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Glossary 

Throughout the thesis we have tried to use a coherent nomenclature that is summarized in Table 

1 and  

Table 2. Generally, italic is used when referring to variables, and they will be in bold if they are 

vectors or sets, and normal if they are scalar 

 

Table 1 - General conventions  

Sets of patterns are in italic and start with uppercase. Example_set 

Members of Sets of patterns are in italic, and have indexes in 

parenthesis. 

Example_set(3) 

Patterns are in bold italic, and start with lowercase. example_pattern 

Components of individual patterns are represented by their index 

number in superscript. 

example_pattern4 

Component planes (i.e. the same component of all individual 

patterns) of a set of patterns, are represented by their index 

number in superscript over the name of the set. 

Example_set3 

 

Table 2 - Names of techniques, sets, and algorithms  

|A_set| Cardinality of “A_set”. 

a priori 

error 

Maximum error that might occur when using the positive only Q-set 

approach. 

AMER Acceptable maximum error rate – Maximum a priori error rate we are 

willing to accept when using the general case Q-set heuristic. 

CB Cost/Benefit ratio of a pattern used in the general case Q-set heuristic. 

CNN Condensed Nearest Neighbor (Hart 1968) – A prototype minimization 

technique, , for prototype based classifiers. 

CNF Conjunctive Normal Form - A representation of a Boolean function as 

product of sums. 

DNF Disjunctive Normal Form – A representation of a Boolean function as sum 

of products. 
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DMCNN Devi modified CNN - Prototype selection method, for prototype based 

classifiers (Devi and Murty 2002). 

DSM  Decision Surface Mapping – A method that finds prototypes close to 

interclass borders (Geva and Sitte 1991). 

DYNAGEN Prototype selection method, for prototype based classifiers (Laha and Pal). 

G2P General to positive only – algorithm used to convert a general case 

complete Q-set to a positive only Q-set. 

GA Genetic Algorithm (Fogel 1999) - An optimization technique. It can be used 

to for prototype minimization, for prototype based classifiers. 

GLVQ Generalized LVQ – A variation on the LVQ neural network. 

GLVQ-F Fuzzy generalized LVQ (Karayiannis, Bezdek et al. 1996) – A variation on 

the LVQ neural network. 

Hastie-

Stuetzle 

Algorithm 

Algorithm for finding principal curves (Hastie and Stuetzle 1989) (Chang 

and Ghosh 2001). Related to PCA and SOM.. 

ICA Iterative Condensation Algorithm – Prototype minimization technique 

(Swonger 1972). 

ICA Independent Component Analysis – Data transformation technique, e.g. 

(Hyvarinen and Oja) 

LVQ Linear Vector Quantization (Kohonen 2001) – A type of neural network. 

LVQ-H Huang’s modified LVQ (Huang, Chiang et al. 2002) – A variation on the 

LVQ neural network 

MCS Minimal Consistent Subset  

MNV Mutual Neighborhood Value – A prototype minimization technique, for 

prototype based classifiers (Gowda and Krishna 1979). 

MSS Minimal Selective Subset 

MultiEdit A data editing technique, used to improve the performance of prototype-

based classifiers (Devijver and Kittler 1982). 

RCNN Reduced Complexity Nearest Neighbor -An algorithm for building fast 

nearest neighbor classifiers (Lee and Chae 1998). 

RISE Rule Induction from a Set of Exemplars - A case-based reasoning system 

that unifies instance based learning with rule induction (Domingos 1995). 

RNN Reduced Nearest Neighbor (Gates 1972) – A prototype minimization 
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technique, , for prototype based classifiers. 

RS Random Selection – A technique based on random selection of entities. It 

can be used to for prototype minimization, for prototype based classifiers 

(Kuncheva and Bezdek 1998). 

SA Simulated Annealing (Kirkpatrick, Gelatt Jr. et al. 1983) – An optimization 

technique. It can be used to for prototype minimization, for prototype based 

classifiers. 

SNN Selective Nearest Neighbors (Ritter, Woodruff et al. 1975) – A prototype 

minimization technique, , for prototype based classifiers 

SOM Self Organizing Map (Kohonen 2001). A data visualization, quantization, 

and mapping algorithm. 

SVM Support Vector Machines – A classifier design technique (Vapnik 2000). 

TS Tabu search (Glover and Laguna 1997) – An optimization technique. It can 

be used to for prototype minimization, for prototype based classifiers. 

XCNN CNN classification set 

XRNN RNN classification Set 

Xtrain Training Set (of patterns) 
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Abstract 

 

The main objective of this thesis is to construct a system that can identify ships using the noise 

they produce underwater. In the process, a few contributions are made to prototype based 

classifier design. 

 

This thesis is divided into three parts. We begin by presenting a state of the art of relevant topics, 

then we propose a few original contributions, and finish by presenting the results of the 

application of previously discussed techniques to a specific problem. 

 

Part I contains an overview and state of the art on pattern classification. Particular emphasis is 

given to techniques that were applied during our experimental phase and to issues more closely 

related to our contributions. A brief introduction to the global problem is presented in Chapter 1, 

where relations among various phases of classifier design are laid out. Chapter 2 overviews some 

of the most common techniques used for feature extraction, such as frequency based transforms 

and principal component analysis. Chapter 3 deals with feature selection techniques, including 

the use of scatter matrices, and the use of Rough Sets. In Chapter 4 we review the use of k-means 

clustering and Self-Organizing Maps for exploratory data analysis. Chapter 5 is the largest as it 

addresses the main issue which is classifier design. While other classification methods are 

mentioned, most of the chapter covers nearest neighbor classifiers and a thorough review of 

prototype minimization techniques is presented. Finally, Chapter 6 reviews the issue of cross-

validation and clarifies the meaning of training, test, and validation sets. The review of two very 

specific issues (the use of Self Organizing Maps for binary patterns, and the parallelization of the 

Self Organizing Map algorithm) is postponed to the last chapters of Part II. 

 

Part II contains the core of this thesis describing its original contributions. The first chapter deals 

with the main contribution, which is a method for minimizing the number of prototypes 

necessary for a nearest neighbor classifier. A framework is proposed, named Q-set theory, which 

relies on a Boolean function formalization of the classifier minimization problem. Two distinct 

algorithms are presented, that use Q-set concepts and heuristics to achieve that minimization. An 

example of how Q-set theory allows the problem to be solved exactly with existing optimization 

algorithms it is also shown. A comparison with other algorithms is performed, with standard 

benchmark datasets, and possible extensions proposed. The next two chapters contain two minor 
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original contributions. Chapter 2 presents an adaptation of the Self-Organizing Map algorithm for 

clustering binary valued data. The problems associated with that adaptation are presented, 

solutions are proposed, and a brief description of its performance is done. Chapter 3 presents a 

parallel implementation of Self-Organizing Maps using common networked PC computers. 

 

Part III describes the application of the classifier techniques developed here to the specific 

problem of this thesis: the classification of underwater sound. Chapter 1 overviews the issues 

that, while not directly related to computer science, are relevant to the problem. Chapter 2 

describes the software tools developed. Chapter 3 describes the classification of data obtained by 

operational submarines. Chapter 4 describes the classification of acoustic data obtained under 

controlled conditions in an acoustic tank. The process of data gathering is described in detail and 

processing results are presented. 



 

   

PART I 

State of the art 
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PART I 

CHAPTER 1 

General Overview 

The main problem that originated this thesis was how to enable a submarine to identify the ships 

that are near it by hearing the underwater sound they produce. This is a crucial problem for 

submarine operation, and as we progressed in our work we found many other areas of application 

where the same techniques could be used, both for military and for civilian purposes. In all those 

applications, underwater sound must be recorded, pre-processed, and classified into one of a 

series of possible classes. 

 

Classification of underwater sound, also referred to as hydrophonic effects, can be seen as a very 

particular case of the more general classification problem, or pattern recognition problem. In this 
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part of the thesis we shall overview the general problem of classification, with particular 

emphasis on the approaches and techniques that will be improved as original contributions in part 

II, and those that will be used to process our data in part III. 

 

Classification of data is a very well studied problem in statistics, computer science, and 

engineering in general, and many excellent textbooks have been written on the subject, e.g., 

(Fukunaga 1990; Bishop 1995; Duda, Hart et al. 2001). As a whole, the problem encompasses 

much more than the strict classifier design problems that shall be overviewed in Chapter 5, and 

includes problems such as gathering the data, choosing what aspects of that data are relevant, 

validating the results, etc. 

 

Generally, the whole classification task can be divided into the following steps, shown 

graphically in Figure 1: 

 

a) Obtain the raw data. 

b) Extract features from that data. 

c) Perform some exploratory data analysis, and gain insight on the problem, if necessary. 

d) Select the features most relevant for classification. 

e) Design a classifier. 

f) Validate the classifier to obtain an estimate on its reliability, i.e., on how much 

confidence should be given to the classification it performs on new data. 
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This division into separate and more or less independent tasks is a simplification that is necessary 

to tackle the problem effectively. In reality all tasks are strongly interconnected. As an example, 

a feature extraction/selection technique that produces 2-dimensional features with a diagonal 

distribution as shown in Figure 2, may be optimal for a neural network based classifier (say a 

MLP (Rumelhart, Hinton et al. 1986)), but will certainly lead to a poor Decision Tree based 

classifier, such as those proposed by (Breiman, Friedman et al. 1984). 
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Figure 1 - General overview of the classification problem. Spiked shapes represent data in various forms. 
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It can also be argued that if the right parameters are measured and the feature extraction 

technique is “optimal”, it will be possible to map the raw data directly into the “class space”, 

rendering all following steps unnecessary. The exact opposite may happen if the raw data 

available can be used directly to design a good classifier in an efficient manner. The notions of 

“pre-processing”, “feature extraction” and 

“classifier” become blurred and almost 

undistinguishable. Naturally, since these cases 

constitute trivial problems that are infrequent in 

practice, no more attention will be given to them. 

The only useful point to retain is that good 

feature extraction techniques can lead to simpler 

classifiers, and powerful classifiers can make up 

for poor feature extraction. The choice of where 

to invest time and effort is problem and user 

dependant. 

 

Although there has been a lot of work choosing the best combinations of techniques for specific 

problems, a general unifying approach that can be applied to any generic problem is not 

foreseeable. Therefore, we will follow the traditional approach and look at each step in the 

classification problem separately. 

 

Some of these steps are very problem dependant, such as the measurements to be made of the 

phenomena, while others are almost problem independent, such as the design of a classifier given 

the fundamental features. 

 

The phenomenon to be classified is many times a physical one, such as the noise produced by a 

ship moving in the ocean studied in this thesis. However, it could be anything, such as a web 

page that we may want to categorize or information about bank transactions. When attempting to 

obtain a classifier, the choice of data to use and the process of gathering them is crucial to the 

success of the process. When the data can be obtained via controlled experiments, the design of 

those experiments is very important. It should guarantee that the data obtained are representative 

of the problem at hand and are not biased or contaminated in any way. The design of experiments 

is one of the most ancient arts of science, perfected by generations of chemists, physicists or 

biologists. It is extremely problem dependent, requiring careful planning, execution, and note 

Class
1

Class
2

x1

x2 Class
1

Class
2

x1

x2

 

Figure 2 - Feature extraction/selection that 
produce data with these distributions will lead 
to a good neural network classifier, but a bad 
decision tree classifier, since these have decision 
boundaries par allel to the axis. 
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taking. When experimental data generation is not possible, such as when we want to classify 

stock exchange fluctuations, care must be taken in selecting representative data, and 

characterizing the conditions under which they were obtained. Once again, it is an extremely 

problem dependant issue, for which no general recipes can be given. Thus, we will not attempt to 

overview this topic, but will characterize our data gathering efforts in part III of this thesis. 

 

Feature extraction is also highly problem dependant, so in chapter 2 we will only overview the 

techniques used in this thesis. 

 

When overviewing feature selection techniques in chapter 3, we will give particular attention to 

Rough Sets (Pawlak 1988) since it is a relatively recent technique that we find particularly 

attractive. 

 

The overview on exploratory data analysis given in chapter 4, although not strictly necessary for 

the pure classification problem, can be very useful. When dealing with a difficult and possibly 

ill-understood problem, exploratory data analysis can provide us with clues as to what is 

happening in the available data, how to improve the various steps of the process, and what to 

expect from the final classifier. 

 

In chapter 5, we will overview the main research area of this thesis, namely nearest neighbor or 

prototype based classifier design. We will position this type of classifiers within the much 

broader scenario of classifier design techniques but will not discuss them individually. 

 

Closing the classifier design cycle, we will overview validation techniques in chapter 6. 

 

Finally, it must be pointed out that in a practical situation, all the steps discussed will probably be 

iterated in closed loop, until a satisfactory result is obtained.  
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PART I 

CHAPTER 2 

Feature Extraction 

2.1 – Introduction 

By feature extraction, we mean the process that transforms the raw data into data that can be used 

by a classifier. By feature, we mean a component of the multidimensional vector used to 

represent those data.  

