G. Lugosi (1996). A probabilistic theory of pattern recognition. New York :, Springer,.
Dietterich, T. G., D. Wettschereck, C. G. Atkeson and A. W. Moore (1994). Memory-Based Methods for Regression

and Classification. Advances in Neural Information Processing Systems.
Dietterich, T. G. (1998). "Approximate Statistical Test For Comparing Supervised Classification Learning

Algorithms." Neural Computation 10(7): 1895-1923.
Domingos, P. (1995). The RISE 2.0 System: A Case Study in Multistrategy Learning, University of California at

Irvine.
Domingos, P. (1996). "Unifying Instance-Based and Rule-Based Induction." Machine Learning 24: 141-168.
Domingos, P. (1997). A Unified Approach to Concept Learning. Department of Information and Computer Science,

University of California at Irvine.
Domingos, P. (1999). "The Role of Occam's Razor in Knowledge Discovery." Data Mining and Knowledge

Discovery 3(4).
Drakopoulos, J. A. (1995). Bounds on the Classification Error of the Nearest Neighbor Rule. ICML 95.
Drobics, M., U. Bodenhofer and W. Winiwarter (2000). Interpreting Self-Organizing Maps with Fuzzy Rules. IEEE

Confrence on Tools with Artificial Intelligence ICTAI´00, Vancouver, IEEE Press.
Duda, R. O., P. E. Hart and D. G. Stork (2001). Pattern Classification, Wiley-Interscience.
Dwyer, R. F. (1996). Advances in sonar signal processing in the 90's . OCEANS '96. MTS/IEEE.
Dyer, I. (1998). Ocean Ambient Noise. Handbook of Acoustics. M. J. Crocker, John Wiley & Sons.
Ebbeson, G. R., J. M. Ozard, P. Wort, G. Litchfield and C. Vigneron (1997). An environmental database for

matched-field processing. OCEANS '97. MTS/IEEE.
Efron, B. (1979). "Bootstrap methods: Another look at the jackknife." Annals of statististics 7(1): 1-26.
Efron, B. (1986). "Discussion: Jacknife, Bootstrap and other resampling methods in regression analysis."
Efron, B. (1990). "More efficient bootstrap computations." Journal of the American Statistical Association 85: 79-

89.
Eiter, T. and G. Gottlob (1995). "Identifying the minimal transversals of a hypergraph and related problems." SIAM

Journal of Computing 24(6): 1278–1304.
Emam, K. E., S. Benlarbi, N. Goel and S. N. Rai (2001). "Comparing case-based reasoning classifiers for predicting

high risk software components." Journal of Systems and Software 55(3): 301-320.
Erwin, E., K. Obermeyer and K. Schulten (1991). Convergence properties of self-organizing maps. Artificial Neural

Networks. T. Kohonen, K. Mäkisara, O. Simula and J. Kangas, Elsevier: 409-414.
Essex, C. and N. M.A.H. (1990). "Fractal dimension: Limit capacity of Hausdorff dimension." American Journal of

Physics 58(10): 986-988.
Euliano, N. and J. Principe (1996). Spatio-temporal self-organizing feature maps. ICNN '96, Washington.
Euliano, N., J. Principe and P. Kulzer (1996). A Self-Organizing Temporal Pattern Recognizer with Application

to Robot Landmark Recognition. SpatioTemporal Models in Biological and Artifical Systems.
Euliano, N. and J. Principe (1998). Temporal plasticity in self-organizing networks. IJCNN '98, Alaska, USA.
Euliano, N. and J. Principe (1999). A Spatio-Temporal Memory Based on SOMs with Activity Diffusion. Kohonen

Maps. E. Oja and S. Kaski. Amsterdam, Elsevier: 253--266.
Everitt, B., S. Landau and M. Leese (2001). Cluster analysis . London : New York :, Arnold ; Oxford University

Press,.
Fasulo, D. (1999). An analysis of recent work on clustering algorithms, University of Washington, Seattle,

Department of Computer Science & Engineering.
Ferri, F. J., J. V. Albert and E. Vidal (1999). "Considerations About Sample-Size Sensitivity of a Family of Edited

Nearest-Neighbor Rules." IEEE Transactions on Systems, Man, and Cybernetics 29(4): 667-672.
Fisher, R. A. (1936). "The use of Multiple Measurements in Taxonomic Problems." Annals of Eugenics VII(II):

179-188.
Fix, E. and J. L. Hodges (1951). Discriminatory Analysis: Nonparametric Discimination: Consistency Properties.

Randolph Field, USAF School of Aviation Medicine - Project 21-49-004: 261-272.
Flury, B. (1988). Common principal components and related multivariate models . New York :, Wiley,.
Fogel, D. B. (1999). Evolutionary Computation : Towards a New Philosophy of Machine Intelligence, IEEE Press.
Fritzke, B. (1991). Let it Grow - Self-organizing Feature Maps With Problem Dependent Cell Structure. ICANN-91,

Helsinki, Elsevier Science Publ.
Fritzke, B. (1995). "Growing grid { a self-organizing network with constant neighborhood range and adaptation

strength." Neural Processing Letters 2(5): 9-13.

References 343

Fritzke, B. (1995). A growing neural gas network learns topologies. Advances in Neural Information Processing
Systems . G. Tesauro, D. S. Touretzky and T. K. Leen. Cambridge MA, MIT Press. 7: 625-632.