 

Feature extraction is a separate task from feature selection that will be overviewed in chapter 3, 

since while feature extraction generates new data from operations performed on the raw data, 
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feature selection will only choose some components of this data (the most relevant) to be used by 

the classifier. 

 

Usually, one generates more features than the ones that will be used. The reason for this is that, 

when designing a classifier, we usually do not know a priori what features are best for 

classification. The best solution is then is to generate all features that, for some reason, are felt to 

be useful, and then choose the best. 

 

The choice of feature extraction techniques is extremely problem dependent. All a priori 

knowledge about the problem should be used at this stage. For example, if we have the 

measurements of width and length of wooden boards, and know that their area may be important 

for the classification task (say their distribution amongst different warehouses), then an obvious 

feature extraction technique would be to simply multiply those two parameters and obtain the 

area of the boards. 

 

Most classifier design techniques require the data to be presented in sets of small units called 

patterns, pattern vectors, samples, examples or simply data vectors. In this thesis we have 

adopted the term pattern, for it is both more general and less ambiguous than the others. When 

the raw data are obtained, many times they are already in the form of something to which we can 

call patterns, but other times they are not. In this latter case, and if required by the classifier 

technique we want to use, the feature extraction technique must divide the data into patterns. For 

example, when classifying sound pitch, we may have a continuous recording obtained by a 

microphone. This continuous sound signal must then be broken down into small fragments, 

where the pitch is assumed more or less constant, so that the classifier can determine that pitch. 

  

 A common concern of feature extraction techniques is to obtain features that are invariant to 

irrelevant aspects of the data, as far as the classification is concerned. When classifying letters, 

their orientation may be irrelevant, or when classifying weapons by their sound, the instant in 

time when the shot occurs may be irrelevant. Without trying to be all encompassing, we can say 

that it is common to whish for properties such as time- invariance, rotation- invariance, position-

invariance, or scale- invariance. 

 

Feature extraction can also be viewed as a data or knowledge representation problem, and is 

treated as such by some authors, such as (Anzai 1992). 
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Feature extraction will many times require the use of signal processing. We shall briefly review 

some of the most popular techniques. 

 

2.2 - Fourier transforms 

The original work that let to the Fourier transform is due to Jean Baptiste Joseph Fourier who, in 

the beginning of the 19th century, used sinusoidal decomposition techniques to solve heat transfer 

problems. It has been widely used in science and engineering ever since. It decomposes a 

complex valued signal (of which a real valued signal is just a particular case) into a sum of sine 

and cosine signals. This effectively maps the original signal into a different domain, called the 

frequency domain. The representation of the signal in the frequency domain is called the 

spectrum of the signal. If the phase of the sinusoidal functions is ignored and only their 

amplitude is used, this mapping is time-invariant, thus achieving one of the usual goals of feature 

extraction. The frequency domain has a very intuitive physical meaning of “cycles per second” 

(even if sometimes misleading (Oliveira and Barroso 1998)), that is a useful feature by itself in 

many problems. The square modulus of the spectrum is usually referred to as the “power spectral 

density” or “energy spectral density” for power or energy signals respectively, and also has a 

very useful meaning, since it allows us to determine original signal’s power (or energy) 

contained in any given frequency band. 

 

By definition, the Fourier transform X(ω) of a signal x(t) is given by 

 ∫
+∞

∞−

−= dtetxX tjωω )()( . (1) 

For discrete signals, such as those available for processing by a digital computer, the Discrete-

time Fourier transform is defined as (e.g. (Oppenheim and Shafer 1989)) 

 ,)()( ∑
+∞=

−∞=

−=
n

n

njenxX ωω  ( 2) 

where ω, known as normalized angular frequency, is given in radians per sample, and is related 

to the more traditional notion of frequency f in Hertz (cycles per second) by f= (ω × fs) /2π , where 

fs is the sampling frequency (in samples per second). From the formula given above, it is obvious 

that the Discrete-time Fourier transform at frequencies that differ by 2π  will be exactly the same. 
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Thus, we only need to compute the transform for a 2π  interval. In what follows we will refer to 

the Discrete-time Fourier transform simply as Fourier transform. 

 

When choosing the time interval between two consecutive values of x, known of sampling period 

(the inverse of the sampling frequency), care must be taken to guarantee that information is not 

lost. The minimum sampling frequency must be greater than twice the highest frequency 

component in the original signal. This is known as Nyquist’s theorem (e.g. (Oppenheim and 

Shafer 1989)), and if care is not taken to respect it, aliasing will occur, i.e., the obtained spectra 

of the signal will be affected by “phantom components” resulting from high frequency 

components of the signal. A common way to avoid this is to filter the original (analog) signal 

before it is sampled. These filters are known as anti-aliasing filters.  

 

The Fourier transform, as defined above, would require complete knowledge of the original 

signal from n=-∞ to +∞. This is obviously not possible for a finite digital system, so the Short 

Time Fourier Transform (e.g. (Bendat and Piersol 1993)) is used, defined as  

 ∑
=

=

−=
Nn

n

njenxX
0

)()( ωω , ( 3) 

where N is the number of samples (data points) considered. 

  

Unfortunately, considering just a time-limited portion of the original signal is equivalent to us ing 

that original signal multiplied by a square pulse with width equal to the observation time 

considered. It is well known (Oppenheim and Shafer 1989) that multiplication in the time domain 

is equivalent to convolution in the frequency domain. The final effect is that the spectrum of the 

original signal is blurred by the convolution with the spectrum of the square pulse. To minimize 

this effect, the sampled signal is usually multiplied by a window function (Harris 1978), that has 

more desirable features than the square pulse function. Each different window function has its 

own specific advantages and disadvantages, balancing the width of the main lobe (which will 

reduce the actual frequency resolution), the amplitude of the side lobes, the power contained in 

those lobes (to minimize power leakage), etc. One of the first windows to be proposed, the 

Hamming window (Harris 1978) is probably the most used for its balance of characteristics since 

its highest side lobe is 43 dB lower than the main lobe and the main lobe has an equivalent noise 

bandwidth of only 1.36 bins (e.g. (Poularikas 1998)). 
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To be able to reconstruct the original discrete signal from its spectrum, this spectrum must be 

calculated in at least as many points as were present in the signal. Failure to do that will result in 

time aliasing (Oppenheim and Shafer 1989). 

 

The computation of the Short Time Discrete Fourier Transform directly from its definition is 

very time consuming. A computationally very efficient technique was developed and named Fast 

Fourier Transform (FFT) (Cooley and Tukey 1965). It computes the Discrete Time Fourier 

Transform in N equally spaced points in the frequency domain, where N is the number of points 

in the time domain, and required to be a power of 2. Other efficient algorithms to compute the 

Fourier transform have since been developed (Poularikas 1998). In practice, almost all 

engineering applications of the Fourier Transform use a FFT procedure to calculate it. 

 

For most practical problems, the original signal is real-valued and, in this case, its Fourier 

transform will possess Hermitian symmetry (i.e. complex conjugate symmetry) around zero 

frequency. Thus, for a discrete real signal, we need only keep the values of its Fourier transform 

from 0 to π . 

 

The signals for which we want to compute the Fourier transform are many times contaminated 

with noise, which is frequently assumed white and Gaussian. One way of canceling out this 

noise, is to compute the Fourier transform of different portions of the signal and then compute 

their averages. If the noise contained in the different portions is not correlated, the averaged 

transform will be less affected by it. Even if there is some correlation between the noise in the 

two portions (for example, if we use overlapping portions), there will still be some gains. 

Averages of successive Fourier transforms of overlapping parts of a signal are known as Welsh 

periodograms. It has been proved that, assuming white Gaussian noise, the unbiased estimator 

with minimum variance due to noise is obtained using a 50% overlap of the base portions of the 

signal (e.g. (Kay 1988)). 

 

2.3 - Other frequency based techniques 

Despite its wide application, the Fourier Transform has a few drawbacks. One is that when 

representing the signal in the frequency domain, all information about the location in time is lost. 

For stationary signals, this presents no problem, but it is not appropriate for analyzing signals that 

have some time-varying dynamics, such as in the analysis of transients. One common solution is 
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to use short time Fourier Transforms, assuming that the signal is quasi-stationary in that short 

time, and then use a sequence of these Fourier Transforms in what is known as a spectrogram. 

The quasi-stationary assumption is not always verified. Even then, the spectrogram may 

constitute a very useful and practical tool. For the non-stationary case other tools have been 

developed, such as bilinear time-frequency distributions and wavelet transforms. 

 

One of the first and best known time-frequency distributions is the Wigner-Ville transform 

(Wigner 1932; Qian 2002), known as WVD. It is defined as 

 τ
ττ

ω ωτ detststWVD j
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where 

  s(•) is the function in the time domain, 

  s*(•) is its conjugate, 

  t is an instant in time, 

ω is a given frequency. 

 

This allows us to estimate the spectrum of a non-stationary signal at any point in time. However, 

there are limits to the time-frequency resolution that is achievable, as described in (Oliveira and 

Barroso 1998). One of the main disadvantages of WVD is that it produces severe cross-term 

interferences, which tend to contribute to time-frequency descriptions that are many times 

difficult to interpret. This has spurred a vast array of alternative distributions (Qian 2002), most 

of them belonging to what is called Cohen’s class. In some of the experiments performed by us, 

we used one such variant, developed in (Hippenstiel and Oliveira 1988; Hippenstiel and Oliveira 

1990) known as IPS, and defined as: 

 ∫
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Another major alternative is the use of Wavelet transforms. These transforms have their roots in 

the work of Gabor (Gabor 1946), but only reached widespread use with the developments of 

Daubechies (Daubechies 1990). The main idea behind wavelet transforms is to decompose the 

original signal not into sinusoids, but into other base functions. These functions can be scaled 

into longer or shorter versions, in a manner that matches frequency variations in sinusoids. They 

may also be “positioned” anywhere in time, making it possible to localize short duration 
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transients in signals. Although almost any base function could in theory be used, it is important 

that the decomposition yield a transformed signal that accurately represents the original function, 

and that the process can be inverted to reconstruct that signal. This implies that the basis 

functions constitute what is known as a compact base. The most used base function is due to 

Daubechies, and efficient implementations of a wavelet transform based on it are widely 

available (e.g. (Mathworks 2001)). It has been found that wavelet transforms, not only allow 

good time-frequency localization of transient signals, but can also produce very compact 

representations of these signals. They are fast becoming as commonplace as Fourier transforms, 

and being used in everyday applications such as JPEG 2000 image compression (Skodras, 

Christopoulos et al. 2000). 

 

Another family of frequency based techniques for signal analysis comes from using higher-order 

statistics of the signal. These are very well reviewed in (Nikias and Petropulu 1993). One of the 

most used is the cepstrum analysis, originally due to (Bogert, Healy et al. 1963), and studied in 

detail in e.g. (Oppenheim and Shafer 1989). The complex cepstrum of a discrete signal is defined 

as the inverse Z transform of the logarithm of the function’s Z transform, but can be obtained 

using the Fourier transform by using 

 ωω
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where S(ω) is the Fourier transform of signal s. 

 

The cepstrum has many interesting properties, and is frequently used to detect harmonically 

related components of a signal. 

 

2.4 - Principal Component Analysis and related techniques 

Principal Component Analysis (PCA) is an axis transformation technique that finds orthogonal 

axes where the covariance between features is zero, and ranks those axes according to their own 

variance. It was first proposed by Karl Pearson in 1901 (Jolliffe 1986; Flury 1988; Child), and 

has since been improved and widely used for statistical analysis and dimensionality reduction. 

 

Although not the process followed by the more efficient algorithms, the basic idea is to find the 

direction where variance is maximum, take it as an axis, also known as principal component or 
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most relevant feature. This feature, which is a linear combination of the original ones, 

corresponds to the direction in space along which the data is most spread, and thus must contain 

more information about what distinguishes one pattern from another. We then repeat the process 

to find an axis perpendicular to this one that maximizes the remaining variance, and iterate until 

there is no more variance in the data. If the original data can be represented in a space with lower 

dimensionality than the original one, there will be fewer principal components than original 

features. In most applications, the importance of successive principal components, although 

rarely reaching zero, decreases to very small values that may be ignored without substantial 

information loss. The PCA can thus be used to reduce the dimensionality of the data. 

 

After PCA has been performed on a given dataset, the covariance matrix obtained can be used as 

a linear transformation to map any new data into the principal component space, or any of its 

subspaces. This is known as the Karhunen-Loeve transform1, and is frequently used in 

telecommunication problems. 

 

It must be noted tha t PCA is not necessarily a good preprocessing step for classification, 

especially if we consider only the most relevant components. An elegant example is given in 

(Bishop 1995) showing a situation similar to that depicted in Part1 - Chapter 1 of this thesis. In 

that example, the first principal component, although explaining most of the variance in the data, 

is irrelevant for classification, while the second principal component is the ideal feature for 

classification. Therefore, PCA must be used with caution when attempting classification. 

 

It must also be noted that Principal Component Analysis will perform a linear mapping onto 

straight axis. If the data are distributed along a spherical cap or any other curvilinear surface, it 

would be more convenient to use some sort of curved axis. To a certain extent, this can be 

achieved with principal curves (Hastie and Stuetzle 1989; Kégl 2000, Krzyzak et al.1996) 

(Chang and Ghosh 2001), namely with the incremental Hastie-Stuetzle Algorithm. The mapping 

performed by these principal curves resembles the one performed by the SOM discussed in 

chapter 4. Unfortunately, the methods available require a lot of prior knowledge about the data. 

                                                 
1 Karhunen published his groundbreaking paper in German, with the name “Uber lineare 

methoden in der Wahrscheinichkeitsrechnung”, in Annales Academiae Scientiarum Fennicae, 

Series A1: Mathematica-Physica, vol 37, pages 3-79. 
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As far as we know, a general purpose algorithm that performs efficiently and reliably for any 

given data has not yet been developed. 

 

There has been a lot of interest recently in another pre-processing technique, called Independent 

Component Analysis (Hyvarinen and Oja 2000), but we shall not use it in this thesis. 
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PART I 

CHAPTER 3 

Feature Selection 

3.1 – Introduction 

After obtaining a number of features that form the patterns to classify, we should try to select 

only those that can indeed improve the performance of the classifier. This process is known as 

feature selection. 

 

Feature selection will generally lead to loss of information, and is many times based on singular 

transformations. This would be undesirable if we were attempting to describe data, such as is the 

goal of principal component or factor analysis. However, when we want to perform supervised 
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classification, or when we want to focus on a particular aspect of those data, we do want to get 

rid of any information that would distract us from our goal. 

 

There are a few different reasons why we consider that this step should be taken: 

 

a) Reduce noise generated by irrelevant features. Many classifiers are sensitive to irrelevant 

features, and will degrade their performance when these features are included. Distance 

based classifiers, such as the ones used in this thesis, are particularly sensitive to this. If a 

random feature is included, it will contribute to the distance measure just as much as any 

other feature. If the features were not scaled (or whitened), they may contribute even 

more than a relevant feature. Thus, due to this distortion, a pattern may end up being 

closer to patterns of a different class, even if originally the classes were well clustered by 

classes. 

 

b) Reduce the risk of overfitting the training data. The more features are used, the more 

detailed the classifier can be. As we shall see later, if a classifier has too many degrees of 

freedom it may adjust itself perfectly to the training data, but perform poorly when used 

with other data. Reducing the number of features, and thus the degrees of freedom of the 

classifier, will usually improve generalization. 

 

c) Make the classifier computationally feasible. Too many features will require not only a 

lot of computing power to obtain them, but even more computing power when training 

and using the classifier. Fewer features will lead to a faster, thus more useful classifier. 

 

As pointed out earlier, the best features for one type of classifier are not necessarily the best 

features for another. Therefore, it is frequent to perform feature selection and classifier testing at 

the same time in what is called closed loop (Cios, Pedrycz et al. 1998).  The basic idea is to 

choose a given set of features, train the classifier with them, and assess the performance. If the 

performance is not satisfactory, another set of features will be selected, and the process repeated. 

Since closed loop feature selection requires training many different classifiers, it can be a lengthy 

process. To abbreviate it, a simplified version of the classifier design process may be used. Since, 

in this step, we are mainly concerned with the relative merit of different sets of features, we can 

try them with a under-trained or over-simplified classifier that has the same basic properties of 
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the final classifier. When a final set of features is selected, the final classifier can then be fine-

tuned. While this procedure cannot guarantee optimality, it generally produces good results. 

 

If we do not want to iterate the classifier design phase in closed loop with feature selection, we 

may attempt to select features based on their capacity to separate the different classes regardless 

of the specific classifier used. This is called open loop selection. It can be argued that the criteria 

used to measure the separability capacity of the set of features is implicitly considering a certain 

type of classifier, but we shall not consider that effect. A number of different techniques have 

been proposed and used to perform open loop feature extraction. We shall now overview a few of 

them. 

 

3.2 - Scatter Matrices 

Intuitively, the best features for classification are those that have similar values within each class 

and different values between classes. This can be measured using scatter matrices (Fukunaga 

1990). 

 

For feature selection 3 scatter matrices are considered: the within-class scatter matrix Sw, the 

between-class scatter matrix Sb, and the mixture scatter matrix Sm. 

 

The within-class scatter matrix Sw measures the dispersion of each class of pattern vectors around 

that class’s expected value, and is defined as 
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where 

  mi is the expected value of patterns of class i, 

  Pi is the prior probability of class i, 

  ci is the class i, 

  Σi is covariance matrix for class i. 

 

As shown, Sw is simply a weighted average of the covariance matrices of each class. 
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The between-class scatter matrix Sb measures the dispersion of the class’s expected values 

around the global expected value, and is defined as  

 T
C
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1
0i0i mmmm −−= ∑

=

, (8) 

where mo is the expected value of patterns of all classes. 

 

The mixture scatter matrix measures the dispersion of all patterns around the global expected 

valued, and is simply the sum of Sw and Sb : 
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These matrices contain a lot of information about the discriminatory power of each feature, of 

relations between those features, and discriminatory power of groups of features. Unfortunately, 

it is not easy to make use of that information. The most common technique relies on considering 

each feature independently, and selecting those that have greatest ratio of within-class variance to 

between-class variance. This can be done by calculating a diagona l matrix J that is the quotient 

of Sb and Sw, and choosing the features that have greatest value in that matrix: 

 )( 1
bw SStrJ −= . (10) 

As discussed in detail in (Fukunaga 1990), many other choices for J are possible, and can be 

summarized as follows. 
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where S1 and S2 can be {Sb,Sw}, {Sb,Sm}, or {S w,Sm}. 

 

These scatter matrices can also be used to help design feature extraction techniques that 

maximize their values. 
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3.3 - Rough Sets 

Rough set theory was originally developed by Zdzislae Pawlak, in articles published within the 

Institute of Computer Science of the Polish Academy of Science, and was presented in English in 

(Pawlak 1982), as an alternative to Fuzzy Set theory and tolerance theory. 

 

In a broad overview, it describes sets, which correspond to classes or concepts, based on their 

upper and lower approximations. These upper and lower approximations are obtained using the 

available features, which are called attributes in Rough Set literature, and available patterns, here 

called objects. Contrary to fuzzy sets, nothing is said about the membership of patterns that lie 

between the lower approximation (under which we are sure the object belongs to the given set), 

and the upper approximation (above which we are sure the object does not belong to the given 

class). 

 

Rough set theory has proved to be particularly useful when dealing with imprecise data. It can be 

used to find relationships in those data, remove redundancies, generate decision rules, reduce 

databases, and select features for classification, which is our purpose. 

 

Extensive work has been done in this area. For the basic foundations of Rough Set theory we 

would recommend (Pawlak and Slowinski 1994). A good collection of papers and other 

resourced related to Rough Set theory can found at “http://www.roughsets.org”. It must however 

be noted that Rough Set theory is only a framework for the description and resolution of 

problems. In that framework, goals and cost functions are defined, but Rough Set theory relies on 

traditional optimization techniques to achieve many of its goals, namely finding the best features 

for classification (known as finding the relative reducts). 

 

Since Rough set theory is not yet widely known, and the concepts used are important to 

understand some of the software used in this thesis, we shall provide a short introduction to the 

main concepts of roughest theory. It must be pointed out that this introduction, while enabling the 

reader to understand the language used by the Rough set community, does not cover many of the 

aspects of Rough set theory, namely the actual techniques used to solve the problems stated. 
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3.3.1. Basic concepts 

The framework of Rough Set theory assumes an Information System, composed of a 4-tuple as 

follows 

 S = < U, Q, V, f >, (15) 

where 

S is the information system, 

U the universe, defined as a nonempty finite set of objects {x1, x2, x3, … xn}, 

Q a nonempty finite set of attributes, 

V the domain of values Vq∈Q for each attribute, 

F the decision function, also called information function, defined as 

 f: U × Q →V : f(x,q) ∈Vq , ∀q∈Q, ∀x∈U. (16) 

The information system my be represented by a finite data table, in which the columns are 

labeled by attributes q (or features), the rows by objects x (or patterns), and each entry in the 

table has the value of f(x,q). 

 

3.3.1.1 – The indiscernability relation 

Two objects are said to be indiscernible by a set of attributes A if and only if the values of those 

attributes are the same: 

 x Ã y (read “x is indiscenable to y by A” ) ⇔ f(x,a) = f(y,a) ∀a∈A. (17) 

Any subset A⊂Q with lead to a equivalence relation on the universe U, called the indiscernability 

relation, denoted IND(A), that can be defined as follows: 

 IND(A)={ (x,y)∈U : ∀a∈A f(x,a)=f(y,a) }. (18) 

The indiscernability relation IND(A), as a equivalence relation, splits the universe into a family of 

equivalence classes {X1, X2, … Xr}. The family of all equivalence classes defined generates a 

partition of U, and is denoted by A*. Alternatively, this partition is also referred to as 

classification, and denoted by U/IND(A). Each of equivalence classes Xi is thus seen as a certain 

type of class, called an A-elementary set. Each of these sets can be defined from a object x as  

 [x]A = { y∈U : ∀a∈A f(x,a)=f(y,a) }. (19) 
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These A-elementary sets form the smallest discernible groups of objects, and thus the maximum 

granularity achievable. These A-elementary sets constitute the A-basic knowledge, that is the 

maximum amount of knowledge we may get using the set of attributes A. If we consider all the 

attributes of the information system S, we will obtain the Q-elementary sets, which are called 

atoms, since there is no way of distinguishing objects within them, whatever attributes are 

considered. A union of one or more Q-elementary sets constitute a concept, X, definable in the 

information system, which corresponds to the usual notion of class in classification problems. 

 

3.3.1.2 – Decision tables 

For classification problems, each object will have an assigned label, or class. Within Rough set 

theory this is done by dividing the attribute set Q into two disjoint sets, called the condition 

attribute set C, and the decision attribute set D, so that C ∪ D = Q ∧  C∩D = ∅. 

 

In this case, instead of and information system S, we consider a decision table defined as 

 DT = < U, C ∪ D, V, f >. (20) 

Like the information system, the decision table can be represented by a table, but now the 

columns are separated into condition attributes (corresponding to features), and decision 

attributes (corresponding to class labels). 

 

3.3.1.3 – Upper and Lower Approximation of sets 

Once we select a given set of attributes, we no longer have the original space with its fine 

granularity, but an approximation space, denoted AS = (U,IND(A) ), which will have a coarser 

granularity. Concepts, unions of Q-elementary sets defined by the original information system, 

may no longer correspond to unions of the A-elementary sets of the approximation space. 

Instead, in the new approximation space we may define upper ( XA ) and lower (AX) 

approximations to the concept X as 

 }:*{}][:{ XYAYXxUxXA A ⊆∈=⊆∈= U , (21) 

 }:*{}][:{ ∅≠∈=∅≠∈= XYAYXxUxXA A IUI . (22) 
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In plain English, the lower approximation contains only the objects that certainly belong to the 

concept, but not necessarily all, while the upper approximation contains all the objects that 

belong to the concept, and possibly some more that do not. A graphical example of upper and 

lower approximations is given in Figure 3. 

 

The lower approximation of a set, AX, is also known as the A-positive region of X in S, denoted 

POSA(X). The area outside the upper approximation, XAU − , known as the A-negative region of 

X in S, is denoted NEGA(X). The region between the two approximations, XAXA − , known as the 

A-boundary region, is denoted BNA(X). Contrary to fuzzy set theory, that assigns a degree of 

membership to the objects in this area, rough set theory will just consider that it is undecidable 

whether these objects belong to X or not, given only the attributes A. This stems from a major 

philosophical difference between rough set theory and fuzzy set theory. While the latter assumes 

that the uncertainty about the class is an inherent characteristic of the object, the former assumes 

that that uncertainty is only due to our incomplete knowledge about its attributes. 

 

X concept
(diagonal squares)

A-boundaries
(thick dotted lines)

Q-boundaries
(thin lines)

Lower approximation of X: AX
(dark gray area)

Upper approximation of X: AX
(light gray area)

A-indiscernible areas
(limited by dotted lines)

Q-indiscernible areas
(limited by thin lines)

X concept
(diagonal squares)

A-boundaries
(thick dotted lines)

Q-boundaries
(thin lines)

Lower approximation of X: AX
(dark gray area)

Upper approximation of X: AX
(light gray area)

A-indiscernible areas
(limited by dotted lines)

Q-indiscernible areas
(limited by thin lines)

 

Figure 3 - Example of a universe U partitioned by a set of attributes Q, and by a subset A of these 
attributes. The set X (known as concept or class), that was am exact set using Q, becomes a rough 

set using A. 
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The relation between the upper and lower approximations of a set will determine its roughness. If 

both sets are equal, ∅=− XAXA , the set X is said to be A-definable, and no uncertainty exists. 