Fu, L. (1994). Neural Netwrorks in Computer Intelligence, McGraw Hill.
Fujii, T. (1995). Neural networks for ocean engineering. IEEE International Conference on Neural Networks, 1995.
Fukunaga, K. and D. R. Olsen (1971). "An Algorithm for Finding Intrinsic Dimensional of Data." IEEE Transactions

on Computers c-20(2): 176-183.
Fukunaga, K. and R. R. Hayes (1989). "Estimation of classifier performance." IEEE Transactions on Pattern

Analysis and Machine Intelligence 11(10): 1087 -1101.
Fukunaga, K. and R. R. Hayes (1989). "The reduced Parzen classifier." IEEE Transactions on Pattern Analysis and

Machine Intelligence 11(4): 423 -425.
Fukunaga, K. and R. R. Hayes (1989). "Effects of sample size in classifier design." IEEE Transactions on Pattern

Analysis and Machine Intelligence 11(8): 873 -885.
Fukunaga, K. (1990). Introduction to statistical patterns recognition, Academic Press Inc.
Gabor, D. (1946). "Theory of communication."
Gama, J. (2000). "Combining Classification Algorithms." AI Communications 1(2).
Gates, G. W. (1972). "The Reduced Nearest Neighbor Rule." IEEE Transactions on Information Theory: 431-433.
Gawrys, M. and J. Sienkiewicz (1993). Roush Sets Library User's Manual ver 2.0. Warsaw, ICS - Warsaw

University of Technology.
Gawrys, M. and J. Sienkiewicz (1994). RSL - The Rough Set Library, version 2.0, ICS - Warsaw University of

Technology.
Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam (1994). PVM: Parallel Virtual

Machine. A Users' Guide and Tutorial for Networked Parallel Computing, MIT Press.
Gentile, C. and M. Sznaier (2001). "An Improved Voronoi-Diagram-Based Neural Net for Pattern Classification."

IEEE Transactions on Neural Networks 12(5): 1227-1234.
Gerstoft, P. (1994). "Inversion of seismoacoustic data using genetic algorithms and a posteriori probability

distributions." Journal of the Acoustical Society of America 95(2): 770-782.
Geva, S. and J. Sitte (1991). "Adaptive nearest neighbor pattern classifier." IEEE Transactions on Neural Networks

2(2): 318-322.
Ghosh, J., S. Chakravarthy, Y. Shin, C.-C. Chu, L. Deuser, S. Beck, R. Still and J. Whiteley (1991). Adaptive kernel

classifiers for short-duration oceanic signals . IEEE Conference on Neural Networks for Ocean Engineering,
1991.

Giellis, G. R. (1983). A technique of comparative analysis of underwater sound transmission loss curves. NRL report
;. Washington, D.C. :, Naval Research Laboratory,. 8711: iii, 24 p. : ill. ; 28 cm.

Gioiello, M., G. Vassallo and F. Sorbello (1992). A New Fully Digital Neural Network Hardware Architecture for
Binary Valued Pattern Recognition. International Conference on Signal Processing Applications and
Technology, Boston.

Girolami, M. (2001). "The topographic organization and visualization of binary data using multivariate-Bernoulli
latent variable models." IEEE Transactions on Neural Networks 16(6): 1367 -1374.

Glover, F. and M. Laguna (1997). Tabu search, Kluwer Academic Publishers.
Goodman, D. and T. Yamamoto (1988). "Directional spectral and particle motion measurements of underwater

seismic noise." Journal of the Acoustical Society of America 84(S1): S175.
Gowda, K. C. and G. Krishna (1979). "The Condensed Nearest Neighbor Rule Using the Concept of Mutual Nearest

Neighborhood." IEEE Transactions on Information Theory 25(4): 488-490.
Gowda, K. C. and T. V. Ravi (1994). A Modified Condensed Nearest Neighbor Rule using the Symbolic Approach.

2nd Australian and New Zealand Conference on Intelligent Information Systems.
Green, M. D. (1997). Shallow water acoustic communications system (SWACS).
Group, S. A. (1988). Physics of sound in the sea. Los Altos, Calif. :, Peninsula Pub.,.
Guimarães, G. and W. Urfer (2000). Self-Organizing Maps and its Applications in Sleep Apnea Research and

Molecular Genetics, University of Dortmund - Statistics Department.
Guimarães, G., J. H. Peter and A. Ultsch (2001). "A method for automated temporal knowledge acquisition applied

to sleep-related breathing disorders." Artificial Intelligence in Medicine 23: 211-237.
Gyorfi, L. (1978). "On the rate of convergence of nearest neighbor classification." IEEE Transactions on Information

Theory 21: 552-557.
Halls, P. J., M. Bulling, P. C. L. White, L. Garland and S. Harris (2001). "Dirichlet neighbours: revisiting Dirichlet

tessellation for neighbourhood analysis." Computers, Environment and Urban Systems 25(1): 105-117.
Harmelen, V. (1993). Time-dependent self-organizing feature map for speech recognition, University of Twente,

Netherlands.
Harris, F. J. (1978). "On the use of windows for harmonic analysis with the discrete Fourier transform." Proceedings

of the IEEE 66: 51-83.
Hart, P. E. (1968). "The Condensed Nearest Neighbor Rule." IEEE Transactions on Information Theory: 515-516.

344 References

Hastie, T. and W. Stuetzle (1989). "Principal curves." Journal of the American Statistical Association 84(406): 502-
516.

Hastie, T. and R. Tibshirani (1996). "Discriminant Adaptive Nearest Neighbor Classification." IEEE Transactions on
Pattern Analysis and Machine Intelligence 18(6): 607-615.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation.
Hemminger, T. L. and Y.-H. Pao (1994). "Detection and classification of underwater acoustic transients using neural

networks." IEEE Transactions on Neural Networks 5(5): 712-718.
Herbrich, R. (2001). Learning Kernel Classifiers: Theory and algorithms , MIT Press.
Hertz, J. A., A. Krogh and R. G. Palmer (1991). Introduction to the Theory of Neural Computation, Perseus

Publishing.
Himberg, J. (2000). A SOM based cluster visualization and it's application for false coloring. IJCNN'2000 -

International Joint Conference on Neural Networks, Como, Italy, IEEE-Press.
Hippenstiel, R. D. and P. M. d. Oliveira (1988). Instantaneous Power Spectrum. Twenty-Second Asilomar

Conference on Signals, Systems and Computers.
Hippenstiel, R. D. and P. M. d. Oliveira (1990). "Time -varying spectral estimation using the instantaneous power

spectrum (IPS)." IEEE Transactions on Acoustics, Speech and Signal Processing 38(10): 1752-1759.
Ho, K. C., Y. T. Chan and M. O. Johnson (1996). Estimation of delay and Doppler by wavelet transform. ICASSP-

96, Atlanta, GA, USA.
Ho, S.-Y., C.-C. Liu and S. Liu (2002). "Design of an optimal nearest neighbor classi.er using an intelligent genetic

algorithm." Pattern Recognition Letters 23: 1495–1503.
Holmstrom, L., P. Koistinen, J. Laaksonen and E. Oja (1997). "Neural and Statistical Classifiers—Taxonomy and

Two Case Studies." IEEE TRANSACTIONS ON NEURAL NETWORKS 8(1): 5-17.
Huang, J., J. Zhao and Y. Xie (1997). Source classification using pole method of AR model. ICASSP-97.
Huang, Y. S., K. Liu, C. Y. Suen, A. J. Shie, I. I. Shyu, M. C. Liang, R. Y. Tsay and P. K. Huang (1996). A

Simulated Annealing Approach to Construct Optimized Prototypes for Nearest-Neighbor Classification.
13th International Conference on Pattern Recognition, Vienna, Austria.

Huang, Y. S., C. C. Chiang, J. W. Shieh and E. Grimson (2002). "Prototype optimization for nearest-neighbor
classification." Pattern Recognition 35: 1237-1245.

Hyvarinen, A. and E. Oja (2000). "Independant component analysis: algorithms and applications." Neural Networks
13: 411-430.

Jain, A. K., R. C. Dubes and C. Chen (1987). "Bootstrap techniques for error estimation." IEEE Transactions on
Pattern Analysis and Machine Intelligence 9(5): 628-633.

Jain, A. K. and R. C. Dubes (1988). Algorithms for clustering data, Prentice Hall.
James, D. and R. Miikku lainen (1995). SARDNET: A self-organizing Feature Map for Sequences. Advances in

Neural Information Processing Systems . G. Tesauro, D. Touretzky and T. Leen, MIT Press. 7.
Jauffret, C. and D. Bouchet (1996). Frequency line tracking on a lofargram: An efficient wedding between

probabilistic data association modeling and dynamic programming technique. Asilomar Conference.
Jesus, S. M., P. Felisberto and F. Coelho (1994). Towed array geometry estimation during ship's moneuvering.

Journal of the Acoustical Society of America.
Jesus, S. M., P. Felisberto and F. Coelho (1996). "Towed array beamforming during ship's maneuvering." IEE

Proceedings: Radar, Sonar and Navigation 141(3): 210-215.
Jiang, X., Z. Gong, F. Sun and H. Chi (1994). A speaker recognition system based on auditory model. WCNN'93 -

World Conference on Neural Networks, Lawrence Erlbaum, Hillsdale.
Jolliffe, I. T. (1986). Principal component analysis . New York :, Springer-Verlag,.
Jossa, I., U. Marschner and W. J. Fischer (2001). Signal based feature extraction and SOM based dimension

reduction in a vibration monitoring microsystem. Advances in Self-Organizing Maps. N. Allison, H. Yin, L.
Allison and J. Slack, Springer: 283-288.

Joutsiniemi, S. L., S. Kaski and T. A. Larsen (1995). "Self-Organizing Map in Recognition of Topographic Patterns
of EEG Spectra." IEEE Transactions on Biomedical Engineering 42(11): 1062-1068.

Kangas, J. (1992). Temporal Knowledge in Locations of Activations in a Self-Organizing Map. Artificial Neural
Networks. J. T. : I. Aleksander, Elsevier Science Publisher. 2: 117-120.

Kangas, J., K. Tarkkola and M. Kokkonen (1992). Using SOMS as feature extractors for speach recognition.
ICASSP 92, San Francisco, USA.

Kangas, J. (1999). Prototype search for a nearest neighbor classifier by a genetic algorithm. Third International
Conference on Computational Intelligence and Multimedia Applications, 1999 - ICCIMA '99, New Delhi,
India.

Kangas, J. A., T. K. Kohonen and J. T. Laaksonem (1990). "Variants of Self-Organizing Maps." IEEE Transactions
on Neural Networks 1(1): 93-99.

Kankas, J. (1994). On the Analysis of Pattern Sequences by Self-Organizing Maps. Laboratory of Computer and
Information Science. Helsinki, Helsinki University of Technology: 86.

References 345

Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A. Y. Wu (2002). "An efficient k-
means clustering algorithm: analysis and implementation." IEEE Transactions on Pattern Analysis and
Machine Intelligence 24(7): 881-892.

Karayiannis, N. B., J. C. Bezdek, N. R. Pal, R. J. Hathaway and P.-I. Pai (1996). "Repairs to GLVQ: a new family of
competitive learning schemes." IEEE Transactions on Neural Networks 7(5): 1062-1071.

Kaski, S. and S. L. Joutsiniemi (1993). Monitoring EEG Signal with the Self-Organizing Map. Intl. Conf. on
Artificial Neural Networks (ICANN 93), Springer Verlag.

Kaski, S. (1997). Data exploration using self-organizing maps. Helsinki, Finland, Helsinki University of
Technology.

Kaski, S., J. Venna and T. Kohonen (1999). Coloring that Reveals High-Dimensional Structures in Data.
Proceedings of ICONIP'99, 6th International Conference on Neural Information Processing, London, IEEE
Service Center.

Kasslin, M., J. Kangas and O. Simula (1992). Process State Monitoring using Self-Organizing Maps. Artificial
Neural Networks. I. Aleksander and J. Taylor, Elsevier Science Publisher. 2: 1531-1534.

Kay, S. M. (1988). Modern Spectrl Estimation, Prentice-Hall.
Kay, S. M. (1998). Fundamentals of statistical signal processing. Englewood Cliffs, N.J. :, Prentice-Hall PTR,.
Keenan, R. E. and I. Dyer (1984). "Noise from Artic Ocean earthquakes." Journal of the Acoustical Society of

America 75: 819-825.
Kégl, B., A. Krzyzak, T. Linder and K. Zeger (2000). "Learning and Design of Principal Curves." IEEE Transactions

on Pattern Analysis and Machine Intelligence 22(3): 281-297.
Kempke, C. and A. Wichert (1993). Hierarchical Self-Organizing Feature Maps for Speech Recognition. WCNN'93

- World Conference on Neural Networks, Lawrence Erlbaum, Hillsdale.
Kilber, D. and D. W. Aha (1987). Learn ing representative examples of concepts; an initial study. Machine Learning,

4th International Workshop on.
Kim, B.-s., S. H. Lee and D. K. Kim (1993). Determination of initial configuration for LVQ by using CNN. 1993

International Joint Conference on Neural Networks, 1993. IJCNN '93, Nagoya.
Kinsler, L. E. (1982). Fundamentals of acoustics . New York :, Wiley,.
Kirkpatrick, S., C. D. Gelatt Jr. and M. P. Vecchi (1983). "Optimization by Simulated Annealing." Science 220: 671-

680.
Kleppe, J. A. (1989). Engineering applications of acoustics. Norwood, MA :, Artech House,.
Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. IJCAI

95.
Kohonen, T. (1982). Clustering, Taxonomy, and Topological Maps of Patterns. Proceedings of the 6th International

Conference on Pattern Recognition.
Kohonen, T., K. Makisara and T. Saramaki (1984). Phonotopic Maps - Insightful Representation of Phonological

Features For Speech Recognition. 7th International Conference on PATTERN RECOGNITION, Montereal
Canada.