Otherwise it is set do be A-non-definable, and may fall into one of 4 categories: 

 

a) A set is roughly A-definabe if and only if ∅≠∧≠ XAUXA . This will be the most 

common case, where given a set of attributes, we know for certain that some objects do 

belong to X and some do not. 

b) A set is externally A-non-definable if and only if ∅≠∧= XAUXA . This is the case 

when we cannot be sure that a given object does not belong to X. 

c) A set is internally A-non-definable if and only if ∅=∧≠ XAUXA . This is the case 

when we cannot be sure that a given object does belong to X. 

d) A set is totally A-non-definable if and only if ∅=∧= XAUXA . In this case, the 

attributes A are completely useless in defining X, for we cannot be sure of anything. 

 

When a set is roughly A-definable, it is important to have an idea “how rough” it is. To that end, 

the notion of accuracy of an approximation and quality of an approximation are used. 

 

The accuracy of an approximation is defined as: 
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This is a value between 0 and 1, and gives a good idea about how well we can define a concept 

with a given set of attributes. A value of 1 would mean that the selected attributes could define 

the concept perfectly, while a value of 0 would mean that those attributes were a poor choice. 

 

The notion of accuracy can easily be extended to a group of concepts, forming what is known as 

the accuracy of the approximate classification γ, defined as: 
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A similar notion, called quality of the approximation classification γ is defined as: 
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If the concepts are disjoint, the quality will have a value between 0 and 1, but otherwise it may 

have a higher value. 

 

3.3.1.4 - Classification and reduction of an information system  

Some of the attributes of an information system may be redundant, i.e., the information they 

contain is also contained by other attributes. These attributes are said to be dispensable, In Rough 

set theory, the process of finding and eliminating these attributes is called attribute reduction, and 

it is tightly correlated with our notion of feature selection. 

 

Formally, an attribute a is dispensable from a set of attributes A if and only if IND(A)=INF(A-

{a}), i.e., if the original indiscernability relations generated by the set of all available attributes 

are the same as the indescernability relations generated without it. 

 

When deciding if a given attribute is redundant or not, one must have in mind what goal is sought 

from the information system. Absolute redundancy of an attribute is a rare occurrence, but if 

want to define a concept (perform a classification), then some attributes may be redundant 

relatively to that objective. If we remove all redundant attributes, we will have a set of attributes 

called a reduct. If we remove all attributes that are redundant relative to a given classification, we 

will have a set of attributes called a relative reduct. 

 

There may be (and usually are) many different relative reducts for any given problem. If there are 

any attributes that are part of all the relative reducts, they form what is called the relative core. 

Attributes that belong to the core cannot be discarded without loosing discernability. Attributes 

which are part of a reduct but not of its core can be “traded” by other attributes. 

 

3.3.1.5 – Using Rough sets for practical classification problems 

Rough set theory does not require that the domain for each attribute be finite. However, if it is 

not, then the granularity of the partitions defines will be infinitesimal, upper and lower 
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approximations will tend to converge, it will very hard to find reducts, and when used for 

classification, the results will probably overfit the training data and generalize poorly. 

 

Thus, in practical applications, it is necessary to discretize the data, obtaining finite domains for 

each attribute. This discretization process can be critical, and many methods for doing it are 

possible (Stockdale 1998). While not discussing here the details on how to perform this step, we 

just want to mention that it is a necessary step, and most rough set programs provide means for 

doing so. 

 

After obtaining a discretized representation of our problem, we must define which features are 

available, and designate them as condition attributes, and which are our classes or labels, and 

designate them decision attributes. We may then proceed to compute the relative reducts, which 

will be sets of indispensable features. We will usually choose the relative reduct with smallest 

cardinality as the features to use in our classifier. However, we may be interested in finding the 

core, i.e., the most important features, and then go back to the feature extraction process and 

obtain better features. Rough sets can thus be an important part of the interactive feature 

extraction/selection/exploratory data ana lysis process. 
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PART I 

CHAPTER 4 

Exploratory data analysis 

4.1 – Introduction 

Before choosing and designing a classifier, it is useful to have some insight on the data available. 

This insight is important both to validate the data gathering/feature extraction/feature selection 

process, and to decide which classifier is more appropriate. As has been mentioned before for 

other steps in the classification process, isolating this step is an artificial contraption, since it can 

be omitted, merged with the feature extraction/selection, or merged with the classifier itself. In 

any case, it will be more efficient if it is iterated in close loop with the other steps. This insight 

can be given by what are generally known as exploratory data analysis techniques. In recent 
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years, exploratory data analysis techniques have been the subject of intense research for data 

mining and knowledge discovery, and a lot of bibliography is available on that subject, e.g. 

(Sarker, Abbass et al. 2002). 

 

The purpose of exploratory data analysis, as the name suggests, is to find relationships within the 

data, estimate its probability density distribution, and gain insight into the classification problem. 

Many different techniques may be used to this end, including: 

 

a) descriptive statistics, such as means, variances, measures of inter-distribution 

distances; 

b) statistical clustering techniques, such as k-means or Gaussian Mixture Models 

(Bishop 1995); 

c) factor analysis, such as Principal Component Analysis; 

d) projection pursuit techniques such as Sammon mapping (Sammon 1969) or 

Generative Topographic Mapping (GTM) (Bishop, Svensén et al. 1996); 

e) artificial intelligence clustering techniques, such as Self-Organizing Maps 

(Kohonen 2001), fuzzy C-means (Bezdek, Keller et al. 1999), Hierarchical 

clustering (Everitt, Landau et al. 2001), or dendograms (Sokal and Sneath 

1963; Vesanto and Alhoniemi 2000). 

 

A basic statistic description of data is taught in any introductory course in statistics, and allows 

us to estimate if the data follow a well known distribution (such as Gaussian or Poisson), or if the 

classes are well separated (by comparing the class means and higher moments). A lot of work has 

been developed in variance analysis but, since it is not crucial to the development of this thesis, 

we will review it no further, and only mention a few good references, such as (Damon 1987). 

 

Principal Component Analysis has already been mentioned in chapter 3, and so will not discuss it 

here. 

 

Projection pursuit techniques, such as Sammon mapping (Sammon 1969), try to map high 

dimensional data onto low dimensional spaces where they can be visualized. This visualization 

will allow human inspection of the data, and consequently a direct perception of the 

separation/distribution of the data. Some data clustering techniques (such as SOM (Kohonen 

2001)), will also perform a low dimensional mapping of the data, and as we sha ll see later, the 
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visualization process is also important for these techniques. Unfortunately, data that is 

intrinsically high-dimensional cannot be projected into a low dimensional space without heavy 

distortion, that may lead to unreliable results. Estimating the true dimension of a dataset has been 

the object of intense research for a long time (Trunk 1968; Fukunaga and Olsen 1971; 

Schwartzmann and Vidal 1975; Urquhart 1983). 

  

An important part of exploratory data analysis is clustering, also known as unsupervised 

classification, unsupervised learning, or data-driven learning, and excellently reviewed in (Jain 

and Dubes 1988; Fasulo; Everitt, Landau et al. 2001). Contrary to supervised learning 

(overviewed in the next chapter), where we want to obtain a pre-defined partition of the data, in 

unsupervised learning we want the data to be partitioned according to their “natural” structure. In 

supervised learning, a label is “pre-assigned” to each pattern of a known dataset. This assignment 

may be due to a human classification of the pattern (such when a human operation identifies the 

vehicle present in a series of photographs), or may be due to the data gathering process (such as 

when we take photographs of a known vehicle). In unsupervised learning, no such labels are 

necessary, and the data will be clustered together according to its own characteristics (for 

example, photographs of vehicle with a common characteristic may be clustered together). 

 

These techniques will group the data patterns in clusters that can then be analyzed by the 

designer. If these clusters contain a strong mixture of the desired classes, that will probably mean 

that the previous steps were not appropriate for the task at hand. A bad clustering will probably 

mean that the classifier will have a hard time performing the desired separation of classes, 

resulting in a complex classifier, and one that will probably overfit the training data. In this case, 

it is probably better to try different feature extraction techniques, so as to find truly significant 

features. 

 

After a reasonable clustering is achieved, we may sometimes use clustering technique as a 

classifier by itself. This will require assigning a label to each of the clusters obtained, and then 

finding a way of assigning each new data pattern to one of those clusters. The labeling is usually 

done by assigning to each cluster the label that occurs most in the data patterns that belong to it. 

When a new pattern is presented it is assigned to one of the existing clusters (for example using a 

distance measure), and given the same label as that cluster. 
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Clustering techniques are sometimes divided into two broad categories: partitioning techniques, 

and hierarchical clustering. Partitioning techniques, also known as k-clustering techniques, will 

try to partition the data into a predefined number k of clusters. Hierarchical clustering techniques, 

on the other hand, assume no pre-defined number of clusters, and present ever more detailed sub-

clusters of data, so that the user may select the level of granularity desired. It would be out of the 

scope of this thesis to review all the most relevant clustering technique, so we shall now review 

only two of the most common ones, namely k-means clustering, and Kohonens Self Organizing 

Maps. 

 

4.2 – K-means clustering 

The k-means clustering technique consists in pre-selecting a certain number k of centroids, or 

means, and then finding the positions in the input space of these centroids, so that some measure 

of dispersion is minimized. In the original and most widely used version, the measure to be 

minimized is the sum of square distances between the data patterns and the centroids they are 

assigned to. 

 

The k-means algorithm was originally proposed by (MacQueen 1967) as a stochastic on- line 

process, and reformulated as a batch process by (Loyd 1982). Computationally efficient 

implementations of this algorithm are available, such as (Kanungo, Mount  et al. 2002). There has 

been a shift in name from the original term “k-means”, to the term “c-means”(Bezdek, 

Reichherzer et al. 1998; Duda, Hart et al. 2001). While the original name focused on the fact that 

one must choose “k” points thus forcing k clusters, some authors feel that the letter c is more 

appropriate since it is the first letter for centroid, cluster, and class. While acknowledging the 

new trend, being traditionalist we will use the old term. 

 

The original k-means algorithm (MacQueen 1967) can be described as follows. 
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This original version requires that a learning parameter η be set to a certain initial value, and that 

a certain decreasing function be used to make it converge to 0. The number of steps used to make 

it converge to 0 can be critical for the convergence of the centroids to locations where they do 

minimize the sum of square distances. With the advent of computers with more memory, another 

algorithm was devised: the batch k-means clustering (Loyd, 1982). It is now the most commonly 

used algorithm for k-means clustering, since it is faster and it will converge more reliably to the 

global minimum. 

 

The batch k-means algorithm is a form a stochastic hill climbing and can be described as follows. 

 

 

As noted in (Bishop 1995), the k-means algorithm can be seen as a special case of a Expectation-

Maximization (EM) (Dempster, Laird et al. 1977) technique for a Guassian mixture model. In a 

 Let 
  k be the predefined number of centroids 
  n be the number of training patterns 
  X be the set of training patterns x1, x2,..xn  
  P be the set of k initial centroids µ1, µ2,… µk taken from X 
  η be the learning rate, initialized to a value in ]0,1[ 
    
1 Repeat 
2  For i=1 to n 
3   Find centroid µj∈P that is closer to xi  
4   Update µj by adding to it ∆µj = η(xi - µj) 
5  Decrease η 
6  Until η reaches 0  

Algorithm 1 - Original k-means clustering 

 Let 
  k be the predefined number of centroids 
  P be the set of k initial centroids µ1, µ2,… µk that are 
    randomly generated (or may be taken from X) 
  X be the set of training patterns x1, x2,..xn  
    
1 Repeat 
2  For i=1 to k 
3   Find the set of patterns xj∈X that have each µi as their 

  nearest neighbor in P 
4   Let µi be the average of those xj points 
5  Until there are no more changes in the values of µi . 

Algorithm 2 -  Batch k-means clustering 
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Guassian mixture model, the data distribution is modeled by a sum (or mixture) of Gaussian 

distributions, centered at different points. By using expectation-maximization (EM) learning, the 

optima locations for the centers of those Guassian distributions can be determined. If we assume 

that the covariance within each of those distributions is 0 (i.e., they are localized “spikes”) the 

EM technique will lead to the well known k-means algorithm. 

 

The k-means clustering technique has a few major drawbacks. The first is that it requires the user 

to pre-select the desired number of clusters. In many applications it is not obvious at the start 

how many clusters do exist, and so the user is forced to select an artificially big value of k to 

guarantee that no clusters are missed. It will thus be more appropriate to use this algorithm when 

we know with certainty how many clusters exist in the data. When this is not the case, we may 

use the final value of the sum of square distances as a measure of how well the data may be 

represented by a certain number of centroids. By repeating the k-means algorithm with increasing 

values of k we may search for a value of k that produces a sharp decrease in the sum of square 

distances, and use it as the best number of clusters.  

 

The second drawback, is that 

since k-means minimizes square 

distances to the centroids, it will 

now cluster correctly data that 

have certain “long shaped” 

distributions, such as that 

presented in Figure 4. This effect 

can be minimized by selecting a 

larger k, so that each real cluster is 

represented by many smaller 

clusters, or to a certain extent by 

whitening the data. 

 

Several changes and improvements have been proposed to the basic k-means clustering 

algorithm, but the most important is probably fuzzy c-means (Bezdek, Keller et al. 1999), around 

which many papers have been written, with many variations and improvements, e.g. (Kong, 

Wang et al. 2002). In that approach, instead of assigning each data pattern to its nearest centroid, 

a fuzzy membership to that centroid is assigned each pattern. That fuzzy membership will depend 

x

y

x

y

Clusters of data (in gray)

Pairs of centroids that minimize
the sum of square distances

x

y

x

y

Clusters of data (in gray)

Pairs of centroids that minimize
the sum of square distances  

Figure 4 - Example of possible pitfalls of the k-means 
algorithm. In the situation presented on the left, the sum of 

square distances criteria will correctly position the centroids 
at the center of the clusters. However in the situation 
presented on the right, that criteria does not provide 

satisfactory results. 
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on the distances between that pattern and the various centroids. A brief yet detailed explanation 

of fuzzy c-means can be found in (Duda, Hart et al. 2001). 

  

4.3 – Self Organizing Maps (SOM) 

Although the term “Self-Organizing Map” could be applied to a number of different approaches, 

we shall always use it as a synonym of Kohonen’s Self Organizing Map, or SOM for short. 

These maps are also referred to as “Kohonen Neural Networks”(Fu 1994), “Self Organizing 

Feature Maps-SOFM”, “Topology preserving feature maps” (Kohonen 1995), or some variant of 

these names. 

 

Self Organizing Maps (SOM) were first proposed by Tuevo Kohonen in the beginning of the 

1980s (Kohonen 1982), and stemmed from his work on associative memory and vector 

quantization. However, it was not until the publication of the second edition of his book “Self-

Organization and Associative Memory” in 1988, and his paper named “The Neural Phonetic 

Typewriter” on IEEE Computer (Kohonen 1988) that his work became widely known. Since then 

there have been many excellent papers and books on SOM, but his book Self Organizing Maps 

(edited originally as (Kohonen 1995), and later revised in 1997 and 2001 (Kohonen 2001)) is 

generally regarded as the main reference on the subject. This book has had very flattering 

reviews, presenting a thorough covering of the mathematical background for SOM; its 

physiological interpretation; the basic SOM; and recent developments and applications. A 

thorough bibliography of SOM related issues (at http://www.cis.hut.fi/research/som-bibl ) is 

maintained by the Neural Network Research Group (http://www.cis.hut.fi/research) that Kohonen 

created at Helsinki’s Technical University, and of which he, as professor emeritus, is still an 

active member. By July 2002, 4310 papers and books were referenced. Of these, for a 

comprehensive overview of SOM for clustering and visualization of data, we would recommend 

(Vesanto 1999) and (Vesanto and Alhoniemi 2000). A simple to follow tutorial, with illustrative 

examples, is available in (Lobo, Swiniarski et al. 1998). 

 

There are several public-domain implementations of SOM, of which we must mention the SOM-

PAK developed by Kohonen’s group and discussed in chapter 2 of part III of this thesis, and the 

excellent Matlab SOM Toolbox, also developed by that group. It is currently in version 2.0 beta, 

and publicly available at http://www.cis.hut.fi/projects/somtoolbox . The SOM toolbox has, 

besides the Matlab routines, an excellent graphic-based user interface, that makes it very simple 
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to experiment with SOMs. Unfortunately, it was not available in time to be used extensively 

during this thesis. 

 

Kohonen himself describes SOM as a “visualization and analysis tool for high dimensional data”, 

but they have used for clustering (Vesanto and Alhoniemi 2000), dimensionality reduction, 

classification, sampling, vector quantization, and data-mining (Kohonen 2001).  

 

4.3.1 General and simplified overview 

The basic idea of a SOM is to map the data patterns onto a n-dimensional grid of neurons or 

units. That grid forms what is known as the output space, as opposed to the input space that is 

the original space where the data patterns are, as seen in Figure 5. This mapping tries to preserve 

topological relations, i.e., patterns that are close in the input space will be mapped to units that 

are close in the output space, and vice-versa. The output space will usually be 2-dimensional, and 

most of the implementations of SOM use a rectangular grid of units. So as to provide even 

distances between the units in the output space, hexagonal grids are sometimes used (Kohonen, 

Hynninen et al. 1995). Single-dimensional SOMs are common (e.g. for solving the traveling 

salesman problem), and some authors have used 3-dimensional SOMs. Using higher dimensional 

SOMs, although posing no theoretical obstacle, is rare, since it is not possible to easily visualize 

the output space. 

 

 

Each unit, being an input layer unit, has as many weights or coefficients as the input patterns, and 

can thus be regarded as a vector in the same space as the patterns . When we train or use a 

OUTPUT SPACE
2-dimensional grid 
of units (or neurons)

n-dimensional INPUT PATTERN…

All units are connected to
the input pattern

Units have the same dimensionality
as the Input patterns

OUTPUT SPACE
2-dimensional grid 
of units (or neurons)

n-dimensional INPUT PATTERN………

All units are connected to
the input pattern

Units have the same dimensionality
as the Input patterns

 

Figure 5 - Basic structure of a Self-Organizing Map (SOM) 



Exploratory data analysis  39 

 

SOM with a given input pattern, we calculate the distance between that pattern and every unit in 

the network. We then select the unit that is closest as the winning unit, and say that the pattern is 

mapped onto that unit. If the SOM has been trained successfully, then patterns that are close in 

the input space will be mapped to neurons that are close (or the same) in the output space, and 

vice-versa. Thus, SOM is “topology preserving” in the sense that (as far as possible) 

neighborhoods are preserved through the mapping process.  

 

 

Generally, no matter how much we train the network, there will always be some difference 

between any given input pattern and the unit it is mapped to. This is a situation identical to vector 

quantization, where there is some difference between a pattern and its code-book vector 

representation. Thus, we refer to this difference as the quantization error, and use it as a 

measure of how well our units represent the input patterns. 

 

We can look at a SOM as a “rubber surface” that is stretched and bent all over the input space, so 

as to be close to all the training points in that space. In this sense, a SOM is similar to the input 

 

Figure 6 - Example of a 2-dimensional SOM mapping 3-dimensional patterns. On the top, patterns are 
represented by "-", and are distributed around some of the vertices of the cube. The SOM units are 
represented in the input space by black balls, with lines showing their neighbors in the output space. 

On the bottom, we can see the layout of units in the output space, forming a regular grid. On the left, a 
2x2 SOM was used, while a 4x4 was used on the right. 
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layer of a Radial Basis Function (RBF) neural net, a neural gas model, or a K-means algorithm. 

The big difference is that while in these methods there is no notion of “output space” 

neighborhood (all units are “independent” from each other), in a SOM the units are “tied 

together” in the output space. It thus imposes an ordering of the neurons, that is not present in the 

other methods. These ties are equivalent to a strong lateral feedback, common in other 

competitive learning algorithms (Haykin 1999). 

 

Let us imagine a very simple example, where 

we have 4 clusters of 3 dimensional training 

patterns, centered at four of the vertices of the 

unit cube: (0,0,0), (0,0,1), (1,1,0), and (1,1,1). 

If we trained a 2 dimensional, 4 node map, we 

would expect to obtain units centered at those 

vertices. If we use a larger map, with 16 nodes, 

for example, we would expect to obtain a map 

where the units are grouped in clusters of 4 

nodes on each of the vertices (see Figure 6). 

 

Before training, the neurons may be initialized 

randomly. During the first part of training, they 

are “spread out”, and pulled towards the general area (in the input space) where they will stay. 

This is usually called the unfolding phase of training. After this phase, the general shape of the 

network in the input space is defined, and we can then proceed to the fine tuning phase , where 

we will match the neurons as far as possible to the input patterns, thus decreasing the 

quantization error. 

 

Figure 7 - Example of the unfolding of a 1-
dimensional SOM (a line) (Kohonen 1995), to 
fit a set of points uniformly distributed within 

a triangular area. The small numbers 
represent the number of the iteration at 

which the snapshot was taken. 
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To visualize the training process, let 

us follow a 2-dimensional to 1-

dimensional mapping presented in 

(Kohonen 1995). In this problem, 2-

dimensional data points are uniformly 

distributed in a triangle, and a 1-

dimensional SOM is trained with 

these patterns. Figure 7 represents the 

evolution of the units in the input 

space. As training proceeds, the line 

first unfolds (steps 1 to 100), and then 

fine-tunes itself to cover the input 

space. 

 

 

Another very common example of a SOM mapping, that is used 

by the standard MATLAB demo of its neural network toolbox, 

is presented in Figure 8. There, a 2D map is trained on a 

collection of 2D points uniformly distributed in a square area. 

The position of the units in the input space is then tracked. This 

example is also useful to illustrate a rather annoying problem 

that may arise: local minima. In Figure 9 we can see a 

representation in the input space of a SOM that got stuck in 

local minima. In that case the map did not unfold properly, and 

fine adjustments to the positions of the units will not lead to a 

better mapping, just like when a rope gets tangled. Although it is 

not easy to identify unfolded maps of very high dimensional data, a good choice of learning 

parameters can greatly reduce the risk that they will occur. 

 

4.3.2 - The basic learning algorithm 

The basic SOM learning algorithm may be described as follows. 

 

Figure 8 - Example of a 2D to 2D mapping of a 
uniform distribution of points in a square (Mathworks 

2001), (Kohonen 1995). Note that after training the 
units of the SOM are a faithful representation of the 
original distribution. This is possible because it was 
uniform, and its dimensionality was the same as the 

SOM’s. 

 

Figure 9 - Example of an 
unfolded SOM. This map 

represents the same problem 
as the one in Figure 4, but 

due to a bad choice of initial 
radius and learning rate, the 

map did not unfold 
smoothly, and got stuck in a 

local minima. 



42  Part I, Chapter 4 

 

 

This algorithm can be applied to a SOM with any dimension, making the necessary adjustments 

to the indexes of the units. The learning rate α, sometimes referred to as η, must converge to 0 so 

as to guarantee convergence and stability for the SOM. For the same reasons, the radius of the 

neighborhood function should also converge to 0. The decrease from the initial values of these 

parameters to 0 is usually done linearly, but any function may be used. The update of these two 

parameters may also be done after each training pattern is processed (as happens in SOM-PAK), 

instead of after the whole training set is processed, as described above and implemented in 

DSOM (see Part III). 

 

Step 3, where the distances between a given training pattern and all units is calculated, is called 

the calculation phase. The distance measure between the vectors is usually the Euclidean 

distance, but many others can and are used, such as norm based Minkowski metrics, dot 

products, director cosines and Tanimoto measures (Garavaglia, 1996). 

 

Step 4, where the closest unit is selected as winner is called the voting phase. Finally, step 5, 

where the units are actually changed is called the updating phase. The winner is sometimes also 

called the best matching unit, or BMU for short. 

 

Algorithm 3 - SOM training algorithm (for a 2-dimensional map) 

 Let 
 
  X be the set of n training patterns x1, x2,..xn  
  W be a p×q grid of units wij where i and j are their 
   coordinates on that grid 
  α be the learning rate, assuming values in ]0,1[, 

initialized 
   to a given initial learning rate 
  r be the radius of the neighborhood function h(wij,wmn,r),  
   initialized to a given initial radius 
 
   
1 Repeat 
2  For k=1 to n 
3   For all wij∈W, calculate dij = || xk - wij || 
4   Select the unit that minimizes dij as the winner wwinner 
5   Update each unit wij∈W: wij = wij + α h(wwinner,wij,r) || xk – 

wij || 
6  Decrease the value of α and r 
7 Until α reaches 0 
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To stress the simplicity of the algorithm and its three important steps, the algorithm for training 

the network is can informally be stated as: 

 

For each input pattern: 

 

a) Calculate the distance between the pattern and all units of the SOM (dij = || xk - wij || ) 

This is what we call the calculation phase. 

b) Select the nearest unit as winner wwinner ( wij : dij = min( dmn) ). 