Kohonen, T. (1988). "The 'neural' phonetic typewriter." IEEE Computer 21(3): 11-22.
Kohonen, T. (1991). The Hypermap Architecture. Artificial Neural Networks. T. Kohonen, K. Mäkisara, O. Simula

and J. Kangas, Elsevier Science Publishers. 1: 1357-1360.
Kohonen, T. (1995). Self-Organizing Maps, Springer.
Kohonen, T., J. Hynninen, J. Kangas and J. Laaksonen (1995). The Self-Organizing Map Program Package, Helsinki

University of Technology.
Kohonen, T. (2001). Self-Organizing Maps, Springer.
Kolodner, J. L. (1993). Case-based reasoning. San Mateo, CA :, Morgan Kaufmann Publishers,.
Kong, X., R. Wang and G. Li (2002). "Fuzzy clustering algorithms based on resolution and their application in

image compression." Pattern Recognition 35(11): 2439-2444.
Kopecz, K. (1995). Unsupervised learning of sequences on maps with lateral connectivity. ICANN'95 - International

Conference on Neural Networks.
Koskela, T., M. Varsta, J. Heikkonen and K. Kaski (1997). Time Series Prediction using Recurrent SOM with Local

Linear Models. Helsinki, Helsinki University of Technology
Laboratory of Computational Engineering: 17.
Koskela, T., Varsta, M., H. J. and K. K. (1998). Temporal Sequence Processing using Recurrent SOM . KES'98, 2nd

Int. Conf. on Knowledge-Based Intelligent Engineering Systems, Adelaide, Australia.
Koskela, T., M. Varsta, J. Heikkonen and K. Kaski (1998). Recurrent SOM with Local Linear Models in Time Series

Prediction. ESANN'98, 6th European Symposium on Artificial Neural Networks, Brussels, Belgium.
Krishna, K., M. A. L. Thathachar and K. R. Ramakrishnan (2000). "Voronoi Networks and Their Probability of

Misclassification." IEEE Transactions on Neural Networks 11(6): 1361-1372.
Kulkarni, S. R., S. E. Posner and S. Sandilya (1998). Data-dependant k-nn estimors consistent for arbitrary

processes . IEEE International Symposium on Information Theory, Cambridge, MA, USA.

346 References

Kuncheva, L. I. (1995). "Editing for the k-nearest neighbors rule by a genetic algorithm." Pattern Recognition Letters
16: 809-814.

Kuncheva, L. I. and J. C. Bezdek (1998). "Nearest Prototype Classification: Clustering, Genetic Algorithms, or
Random Search ?" IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews 28(1): 160 -164.

Kuncheva, L. I. (2001). Reducing the Computational Demand of the Nearest Neighbor Classifier. School of
Informatics Symposium on Computing 2001, Aberystwyth, UK.

Laha, A. and N. R. Pal (2001). "Some novel classifiers designed using prototypes extracted by a new shceme based
on self-organizing feature map." IEEE Transactions on Systems, Man, and Cybernetics - Part B:Cybernetics
31(6): 881-890.

Lakany, H. M. (2001). Humain Gait Analysis using SOM. Advances in Self-Organizing Maps. N. Allison, H. Yin, L.
Allison and J. Slack, Springer: 29-38.

Lee, E. -W. and S.-I. Chae (1998). "Fast Design of Reduced-Complexity Nearest-Neighbor Classifiers Using
Triangular Inequality." IEEE Transactions on Pattern Analysis and Machine Intelligence 20(5): 562-566.

Leinonen, L., K. J. and A. Juvas (1992). "Dysphonia Detected by Pattern Recognition of Spectral Composition."
Journal of Speech and Hearing Research 35: 287-295.

Leinonen, L., T. Hiltunen, K. Torkkola and J. Kangas (1993). "Self-organized Acoustic Feature Map in Detection of
Forcative-Vowel Coarticulation." J. Acoust. Soc. Am. 6: 3468-3474.

Lim, T.-S., W.-Y. Loh and T.-S. Shih (2000). "A Comparison of Prediction Accuracy, Complexity, and Training
Time of Thirty-Three Old and New Classification Algorithms." Machine Learning 40(3): 203-228.

Lin, S., J. Si and A. B. Schwartz (1998). "Self-organization of Firing Activities in Monkey's Motor Cortex:
Trajectory Computation from Spike Signals." Neural Computation 9(3): 607-621.

Linde, Y., A. Buzo and M. Gray (1980). "An algorithm for vector quantization design." IEEE Transactions on
Communications 28: 84-95.

Liu, C.-L. and M. Nakagawa (2001). "Evaluation of prototype learning algorithms for nearest-neighbor classifier in
application to handwritten character recognition." Pattern Recognition 34(3): 601-615.

Lobo, V. (1995). Classificacao de efeitos hidrofonicos. Departamento de Informatica. Lisboa, Universidade Nova de
Lisboa.

Lobo, V. and F. Moura-Pires (1995). Ship noise classification using Kohonen Networks. EANN 95, Helsinki,
Finland.

Lobo, V. (1998). Tutorial on SOM for EAIA'98. Lisbon, Escola Naval.
Lobo, V., R. Swiniarski and F. Moura-Pires (1998). Pruning a classifier based on a Self-Organizing Map using

Boolean function formalization. WCCI - World Conference on Computational Intelligence, Anchorage,
Alaska, USA, IEEE Press.