This is what we call the voting phase. 

c) Update each unit of the SOM according to the update function 

 wij = wij + α h(wwinner,wij) || xk – wij ||  (26) 

This is what we call the updating phase. 

d) Repeat the steps a) to c), and update the learning parameters, until a certain stopping 

criterion is met. Usually, the stopping criterion is a fixed number of iterations. To 

guarantee convergence and stability of the map, the learning rate and neighborhood radius 

are decreased in each iteration, thus converging to zero. 

 

4.3.3 - Neighborhood functions 

The neighborhood function, sometimes referred to as Λ or Nc, assumes values in [0,1], and is a 

function of the position of two units (a winner unit, and another unit), and radius. It large for 

units that are close in the output space, and small (or 0) for units far away. Usually, it is a 

function that has a maximum at the center, monotonically decreases up to a radius r (sometimes 

called the neighborhood radius) and is zero from there onwards. For the sake of simplicity, this 

radius is sometimes omitted as an explicit parameter. 

 

The two most common neighborhood functions are the bell-shaped (Gaussian- like) and the 

square (or bubble): 
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In both cases, we force r→ 0 during training to guarantee convergence and stability. 

 

It must be noted that the neighborhood function depends only on the distance in the output space, 

i.e., the relative position of the units in the grid. This neighborhood function is responsible for the 

coupling between units, since when one is updated, its neighbors are updated too. This coupling 

in turn gives SOM its topological properties. 

 

The algorithm is surprisingly robust to changes in the neighborhood function, and our experience 

is that it will usually converge to approximately the same final map, whatever our choice, 

providing the radius and learning rate decrease to 0. The Gaussian neighborhood tends to be 

more reliable (all our runs would converge to almost exactly the same map), while the bubble 

neighborhood leads to smaller quantization errors. A theoretic discussion of the effect of 

neighborhood functions (although only for the 1-dimensional case) can be found in (Erwin, 

Obermeyer et al. 1991), and a less rigorous but more general one in (Ritter, Martinetz et al. 

1992). 

4.3.4 – Theoretical aspects 

A general and thorough theoretical description of the behavior of SOM has proved to be 

extremely difficult. There has been a lot of research in that area, excellently summarized in 

(Cottrell, Fort et al. 1998). 

 

One of the central points of that research is to find a relationship between the underlying 

probability distribution of the data and the distribution of the units on a SOM. Generally, that 

work, together with a lot of experimental evidence, points to the fact the probability density of 

units on a SOM is proportional to a power of the underlying probability density of the data 

patterns. This power, known as a magnification factor, sometimes estimated at d/(d+2), d being 

the dimensionality of the problem, will cause the SOM to under-represent areas where the 

probability density of the data is very high, and over represent areas where it is lower. In many 

applications, such as the one discussed in part III of this thesis, this scaling is a very desirable 

result, since areas with a very high probability density will be well represented anyway. 
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Another important aspect of theoretical research is to determine exactly what the learning rule is 

minimizing. Most neural networks have an energy function that is minimized during the training 

process, and it would be important to identify that function for a SOM. Assuming that Kohonen’s 

original learning function is a gradient descent method, then by finding the primitive of that 

function and summing over all the network (Hertz, Krogh et al. 1991) we have  
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where V(x) is the global energy function, and M is the cluster membership matrix, that 

encompasses the information about the neighborhood between each data pattern and the SOM 

units. This energy equation really does not help much, because of the difficulty in dealing with 

the concept of a winning unit that varies from pattern to pattern, and iteration to iteration. The 

cluster membership matrix can thus only be computed for a very particular instance, and will 

change during the training process. 

If we consider the neighborhood function to be a discreet delta function, which means 

considering that the neighborhood radius is zero, then the energy function simplifies to  

 
2

2
1

)( ∑∑ −=
x i

winnerwxwV
rr

. (30) 

As noted by (Kaski 1997), if we consider the winning unit for each data pattern to be the centroid 

of the cluster it belongs to, this is exactly the function minimized by the k-means algorithm 

described earlier. Thus, a SOM with a fixed and zero radius is equivalent to k-means clustering. 

Such a neighborhood would also invalidate the topological ordering of the SOM for, as a k-

means algorithm, there would be no relation amongst neighboring units of the SOM. However, 

this comparison can shed some light on the theoretical aspects of the SOM. 

 

4.3.4 – Using SOM 

The training of a SOM is more effective if it is done in two phases: the unfolding phase, and the 

fine-tuning phase. 

 

For the unfolding phase, the objective is to make the SOM cover the general area where the data 

patterns are located, without any strong distortions or “folds”. To achieve this, the neighborhood 

function should have a large initial radius, so that all units are adjusted in each learning step. A 
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large initial learning rate should also be used, so that the map can quickly cover the input space 

of the  patterns. Our experience points to using an initial radius just slightly less than the smallest 

side of the map, and an initial learning rate of 0.2. 

 

For the fine tuning phase, the objective is to reduce the quantization error, and center the units in 

the areas where the density of patterns is greatest. Whereas the general mapping of the patterns 

does not change much during this phase, if we use it as a classifier (as we shall see later), the 

error rate does decrease after this phase. Our experience points to using an initial radius of 3 to 5 

units for this phase, and an initial learning rate of 0.05. 

 

After obtaining the SOM, it is useful to calculate the quantization error for the training set. This 

will allow us to have an idea how well the SOM represents the data. A high value for the 

quantization error would indicate that we wither need more units, or if there are enough units, 

need to perform more training steps. 

 

When the training patterns have labels (or classes) associated with them, as is the case in 

supervised learning problems, we may assign labels to the units of the SOM. This process is 

called calibration by (Kohonen 1995), but the more generic term labeling will be used in this 

thesis. To label a SOM, we map to it all the training set, and record for each unit the labels of 

patterns that were mapped to it. Each unit can then be assigned the most occurring label. A SOM 

thus labeled can be used as a classifier: simply map a new pattern to the map (i.e., find the unit 

closest to it), and use the label of that unit as the assigned class. 

 

The number of units in the SOM can vary a lot with what is required from it, and different 

authors have radically different approaches. Most will use far less units than training patterns 

available. This will lead to SOMs where each unit maps a large number of training patterns, and 

thus covers a fair amount of input space. However, even in this case, if there is a clear separation 

in the input space between the different clusters, there will be units that because they are “pulled” 

both ways, will end up being positioned in the regions between the clusters, and may not map 

any of the training patters.  

 

Others authors, such as (Ultsch and Li 1993) and (Guimarães and Urfer 2000) actually use more 

units than training patterns. This originates SOMs where a large number of units do not map any 

training pattern. It can however provide a very detailed and smooth mapping of the training data, 
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allowing the identification of small clusters, and leading to very informative U-Matrices, that 

shall be seen later in this chapter. 

 

In any case, the number of units should be large enough to map each of the clusters with several 

units. Using too few units per cluster will make it impossible to represent clusters that do not 

have very regular and convex shaped distributions. One of the strong points of connectionist 

models is precisely the ability do distribute the information about a certain class over a number of 

units, and using too few of these defeats this purpose. The existence of units that do not map any 

training patterns can also be very desirable. On one hand, these units clearly mark the boundaries 

between the clusters. On the other hand, they can be useful for novelty detection. If when using a 

SOM, a new pattern is mapped onto these units, we will know that is significantly different from 

the patterns used to train the map. However, due to the topological mapping, we will be able to 

have an idea how similar it is to which clusters. This is one of the characteristics that made the 

use of SOM particularly suited to our problem of identifying ship noise, discussed in part III of 

this thesis. 

 

4.3.5 – U-Matrices 

Viewing the output space of a SOM will show where the various data patterns are mapped, but 

will give little information about how far they are from each other. The distance in the input 

space between two neighboring units may vary widely amongst different areas of the SOM, so 

we have little information about how close different patterns really are. Also, the identification of 

clusters, specially when using unlabelled data patterns, can be very difficult. If there are 

sufficient units so that many do not map any pattern, then the areas where we have these units 

can be seen as borders between clusters. We will not, however, be able to say how separate those 

clusters are, and if there is a strong overlap of the underlying probability distributions, that 

separation will be impossible to see. A partial solution to this problem is to keep the count of 

how many patterns are mapped to each unit. This however will mask clusters will small numbers 

of patterns. A better solution is to use U-Matrices, or U-Mat for short. 
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U-Matrices were 

originally proposed in the 

end of the 80s by Ultsch 

(Ultsch and Simeon 1989; 

Ultsch and Siemon 1990), 

and Ultsch claims that the 

U stands for “Unified-

distance” or “Unification”. 

They are computed by 

finding the distances, in 

the input space, between 

neighboring units in the 

output space. 

 

This initial concept of U-Matrix would define values only for points between the original units of 

the SOM. To obtain a more usable matrix, it is usually extended to include the positions of the 

original SOM units, as well as points in the centers of 4 neighboring points as shown in Figure 

10.  

 

A low value for a U-Mat unit means that the SOM 

units are close together in the input space, and thus 

probably form a cluster. A high value for a U-Mat 

unit means that the SOM units, although neighbors 

in the output space, are quite distant in the input 

space, and thus there is a border between clusters 

in this area. 

 

The two commonly used ways of visualizing U-

Mats. The first is to represent it in a 3D plot, where 

vertical dimension (the height) is given by the 

magnitude of the U-Mat unit at each point. The 

result will be a landscape where valleys represent 

areas where clusters of SOM units are grouped, 

a b d

e f g

SOM units
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U-Mat units
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u=|d-g|

u=( |b-g| + |d-f| )/2

h i j

u=( |b-f| + |g-f| + |i-f| + |e-f| )/4
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u=|d-g|

u=( |b-g| + |d-f| )/2

h i j

u=( |b-f| + |g-f| + |i-f| + |e-f| )/4

 

Figure 10 - Positions of the SOM units and U-Mat units in 
the output space. On the left, it is shown how the U-Mat 

values are computed for the 3 types of units: those that are 
located between SOM units, on SOM units, and on the 

diagonals. 

 

Figure 11 - Example of a 3D representation of a 
U-Mat, taken from (Guimarães and Urfer 

2000). The central cluster is clearly separated 
from the rest of the map by a high ridge, and 
the white line represents a succession of states 

present in a certain patients data. 
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and ridges will represent separations between those clusters. An example of this representation is 

given in Figure 11. 

 

Another way to visualize U-Mats, and probably the most common, is to color-code the values of 

the U-Mat. Usually a grayscale is used, with the highest value being represented by black and the 

lowest by white. So as make distinctions between clusters clearer, some sort of compression may 

be used, as is the case in the application described in Part III of this thesis. 

 

To illustrate the power of U-Matrices and SOMs for cluster detection, we present a simple 

example, where 3-dimensional points are mapped with a SOM, and the clusters identified with a 

U-Matrix. The 360 data points have a Gaussian distribution centered at 6 of the vertices of a unit 

cube. We first train a 9x7 unit SOM with the data, and then compute and visualize its 

corresponding U-Matrix. To understand the mapping performed, we then labeled the SOM and 

U-Mat. 
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Figure 12 - Example of cluster identification with a U-Matrix. 360 3-dimensonal data points, 
centered at 6 corners of a unit cube (on the left) are mapped into 6 distinct areas separated by dark 

dividing lines (on the right) 



50  Part I, Chapter 4 

 

4.3.6 - Temporal SOMs 

The original SOM algorithm does not take time into consideration when analyzing the patterns. 

However, many approaches have been used so that SOMs may process temporal data, and since 

ship noise signals are temporal data, we will overview some of them. We conducted a survey of 

temporal SOMs, and tried to define a taxonomy for them, together with Gabriela Guimarães. The 

results are pending publication, and will be summarized here. 

 

Any taxonomy for temporal SOMs will only be an orienting guideline, and not a rigid 

classification. In fact the various ways of incorporating time are many times blended together in 

actual applications so as to achieve the optimum results. Nevertheless, we can identify 3 main 

approaches, with sub-variants: 

 

a) Use a standard SOM, and incorporate time in the pre-processing of post-processing. 

b) Modify the learning rule to reflect the time dependency of successive patterns. 

c) Modify the topology of the SOM, either by introducing feedback or by using a hierarchy 

of SOMs to deal with different time scales. 

 

Our complete taxonomy is presented in Figure 13, and we shall now briefly discuss each 

approach. 
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Figure 13 - A possible taxonomy for temporal SOMs  
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4.3.6.1 – Unmodified SOM 

In this section we discuss two distinct approaches of SOMs for handling temporal sequences that 

do not afford a modification of the original algorithm or network topology. One of the 

approaches concerns the pre-processing of a temporal sequence before presenting it to the neural 

network, and therefore embedding time into the pattern vector. The other approach is related to 

some kind of post-processing of the network outputs, resulting in a time-related visualization (or 

processing) of the data on the map with trajectories. In the following subsections both 

approaches, and several related applications will be presented. 

 

4.3.6.1.1 - SOMs with Embedded Time  

Basic Idea 

The common denominator of embedded time approaches is that some sort of pre-processing is 

performed on the time series before it is presented to the SOM. Thus, the SOM receives an input 

pattern that is treated in the standard manner, as if time was not an issue. 