Lobo, V. and P. M. d. Oliveira (1999). Relatorio das gravacoes de efeitos hidrofonicos no tanque acustico do
GOAME, em Julho de 1999. Lisbon, Escola Naval.

Lobo, V. (2002). Ship noise classification: a contrinution to prototype based classifier design. Departamento de
Informatica. Lisbon, Universidade Nova de Lisboa.

Lohse, D., B. Schmitz and M. Versluis (2001). "Snapping shrimp make flashing bubbles." Nature 413(6855): 477-
478.

Lourens, J. G. (1988). Classification of Ships using Underwater Radiated Noise. COMSIG 88 - South African
Symposium on Communications and Signal Processing, Pretoria.

Lourens, J. G. (1997). Passive Sonar ML Estimator for Ship Propeller Speed. COMSIG 97 - South African
Symposium on Communication and Signal Processing, 1997.

Loyd, S. P. (1982). "Least Squares quantization in PCM." IEEE Transactions on Information Theory 28(2): 129-137.
Lyons, A. R., T. J. Newton, N. J. Goddard and A. T. Parsons (1995). Can passive sonar signals be classified on the

basis of their higher order statistics? IEE Colloquium on Higher Order Statistics in Signal Processing.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observation. 5th Berkeley

Symposium on Mathematical Statistics and Probability, University of California Press.
Maher, M. L., M. Balachandran and D. M. Zhang (1995). Case-based reasoning in design. Mahwah, N.J. :, Lawrence

Erlbaum Associates.
Marques, J. S. (1999). Reconhecimento de Padrões, IST Press.
Martinetz, T. M., S. G. Berkovich and K. J. Schulten (1993). "Neural-Gas network for vector quantization and its

application to time-series prediction." IEEE Transactions on Neural Networks 4(4): 558-569.
Mathworks (2001). Matlab Users Manual, Mathworks.
Medwin, H. and C. S. Clay (1998). Fundamentals of acoustical oceanography. Applications of modern acoustics.

Boston :, Academic Press,: xx, 712 p. : ill. (some col.) ; 24 cm.
Mehta, S. K., J. Fay and P. Maciejewski (1996). A modified Eckart post-beamformer filter for improved detection

using broadband features . ICASSP-96.
Meister, J. (1993). "A neural network harmonic family classifier." J. Acoust. Soc. Am. 93(3): 1488-1495.

References 347

Messer, H. (1994). "The use of spectral information in optimal detection of a source in the presence of a directional
interference." IEEE Journal of Oceanic Engineering 19(3): 422-430.

Michie, D., D. J. Spiegelhalter and C. C. Taylor (1994). Machine Learning, Neural and Statistical Classification,
Ellis Horwood.

Midenet, S. and A. Grumbach (1994). "Learning Associations by Self-Organization: The LASSO Model."
Neurocomputing 6: 343-361.

Miller, R. G. (1974). "The Jackknife - A review." Biometrika 61(1): 1-15.
Mitchell, T. M. (1997). Machine Learning, McGraw-Hill.
Mitiche, A. and M. Lebidoff (2001). "Pattern classification by a condensed neural network." Neural Networks 14(4-

5): 575-580.
Mitra, P., C. A. Murthy and S. K. Pal (2000). Data condensation in large databases by incremental learning with

support vector machines. 15th International Conference on Pattern Recognition, Barcelona, Spain.
Moizao, R. (1997). Projecto Final de Curso. Departamento de Informatica. Lisbon, Universidade Nova de Lisboa.
Moshou, D. and H. Ramon (2000). "Wavelets and Self-Organizing Maps in financial time -series analysis." Neural

Network World (10): 231-238.
Mueller, G. (1993). Monitoring impacts on inland fisheries using hydroacoustics. Denver, Colo. :, U.S. Dept. of the

Interior, Bureau of Reclamation, Denver Office,.
Mujunen, R., L. Leinonen, J. Kangas and K. Torkkola (1993). "Acoustic Pattern Recognition of /s/ Misarticulation

by the Self-Organizing Map." Folia Phoniatrica 45: 135-144.
Muller, F. J. (1993). A Software Environment for Rough Sets. Mathematics and Computer Science. San Diego, CA,

Sand Diego State University: 272.
Mullin, M. and R. Sukthankar (1999). An efficient technique for calculating exact nearest-neighbor classification

accuracy. NIPS 99.
Murtagh, F. (1995). "Interpreting the Kohonen Self-Organizing Maps using contiguity-constraint clustering." Pattern

Recognition Letters(16): 399-408.
Musman, S. A., L. W. Chang and L. B. Booker (1990). A real time control strategy for Bayesian belief networks

with application to ship classification problem solving. IEEE Conference on Tools for Artificial
Intelligence, 1990.

Nabney, I. T. (2001). Netlab, Springer.
Nataranjan, B. K. (1991). Machine Learning, Morgan Kaufmann.
NATO (1993). Linked Seas 93 - Environmental Briefing Docket. Lisbon, Nato-Cinciberlant: 28.
Nielsen, R. O. (1991). Sonar Signal Processing, Artec House.
Nikias, C. L. and A. P. Petropulu (1993). Higher-Order spectra analysis: a nonlinear signal processing framework,

Prentice-Hall PTR.
Nishimura, C. E. (1994). Monitoring whales and earthquakes by using SOSUS. Washington, DC :, Naval Research

Laboratory,.
Nock, R. and M. Sebban (2001). "An improved bound on the finite-sample risk of the nearest neighbor rule." Pattern

Recognition Letters 22(3-4): 407-412.
Oliveira, P. M. d. and V. Barroso (1998). On the concept of instantaneous frequency. International Confererence on

Acoustics, Speech and Signal Processing ICASSP98, Washington.
Oliveira, P. M. d. and V. Barroso (1999). "Instantaneous frequency of multicomponent signals." IEEE Signal

Processing Letters 6(4): 81-83.
Oppenheim, A. V. and R. W. Shafer (1989). Discrete-Time Signal Analysis , Prentice Hall.
Pao, Y.-H. (1989). "Functional Link Nets: removing hidden layers." AI Expert: 60-68.
Pawlak, Z. (1982). "Rough Sets." International Journal of Computer and Information Sciences 11(5): 341-356.
Pawlak, Z. (1988). "Hard Sets and Soft Sets." Bulletin of the Polish Academy of Sciences 36: 119-123.
Pawlak, Z. and R. Slowinski (1994). "Decision Analysis Using Rough Sets." Pergamon 1(1): 107-114.
Pawlak, Z. and R. Slowinski (1994). "Rough set approach to multi-attribute decision analysis." European Journal of

Operational Research, Elsevier 72: 443-459.
Pesu, L., E. Ademovic, J. C. Pesquet and P. Helisto (1996). Wavelet packet based respiratory sound classification.

IEEE-SP: International Symposium on Time-Frequency and Time-Scale Analysis, New York, USA, IEEE
Press.

Peterson, D. W. (1970). "Some Convergence Properties of a Nearest Neighbor Decision Rule." IEEE Transactions
on Information Theory 16(1): 26-31.

Pizzuti, C. (1996). Computing Prime Implicants by Integer Programming. Int. Conf. on Tools with Artificial
Intelligence.

Plutowski, M., G. Cottrell and H. White (1996). "Experience with selecting exemplars from clean data." Neural
Networks 9(2): 273-294.

Poggio, T. and F. Girosi (1990). "Networks for approximation and learning." Proceedings of the IEEE 78(9): 1481-
1497.

348 References

Poularikas, A. D. (1998). The handbook of fomulas and tables for signal processing, IEEE Press.
Powell, M. D. J. (1987). Radial Basis Functions for multivariable interpolation:a review. Algorithms for

approximation. J. C. Mason and M. G. Cox, Oxford:Clarendon Press: 143-167.
Pridham, R. G. and D. J. Hamilton (1991). Evaluation of neural network and conventional techniques for sonar

signal discrimination. IEEE Conference on Neural Networks for Ocean Engineering, 1991.
Príncipe, J. and L. Wang (1995). Non-Linear Time Series Modeling with Self-Organization Feature Maps. IEEE

Workshop on Neural Networks for Signal Processing, IEEE.
Principe, J. C., N. R. Euliano and W. C. Lefebvre (2000). Neural and Adaptive Systems: Fundamentals through

Simulation, John Wiley & Sons.
Przytula, K. W., V. K. Prasanna, V. K. P. Kumar and K. W. Praytula (1993). Parallel Digital Implementations of

Neural Networks, Prentice-Hall.
Psaltis, D., R. R. Snapp and S. S. Venkatesh (1994). "On the finite sample Performace of the Nearest Neighbor

Classifier." IEEE Transactions on Information Theory 40(3): 820-837.
Pujol, A. W., H.; Villanueva, J.J. (2001). Learning and caricaturing the face space using self-organization and

Hebbian learning for face processing. Image Analysis and Processing, 11th International Conference on,
Palermo, Italy.

Pumphrey, H. C., L. A. Crum and L. Bjorno (1989). "Underwater sound produced by individual drop impacts and
rainfall." Journal of the Acoustical Society of America 85: 1518-1526.

Qian, S. (2002). Time -Frequency and Wavelet Transforms , Prentice-Hall PTR.
Quazi, A. H. (1996). Nonlinear sonar signal processing. Signal Processing, 1996., 3rd International Conference on.
Ramasubramanian, V. and K. K. Paliwal (1992). "Fast K-dimensional tree algorithms for nearest neighbor search

with application to vector quantization encoding." IEEE Transactions on Signal Processing 40(3): 518-531.
Ren, Q. S. and A. J. Willis (1995). A maximum entropy approach to filtering and reconstructive imaging of the

underwater environment. OCEANS '95. MTS/IEEE.
Ricci, F. and P. Avesani (1999). "Data Compression and Local Metrics for Nearest Neighbor Classification." IEEE

Transactions on Pattern Analysis and Machine Intelligence 21(4): 380-384.
Ripley, B. D. (1996). Pattern recognition and neural networks, Cambridge University Press.
Ritter, G. L., H. B. Woodruff, S. R. Lowry and T. L. Isenhour (1975). "An Algorithm for a Selective Nearest

Neighbor Decision Rule." IEEE Transactions on Information Theory: 665-669.
Ritter, H. and T. Kohonen (1989). "Self-Organizing Maps." Biological Cybernetics 61: 241-254.
Ritter, H., T. M. Martinetz and K. Schulten (1992). Neural Computation and Self-Organizing Maps: an introduction,

Addison-Wesley.
Ritter, H. (1994). Parametrized Self-Organizing Maps for Visual Learning Tasks. ICANN'94 - International

Conference on Neural Networks, Springer.
Rogers, W. and T. J. Wagner (1978). "A finite-sample distribution-free performance bound for local discrimination

rules." Annals of statististics 6: 506-514.
Roitblat, H. L., Moore, Nachitgall and Penner (1989). Dolphin echolocation: Identification of returning echoes.

IJCNN 89.
Ross, D. (1987). Mechanics of Underwater Noise. Los Altos, CA, Peninsula Publishing.
Rueping, S. G., K.; Rueckert, U. (1994). A chip for self-organizing feature maps. Microelectronics for Neural

Networks and Fuzzy Systems, Fourth International Conference on, Turin, Italy.
Ruf, B. and M. Schmitt (1998). "Self-organization of spiking neurons using action potential timing." IEEE

TRANSACTIONS ON NEURAL NETWORKS 9(3).
Rumelhart, D. E., G. E. Hinton and R. J. Williams (1986). Learning internal representations by error propagation.

Parallel distributed processing: Exploretimes in the microstructure of cogition. D. E. Rumelhart and J. L.
McClelland. Cambridge, MA, USA, Bradford Books. 1.

Russo, A. P. (1991). Constrained neural networks for recognition of passive sonar signals using shape. IEEE
Conference on Neural Networks for Ocean Engineering.

Salzberg, S. (1991). "A Nearest Hyperrectangle Learning Method." Machine Learning 6: 277-309.
Sammon, J. W. J. (1969). "A Nonlinear Mapping for Data Structure Analysis." IEEE Transactions on Computers C-

18(5): 401-409.
Sarker, R. A., H. A. Abbass and C. S. Newton (2002). Heuristics & Optimization for Knowledge Discovery, IGP -

Idea Group Publishing.
Schank, R. (1982). Dynamic memory: a theory of reminding and learning in computers and people. Cambridge, UK,

Cambridge University Press.
Schildt, H. (1989). Born to Code in C, McGraw Hill.
Schneeweiss, W. G. (1989). Boolean Functions with Engineering Applications and Computer Programs , Springer-

Verlag.
Schurmann, J. (1996). Pattern classification: a unified view of statistical and neural approaches, John Wiley & Sons.