Variants 

There are several ways to “hide“ time in the pattern vector, which may require more or less pre-

processing and knowledge of the underlying process. A simple tapped delay will provide the 

easiest way of generating a pattern vector. On the other hand, a complex feature extraction 

algorithm may be used to generate that vector. 

Variant 1 - Tapped delay SOMs 

The simplest pre-processing step used when applying SOMs to temporal sequences, is to use a 

tapped-delay of the input as pattern vector (Chappelier and Grumbach 1995). The SOM is thus 

presented with a pattern that is a vector of time-shifted samples of the temporal sequence, i.e. it 

receives a "chunk" of the  temporal sequence instead of just its last value, as is shown in Figure 

14. This approach was followed by some of the early applications of SOM (Kangas, Kohonen et 

al. 1990), and is still quite popular when feature extraction techniques (e.g. Fourier transforms, 

envelopes, etc.) are not necessary (Príncipe and Wang 1995)). Some authors also name it Time-

Delay SOM (Kankas 1994), since the approach is basically the same as the popular 
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backpropagation-based Time-Delay Neural Networks (TDNN) proposed by (Lang & Hinton, 

1988) and (Waibel, Hanazawa et al. 1989). 

 

 

This is a very intuitive and simple way of 

introducing time into the SOM, and has 

proved to give good results in many 

situations. It does however have a few 

known drawbacks. 

 

On one hand, the length of the tapped 

delay (the number of samples used) has to 

be decided in advance, and the ideal 

length may be quite difficult do 

determine. If too few time points are used, the dynamics of the sequence will not be captured. If 

too many are used, apart from having an unnecessarily complex system, it may be impossible to 

isolate smaller length patterns. This problem also arises in other approaches, as discussed in 

(Davey, Hunt et al. 1999; Principe, Euliano et al. 2000). 

On the other hand, since the basic SOM is not sensitive to the order in which the different 

dimensions of the input pattern are presented, it will not take into account the statistical 

dependency between successive time points. It is interesting to note that using this approach, the 

order of the successive time points in the final pattern vector is irrelevant (as long as that order is 

kept constant). 

Variant 2 - Time-related transformations 

In many applications, there are 

features of temporal sequences that 

are better perceived in domains other 

then time. The general structure of 

this approach can be seen in Figure 

15. The most commonly used domain is frequency, and the most used technique is to perform a 

short-time Fourier transform on the data (Kohonen 1988). Many other transformations have been 

used, such as cepstral features (Kangas, Tarkkola et al. 1992), wavelet transforms (Pesu, 

Z-1

x(t-1)

x(t)

x(t-2)

Z-1

x(t-M) Z-1

X SOM

 

Figure 14 - Temporal Sequence processing with 
a tapped delay as input for a SOM 

x(t) X SOM
Time-related

transformation
(ex. FFT)  

Figure 15 - Temporal sequence processing using time-
related transformations as pre-processing for the SOM 
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Ademovic et al. 1996; Moshou and Ramon 2000; Lakany 2001), and time-frequency 

transformations (Atlas, Owsley et al. 1996; Jossa, Marschner et al. 2001). In fact, many of the 

practical applications of temporal SOMs use some sort of time-related transformation as a first 

step in the pre-processing of the data, even if time is taken into account at a later stage. The 

success of these techniques is strongly dependent on the characteristics of problem at hand, and 

has little to do with the inherent properties of the SOM. 

Discussion 

These types of approaches, where only pre-processing of the data is used to deal with time, have 

the advantage that they preserve all the well-known characteristics of the SOM algorithm. 

Moreover, from a purely engineering point of view, they allow a simple integration of standard 

SOM software packages with the desired pre-processing software. These techniques of 

embedding time into the pre-processing are quite universal, and can be used to adapt almost any 

pattern-processing algorithm to temporal sequence processing. 

Examples 

One of the early papers on SOMs (Kohonen, Makisara et al. 1984) uses this technique. In this 

paper, what would later be known as the “phonetic typewriter”, was prototyped.  

 

In (Leinonen, J. et al. 1992), for example, where the objective was to detect dysphonia, the short 

time power spectra of each 9.83 s chunk of signal (spoken Finnish) was calculated using 256 

point FFT. The logarithms of that power spectra where then calculated, and smoothed with a low 

pass filter. Finally 15 of the resulting bins were selected as features, and fed into a basic SOM. 

 

The work presented in chapters 3 and 4 of part II of this thesis also embed time in the data 

pattern. 
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4.3.6.1.2 - Trajectory-based SOMs 

Basic idea 

Apart from pre-processing the inputs, we can also consider using a basic SOM, without 

considering time during the learning process, and then post-process the results obtained during 

the classification phase. The most popular of these methods are what we call Trajectory-based 

SOMs. These consider temporal relations among succeeding best-match units. This means that at 

each time point t=1,...,N, the best-match ut,,t ∈ {1,…,N}, representing the input vector is searched 

and recorded on the map. Then, a representation of time-related input vectors on the map is made 

by joining k succeeding best-matches ui,…,ui+k-1, i∈{1,...,N-k} connected forming a path, as can 

be seen in. These paths are often named trajectories (hence the name of this technique), and a 

graphical representation is given in Figure 16.  

 

Discussion 

Trajectory-based SOMs, as opposed to the approaches presented before, constitute a genuinely 

new way of dealing with time. It is impossible to use “trajectories” in methods such as feed-

forward neural networks or classical filters, because the topological information provided by 

SOMs is missing. In fact, these trajectory-based methods are successful because they explore this 

topological ordering, extrapolating it into the time domain. 

 

b.m.u. t=1
(best-match for t=1)

SOM

b.m.u. t=2 b.m.u. t=3 b.m.u. t=4

trajectory

b.m.u. t=1
(best-match for t=1)

SOM

b.m.u. t=2 b.m.u. t=3 b.m.u. t=4

trajectory

 

Figure 16 - Structure of a trajectory based SOM 
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It is interesting to see that even though training is done ignoring any sort of time dependency 

(and thus training data may be collected in any manner), temporal information can be recovered 

during the classification phase, revealing structures of the underlying process. 

 

Another interesting feature of these methods is that information can be obtained from the 

direction of the path and not its exact location. Thus, for example, if we have a map trained with 

faulty instances of a given process, we do not need to wait until that region of operation is 

reached, i.e., if the winning unit moves towards that region, we can predict something is wrong 

before it actually occurs (Tryba and Goser 1991; Ultsch 1993). 

 

When processing the trajectories, it may also be important to determine the amount of successive 

best matches to consider, i.e., the temporal length of the trajectory. This problem is similar to the 

problem of determining the number of time points in a tapped delay, mentioned before. 

 

Trajectories are often combined with other visualization techniques for the graphical 

representation of the weights of a learned SOM. These are, for instance, component maps where 

one of the components of the weights is projected onto a third dimension, as well as U-Matrices 

(Ultsch and Siemon 1990), where the distances between neighboring units calculated in the 

original space, i.e. the weights, are projected onto a third dimension. Often these additional 

visualization techniques lead to an enhanced interpretation of the trajectory.  

 

Other interesting visualization techniques for SOMs have also been proposed, such as the 

agglomerative clustering where the SOM neighborhood relation can be used to construct a 

dendograms on the map (Murtagh 1995; Vesanto and Alhoniemi 2000), and a hierarchical 

clustering of the units on the map with a simple contraction model (Himberg 2000). Although 

these approaches have not yet been used in the context of temporal sequence processing, they 

would enable a richer perception of the significance of the trajectory, allowing varying levels of 

detail in the analysis of the inputs. 

 

For most applications trajectories have been directly displayed on a map without a visualization 

of the network weights (Kohonen 1988; Leinonen, Hiltunen et al. 1993). In those cases a direct 

interpretation of the trajectory is possible if a prior classification of the signal exists, as for 

example, in different phoneme types in speech recognition (Kohonen 1988) or distinct sleep 

stages in EEG signals  (Kaski and Joutsiniemi 1993). However, if the SOM is used as a feature 
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extractor, the trajectory itself, regardless of any labeling, can be used as a temporal feature of the 

input, and fed to a higher level system (Srinivasa and Ahuja 1999). For example, if we train an 

unlabeled SOM with phonemes, a given word will have a distinct path that would distinguish it 

from other words. If we are using the SOM as a visualization tool and no prior information on the 

classes is known, a combination of trajectories with other visualization techniques for SOMs 

mentioned earlier (component maps, U-matrices, and hierarchical clustering visualizations), can 

be very useful.  

 

Component maps enable to track the trajectory along a single component. This can be 

advantageous, if we are interested in evaluating the contribution of each of the components to the 

system’s state changes. Notwithstanding, if a large number of variables have to be considered, 

this approach can originate some confusion and unclearness to the observer. In order to overcome 

these disadvantages, we will have to observe the development of a complex system or process on 

a single map using, for instance, U-matrices. 

 

The main advantage in visualizing trajectories on U-matrices lies in the identification of state 

transitions. These transitions are clearly seen on a U-matrix, because when one such transition 

occurs, the trajectory of the best-match unit has to overcome a “wall”. This means that in the 

original space a large distance has to be traveled, if a trajectory jumps over a wall, even if the 

distances on the map itself are small, i.e. they are neighboring units. This type of interpretations 

is not possible if the trajectories are observed only on the SOM itself. 

Examples 

The visualization of trajectories on the map itself was first applied to speech recognition 

(Kohonen 1988). Here a decomposition of a continuous speech signal is performed in order to 

recognize phonetic units. Before presenting the data to the network, a transformation into the 

frequency domain is made. A map, named here as phonotopic map, was generated with the input 

vectors representing short-time spectra of speech waveform computed every 9.83 milliseconds. 

One of the most striking results was that various units of the network became sensitized to 

spectra of different phonemes based only on the spectral samples of the input. However, in this 

approach samples only correspond to quasi-phonemes. Now, one of the problems lies in the 

segmentation of quasi-phonemes into phonemes. For this purpose, the degree of stability of the 

waveform, heuristic methods, and trajectories over a labeled map were calculated. Convergence 
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points of the speech waveform then may correspond to certain stationary phonemes. The main 

advantage of phonotopic maps is that they can be used for speech training or therapy, since 

people can obtain immediate feedback from their speech. 

 

This approach was also widely applied at the early 90‘s to several medical applications, such as 

the identification of co-articulation variation and voice disorder (Utela, Kangas et al. 1992), the 

detection of fricative-vowel co-articulation (Leinonen, Hiltunen et al. 1993), the detection of 

dysphonia (Leinonen, J. et al. 1992), the acoustic recognition of “/s/” missarticulation enabling a 

distinction between normal, acceptable and unacceptable articulations (Mujunen, Leinonen et al. 

1993), the recognition of topographic patterns in Electroencephalogram (EEG) spectra from 16 

subjects having different sleep/awake stages (Joutsiniemi, Kaski et al. 1995), and the monitoring 

of EEG signals enabling the identification of six typical EEG phenomena, such as well organized 

alpha frequencies, eye movement artifacts and muscle activity (Kaski and Joutsiniemi 1993). All 

these approaches have in common that a pre-classification of the original signal was already 

made. In applications for speech processing such a pre-classification is always possible. Within 

another approach for speech recognition trajectory-based SOMs have been used at different 

hierarchical levels (discussed later in this paper), where each layer operates on a different time 

scale and deals with higher units of speech, such as phonemes, syllables, and word parts (Behme, 

Brandt et al. 1993). This means that the basic structure of all layers is similar, only the meaning 

of the input and the time scale are different. This approach was used for the recognition of 

normally spoken command sentences for robot controlling, whereat the system had to deal with 

extra words and other insertions not part of a robot command. So, syntax and semantic modeling 

also played here an important role. Trajectories have only been used at the first level. They 

consist of stationary parts representing vowels that remain in a close neighborhood and 

transitions paths with jumps to different and more distant parts of the map. In order to distinguish 

between stationary and transition parts, a critical jump distance separating short and long 

distances, as well as a minimum segment length was defined.  

 

Trajectory-based SOMs have also been proposed to model low dimensional non- linear processes, 

such as non- linear time series obtained from a Markey-Glass system (Príncipe and Wang 1995). 

They followed three steps: the reconstruction of the state space from the input signal; the 

embedding of the state space in the neural field; and the estimation of locally linear predictors. 

Trajectories are then used to obtain a temporal representation of all 400 consecutive input 

samples. 



58  Part I, Chapter 4 

 

  

Within another application, firing activities in monkey’s motor cortex have been measured and 

presented to a SOM in order to predict the trajectory of the arm movement, especially while the 

monkey was tracing spirals and doing center-out movements (Lin, Si et al. 1998). From the map, 

three circle-shaped patterns representing the spiral trajectory have been identified through paths 

on the map. The results showed that the monkey’s arm movement directions are clearly encoded 

in firing patterns of the motor cortex. 