References 349

Schwartzmann, D. I. and J. J. Vidal (1975). "An Algorithm for Determining the Topological Dimensionality of Point
Clusters." IEEE Transactions on Computers c-24(12): 1175-1182.

Scringer, J. A., D. J. Evans and W. Yee (1989). "Underwater Noise due to rain: open ocean measurements." Journal
of the Acoustical Society of America 85: 726-731.

Sejnowski, T. J. and P. Gorman (1988). "Learned Classification of Sonar Targets Using a Massively Parallel
Network." IEEE Transactions on Acoustics, Speech, and Signal Processing 36(7): 1135 -1140.

Short, R. D. and K. Fukunaga (1980). A new nearest neighbor distance measure. IEEE Int. Conf. Pattern
Recognition, Miami Beach, FL.

Short, R. D. and K. Fukunaga (1981). "The optimal distance measure for nearest neighbor classification." IEEE
Transactions on Information Theory 27: 622-627.

Silva, J. P. M. (1997). On Computing Minimum Size Prime Implicants. IEEE/ACM International Workshop on
Logic Synthesis.

Simula, O., E. Alhoniemi, J. Hollmen and J. Vesanto (1996). Monitoring and Modeling of Complex Processes
Using Hierarchical Self-Organizing Maps . IEEE International Symposium on Circuits and Systems
(ISCAS-96), Atlanta, Georgia, USA.

Skodras, A. N., C. A. Christopoulos and T. Ebrahimi (2000). JPEG2000: The Upcoming Still Image Compression
Standard. RECPAD 2000, Porto, Portugal.

Sokal, R. R. and P. H. A. Sneath (1963). Principals of Numerical Taxonomy , W.H. Freeman.
Solinsky, J. C. and E. A. Nash (1991). Neural-network performance assessment in sonar applications. IEEE

Conference on Neural Networks for Ocean Engineering, 1991.
Song, B. C. and J. B. Ra (2002). "A fast search algorithm for vector quantization using L2-norm pyramid of

codewords." IEEE Transactions on Image Processing 11(1): 10-15.
Specht, D. F. (1990). "Probabilistic Neural Networks." Neural Networks 3: 109-118.
Srinivasa, N. and N. Ahuja (1999). "A topological and temporal correlator network for spatiotemporal pattern

learning, recognition, and recall." IEEE TRANSACTIONS ON NEURAL NETWORKS 10(2): 356-371.
Stefanick, T. (1987). Strategic antisubmarine warfare and naval strategy. Lexington, Mass. :, Lexington Books,.
Stiles, B. W. and J. Ghosh (1995). Habituation based neural classifiers for spatio-temporal signals . ICASSP-95 - Intl.

Conf. on Acoustics, Speech, and Signal Processing.
Stockdale, D. L. (1998). Application of Zernike moments, rough sets and neural networks to handwritten character

recognition. Mathematics and Computer Science. San Diego, SDSU: 236.
Stoffel, D., W. Kunz and S. Gerber (1997). AND/OR Reasoning Graphs for Determining Prime Implicants in Multi-

Level Combinational Networks. Asia and South Pacific Design Automation Conference ASP-DAC, Chiba,
Japan, IEEE CS Press, Los Alamitos.

Swonger, C. W. (1972). Sample Set Condensation for a Condensed Nearest Neighbor Decision Rule for Pattern
Recognition. Frontiers of Pattern Recognition. S. Watanabe, Academic Press: 511-519.

Tai, S. C., C. C. Lai and Y. C. Lin (1996). "Two fast nearest neighbor searching algorithms for image vector
quantization." IEEE Transactions on Communications 44(12): 1623-1628.

Takacs, B. and H. Wechsler (1998). Face recognition using binary image metrics. Automatic Face and Gesture
Recognition, Third IEEE International Conference on, Nara, Japan.

Tanomaru, J. and A. Inubushi (1995). A compact representation of binary patterns for invariant recognition. IEEE
International Conference on Systems, Man and Cybernetics.

Tesei, A., C. S. Regazzoni and G. Tacconi (1994). Comparison between different HOS-based tests for detection of
ship-radiated signals in non-Gaussian noise. OCEANS '94.

Tims, A. C. and T. A. Henriquez (1979). Hydrophone phase stability analysis at frequencies below 100 Hz. NRL
report ; . Washginton, D.C. :, Naval Research Laboratory,. 8314: iii, 21 p. : ill. ; 26 cm.

Tomek , I. (1976). "An experiment with the edited nearest neighbor rule." IEEE Transactions on Systems, Man, and
Cybernetics.

Tomek, I. (1976). "Two Modifications of CNN." IEEE Transactions on Systems, Man, and Cybernetics: 769-772.
Torgo, L. and J. Gama (1997). "Regression using Classification Algorithms." Intelligent Data Analysis 1(4): 275-

292.
Toussaint, G. T. and R. S. Poulsen (1979). Some new algorithms and software implementation methods for pattern

recognition research. IEEE Computer Society Third International Computer Software and Applications
Conference (COMPSAC'79).

Trunk, G. V. (1968). "Statistical Estimation of the Intrinsic Dimensionality of Data Collections." Information and
Control 12: 508-525.

Tryba, V. and K. Goser (1991). Self-Organizing Maps for Process Control in Chemistry. Artificial Neural Networks.
T. K. Kohonen, K. Makisara, O. Simula and J. Kangas. Amsterdam, Netherlands: 847-852.

Tyack, P. L. and T. Howald (1993). "Biological sources of noise in coastal waters." Journal of the Acoustical Society
of America 94(3): 1819.

350 References

Ullmann, J. R. (1974). "Automatic Selectrion of Reference Data for use in a Nearest Neighbor Method of Pattern
Classification." IEEE Transactions on Information Theory: 541-543.

Ultsch, A. and H. P. Simeon (1989). Exploratory Data Analysis Using Kohonen Networks on Transputers,
Department of Computer Science, University of Dormund, FRG.

Ultsch, A. and H. P. Siemon (1990). Kohonen´s Self-Organizing Neural Networks for Exploratory Data Analysis .
Intl. Neural Network Conf. INNC90, Paris.

Ultsch, A. (1993). Self-Organized Feature Maps for Monitoring and Knowledge Acquisition of Chamical Process.
ICANN 93 - International Conference on Artificial Neural Networks.

Ultsch, A. and H. Li (1993). Automatic Acquisition of Symbolic Knowledge from Subsymbolic Neural Networks.
International Conference on Signal Processing, Peking, 1993, Peking.

Ultsch, A., G. Guimarães and W. Schmidt (1996). Classification and prediction of hail using self-organizing neural
networks. ICNN'96 - International Conference on Neural Networks, Washington.

Urick, R. J. (1982). Sound propagation in the sea. Los Altos, Calif. :, Peninsula,.
Urick, R. J. (1986). Ambient noise in the sea. Los Altos, CA :, Peninsula Publishing,.
Urquhart, R. B. (1983). "Mapping Techniques in Pattern Recognition." Gec Journal of Research 1(2): 108-121.
Utela, P., J. Kangas and L. Leinonen (1992). Self-Organizing Map in Acoustic Analysis and ON-Line Visual

Imaging of Voice Articulation. Artificial Neural Networks 2. I. Aleksander and J. Taylor. Amsterdam,
Netherlands. 1: 791-794.

Van-Houtte, P., K. Deegan and K. Khorasani (1991). Passive sonar processing using neural networks. IEEE
International Joint Conference on Neural Networks, 1991.

Vapnik, V. N. (2000). The nature of statistical learning theory. New York :, Springer,.
Varsta, M., J. Heikkonen and J. R. Millán (1997). Context Learning with self-organizing map. WSOM'97 -

Workshop on Self-Organizing Maps, Espoo, Finland.
Varsta, M., J. Heikkonen and J. Lampinen (2000). Analytical comparison of the Temporal Kohonen Map and the

Recurrent Self Organizing Map. ESANN 00.
Vesanto, J. (1999). "SOM-based data visualization." Intelligent Data Analysis 3: 111-126.
Vesanto, J. and E. Alhoniemi (2000). "Clustering of the Self-Organizing Map." IEEE Transactions on Neural

Networks.
Voegtlin, T. (2000). Context Quantization and Contextual Self-Organizing Maps. IJCNN'2000.
Voegtlin, T. and P. Dominey (2001). Recursive Self-Organizing Maps. Advances in Self-Organizing Maps. N.

Allison, H. Yin, L. Allison and J. Slack, Springer: 210-215.
Waibel, A., T. Hanazawa, G. Hinton, K. Shikano and K. J. Lang (1989). "Phoneme recognition using time-delay

neural networks." IEEE Transactions on Acoustics, Speech and Signal Processing 37(3): 328-339.
Walter, J. A. and K. J. Schulten (1993). "Implementation of Self-Organizing Neural Networks for Visual-Motor

Control of an Industrial Robot." IEEE Transactions on Neural Networks 4(1): 86-96.
Walter, J. A. and H. Ritter (1996). Investment learning with hierarchical PSOM. Advances in Neural Information

Processing Systems 8. D. S. Touretzky, M. Mozer and M. Hasselmo : 570-576.
Walter, J. A. (1998). PSOM Network: Learning with Few Examples. Intl. Conf. On Robotics and Automation

(ICRA), IEEE.
Watson, I. D. (1997). Applying case-based reasoning : techniques for enterprise systems . San Francisco, Calif. :,

Morgan Kaufmann,.
Webb, A. (1999). Statistical pattern recognition. London [England] : New York, NY :, Arnold ; Co-published in the

United States of America by Oxford University Press,.
Wegener, I. (1987). The complexity of Boolean functions, J. Wiley.
Wenz, G. M. (1962). "Acoustic Ambient Noise in the Ocean: Spectra and Sources." Journal of the Acoustical

Society of America.
Werbos, P. J. (1974). Beyond regression: New tools for predictions and analysis in the behavioral sciences.

Cambrige, MA, USA, Harvard University.
Wettschereck, D. and T. Dietterich (1995). "An Experimental Comparison of the Nearest-Neighbor and Nearest-

Hyperrectangle Algorithms." Machine Learning 19(1): 5-28.
Wettschereck, D., T. Mohri and D. W. Aha (1997). "A review and empirical comparison of feature weighting

Methods for a class of lazy learning algorithms." AI Review 11: 273-314.
Wigner, E. P. (1932). "On the quantum correction for thermodynamic equilibrium." Physical Review 40: 749-759.
Wilfong (1991). Nearest Neighbor Problems . 7th ACM Symposium on Computational Geometry.
Wilson, D. L. (1972). "Asymptotic Properties of Nearest Neighbor Rules Using Edited Data." IEEE Transactions on

Systems, Man, and Cybernetics 2(3): 408-421.
Wilson, D. R. and T. R. Martinez (1997). Instance Prunning Techniques . 14th International Conference on Machine

Learning, Morgan Kaufmann Publishers.
Wilson, D. R. and T. R. Martinez (1997). "Improverd Heterogeneous Distance Functions." Journal of Artificial

Intelligence Research 11: 1-34.

References 351

Xie, Y. (1992). "Acoustical radiation from thermally stressed sea ice." Journal of the Acoustical Society of America
89(5): 2215-2231.

Yen, J. and C.-W. Chang (1994). A Multi-Prototype Fuzzy c-Means Algorithm. European Congress on Intelligent
Techniques and Soft Computing (EUFIT 94), Aachen, Germany.

Zarndt, F. (1995). A Comprehensive Case Study: An Examination of Machine Learning and Connectionist
Algorithms. Department of Computer Science, Brigham Young University.

Zhang, H. and G. Sun (2002). "Optimal reference subset selection for nearest neighbor classification by tabu search."
Pattern Recognition 35(7): 1481-1490.

Zhang, J. (2002). "Selecting Typical Instances in Instance Based Learning."
Zhao, Q. and T. Higuchi (1996). "Evolutionary Learning of Nearest-Neighbor Multilayer Perceptrons." IEEE

Transactions on Neural Networks 7(3): 762-767.