 

In (Kasslin, Kangas et al. 1992), for instance, components maps are used for process state 

monitoring where values for one parameter are visualized as gray values on a map. The lighter 

the unit on the map, the higher the parameter value is. Their aim was to classify the system states 

and detect faulty states for devices based on several device state parameters, such as temperature. 

Faults in the system could be detected with trajectories, if a transition to a forbidden area on the 

map marked with a very dark color occurred. This approach was also applied to process control 

in chemistry for monitoring a distillation process (Tryba and Goser 1991).  

 

Visualization of trajectories on U-matrices have been used for monitoring chemical processes 

(Ultsch 1993), and have been applied to complex processes, such as the dynamic behavior of a 

computer systems with regard to utilization rates and traffic volume (Simula, Alhoniemi et al. 

1996), to industrial processes, such as a continuous pulp digester, steel production and pulp and 

paper mills (Alhoniemi, Hollmén et al. 1999), and to different subjects with distinct sleep apnea 

diseases (Guimarães, Peter et al. 2001). In order to enhance exploratory tasks with SOM-based 

data visualization techniques, quantization error plots can be used using bars or circles on both, 

component maps or U-matrices (Vesanto 1999). 

4.3.6.2 - Modification of the Activation/Learning Rule  

Another possibility for processing temporal data with SOMs lies in the adaptation of the original 

Kohonen activation and/or learning rule. Here we distinguish between two distinct approaches. In 

the first, the input vector is decomposed into two distinct parts, a past or context vector and a 

future or pattern vector. Both parts are handled in different ways when choosing the best match 

and when applying the learning rule. This approach, named Hypermap, was first introduced by 

Kohonen (Kohonen 1991). The second approach, that we will call Kangas map, searches for the  

best match in a neighborhood of the last best match. 
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4.3.6.2.1 -The Hypermap Architecture 

Basic ideas 

In this architecture the input vector is decomposed into two distinct parts, a “past” or “context” 

vector and a “future” or “pattern” vector. The basic idea, now, lies treating both parts in different 

ways. The most common way is to use the context part to select the best match or “best-match 

region”, and then adapting the weights using both parts, separately or together. However many 

variants exist, and will be discussed later. 

 

For time series a Hypermap means that the future (prediction) is learned in the context of its past. 

During the classification phase the prediction is made using only the “past” vector for the best-

match search. Thus, the SOM is used as an associative memory, and the “future” part of the 

vector is then retrieved from the weights of the map associated with the best match. 

Discussion 

Originally the Kohonen algorithm is an unsupervised learning algorithm that can be used for 

exploratory tasks. Approaches, however, that use some kind of Hypermap architecture, perform a 

profound change in the interpretation of the original Kohonen algorithm towards a supervised 

learning algorithm, since an output vector (the future or pattern vector) is added to the input (the 

past or context vector). This makes sense in applications that require an extrapolation of the data 

into the future as, for example, in time series prediction (Ultsch, Guimarães et al. 1996), or in 

robot control (Ritter, Martinetz et al. 1992).  

Examples 

This approach was first introduced by Kohonen (Kohonen 1991) and named Hypermap 

architecture. It was applied to the recognition of phonemes in the context of cepstral features. 

Each phoneme is then formed as a concatenation of three parts of adjacent cepstral feature 

vectors. The idea was to recognize a pattern that occurs in the context of other patterns, where 

x(n) = [xpatt(n), xcont(n)]. A two-phase recognition algorithm for the best-match search was 

proposed. In the first phase, we start by selecting a “context domain”. This is done by searching 

for the good-matches of the context, i.e. all units that are within a given distance of the context 

vector xcont(n). In the second phase, the best match is searched within the selected context 

domain, using only the pattern xpatt(n). During learning we also have two phases. In the first 
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phase, a context SOM is trained using only the context xcont(n) and the basic SOM algorithm. 

After this SOM is trained, its weights are frozen (i.e. made constants). Next, we perform a 

learning of the pattern weights of the Hypermap. This is done using the above described 

algorithm for the best-match search, but performing the adaptation only on the unit weights that 

are related to the pattern vector xpatt(n). Furthermore, for this particular application, an extra-

supervised learning step was used to associate the units with phonemes. 

 

This architecture was generalized in (Bruckner, Franz et al. 1992) to perform hierarchical 

relationships having n-1 levels defining the context for the classification of EEG signals from 

acoustical and optically evoked potentials. This type of model was also studied for phoneme 

recognition using the LASSO model (Midenet and Grumbach 1994), for simulating a sensory-

motor task (Ritter and Kohonen 1989), as well as for robot control (Ritter, Martinetz et al. 1992; 

Walter and Schulten 1993; Ritter 1994; Walter 1998). In this latter application, the output is the 

target position of the robot arm (for instance, given by the angles), while the input is given as a 

four-dimensional vector describing the spatial position of the robot arm obtained by the images 

of two cameras. 

 

Hypermaps have also been used for prediction tasks, for instance, using SOMs for local models 

in the prediction of chaotic time series (Koskela, Varsta et al. 1998). The time series is embedded 

in a state space using delay coordinates x(n) = [x(n), x(n-1),…, x(n-(N-1))], where N is the order 

of the embedding. The embedded vector is then used to predict the next value of the series 

x(n+1). The following vector y(n) = [x(n), x(n+1)] is presented to the map during the learning 

phase. However, when searching for the best match, the target value is left out. This means that 

only the first part (past) of the whole vector is used for the determination of the best match. 

During learning, the unit weights are adapted using the whole input vector, and the standard 

Kohonen algorithm. Now, during the classification phase, only the first part of the vector is used 

for the best-match search, and indeed it is the only part available, since we are trying to predict 

the future. Thus this future part is obtained through an associative mapping with the past. In 

(Ultsch, Guimarães et al. 1996) a two step implementation of this approach was used for the 

prediction of hailstorm. First, it was used to identify distinct types of hailstorm developments. 

After the classification part, prediction was made using the completed vector. 
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4.3.6.2.1 - Kangas Map 

Basic ideas 

Instead of considering explicitly the context as part of the pattern, as is done in the Hypermap, 

we can also consider that the 

context is given by the previous 

best match, and use only the 

neighboring units when 

choosing the next one. This idea 

was proposed by Kangas 

(Kangas 1992), and so we 

named this approach Kangas 

Maps. In this approach, the 

learning rule is exactly the same 

as in the basic SOM. The 

selection of the best-match is also the same, save for the fact that instead of considering all units 

for the next iteration step, only those in the neighborhood of the last best-match are considered, 

as can bee seen in Figure 17.  

Discussion 

This type of map has several interesting features, and can in certain cases have a behavior similar 

to SOMs with feedback, e.g. SOMTAD (Euliano and Principe 1999), discussed later in this 

paper. 

From a purely engineering point of view, it can be considerably faster then a basic SOM when 

dealing with large maps, since we only need to compute the distances to some of the units. It also 

requires very little change in the basic SOM algorithm, and keeps its most important properties. 

The area where the next best-matches are searched for acts as a “focus region”, where the 

changes in the input are tracked. In a Kangas map, we may have various distinct areas with 

almost the same information (relating to the same type of input signal), but with different 

neighboring areas. Thus, the activation of the units will depend on the past history, i.e. on how 

the signal reached that region of the map. Thus, this approach uses the core concepts of 

neighborhood and topological ordering of SOMs, to code temporal dependency. 

 

last best-match
units considered
for next iteration

SOM

last best-match
units considered
for next iteration

SOM

 

Figure 17 - Structure of the Kangas Map 
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In the original paper (Kangas 1992) some variants of the basic idea are proposed, though not 

explored in depth. One of them allows for multiple best matches, and thus multiple tracking of 

characteristics of the input signal.  

 

A similar approach, that also uses feedback (discussed later) was proposed in (Chandrasekaran 

and Palaniswami 1995), and named Spatio-Temporal Feature Map (STFM). In a STFM, the units 

that are used when searching for a best-match are selected according to a rule that includes more 

than just the neighborhood (in the output space) to the last best-match. Two core concepts are 

used in this selection: a so-called spatial grating function that basically defines a spatial area of 

influence of each unit; and a gating function, that is a time-dependant function of past 

activations, and determines the output of the units. Using these two concepts, a so-called 

competition set of units is selected, where the winner will be searched. Finally, in the above-

mentioned papers, the trajectory of the best match is also used, and named the “spatio-temporal 

signature” of the temporal sequence. 

 

Many other rules may be used to select the candidate best matches.  

 

Instead of using past activations to select candidates for best matches, we can also use those past 

activations to exclude certain candidates. The Sequential Activation Retention and Decay 

NETwork (SARDNET), proposed in (James and Miikkulainen 1995) does just this. In this 

approach (which also uses feedback), the best match is excluded from subsequent searches. Thus, 

a sequence of length l will select l different best matches, or a l- length trajectory. As discussed in 

(James and Miikkulainen 1995) this will force the map to be more detailed in the areas where 

each of the sequences occur, thus representing small variations of those sequences with greater 

detail. A decay factor is also introduced to make the selection of the best winner depend on past 

activations, but we will not discuss its influence here. This hybrid approach was used 

successfully to learn arbitrary sequences of binary and real number, as well as phonetic 

representations of English words. 

 

Kangas Map based approaches have been used for speech recognition tasks (Kangas, Tarkkola  et 

al. 1992; Kankas 1994), texture identification, and 3-D object identification (Chandrasekaran and 

Palaniswami 1995; Chandrasekaran and Liu 1998).  
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4.3.6.3 - Modification of the Network Topology 

The third possibility in handling temporal data lies in modifying the network topology, 

introducing either feedback connections into the network or several hierarchical layers, each with 

one or more SOMs. Feedback SOMs are intimately related to digital filters and ARMA models, 

which are a more traditional way of dealing with temporal sequences. The latter approach is 

mainly used when a segmentation of complex and structured problems is needed in application 

domains, such as image recognition, speech recognition, time series analysis, process control, 

and protein sequence determination.  

4.3.6.3.1 - SOMs with Feedback  

Basic Idea 

One of the classical methods to deal with temporal sequences, which have been used with great 

success in control theory, is to feed some sort of output back into the inputs. This is usually done 

with an internal memory that stores past outputs, and uses them when generating the next 

outputs. One of the advantages of these methods is that they do not require the user to specify the 

length of the time series that must be kept in memory, as happens with the tapped-delay 

approaches.  

Variants 

There are a few different values that can be used for feedback, and a few different ways to 

introduce these values back into the system. Thus a large number of approaches have been 

proposed and tested in different environments. 

 

Variant 1 - Temporal Kohonen Maps (TKM) 

Historically, the first well-documented proposal for feedback SOMs appeared in 1993 (Chappell 

and Taylor 1993), named as “Temporal Kohonen Map” (TKM), and is very similar to the model 

used in (Kangas 1992). The main idea behind this approach lies in keeping the output values of 

each unit and using them in the computation of the next output value of that unit. This is done 

introducing a leaky integrator in the output of each SOM unit. In a TKM the final output of each 

unit is defined as 

 Vi(n) = α Vi(n-1) - ½ || x(n)-wi(n) ||2 , (31) 
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where 

Vi(n) is the scalar output of unit i, in at time n, 

Vi(n-1) is the scalar output of unit i, in at time n-1, 

x(n)  is the input pattern presented at time n, 

wi(n)  is the SOM unit i, at time n, 

α is a time constant called decay factor, or memory factor, restricted to 0 < α < 1. 

 

The best-matching unit is considered to that which has a higher Vi(n) (which is always negative). 

The learning rule used is that of the basic SOM. When α =0, the units have no memory, and we 

fall into the standard SOM algorithm. It must be noted that this output transfer function 

resembles the behavior of biological neurons, which do have memory, and weigh new inputs 

with past states.  

 

In essence, for the sake of comparing this approach with others, the activation function (to be 

minimized) is 

 Vi(n) = α Vi(n-1) + (1-α ) || x(n)-wi(n) || (32) 

This formulation of the TKM is shown in Figure 18. 

 

Variant 2 - Recurrent SOM (RSOM) 

The TKM keeps only the magnitude of the output of the units, and keeps no information about 

each of the isolated components, and thus no information about the “direction” of the error 

Z-1

+

α

-

wi(n)

x(n) ||.|| Vi(n)
y(n)

error

magnitude
computationinput

unit weights

difference
computation

leaky
intergrator

final output

1−α

Z-1Z-1

+

α

-

wi(n)

x(n) ||.|| Vi(n)
y(n)

error

magnitude
computationinput

unit weights

difference
computation

leaky
intergrator

final output

1−α

 

Figure 18 - Structure of each unit in a Temporal Kohonen Map (TKM) 
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vector. To overcome this limitation, the Recurrent SOM (RSOM) was proposed (Critchley 1994; 

Varsta, Heikkonen et al. 1997), where the leaky integrators are moved from the output to the 

input of the magnitude computation. As a consequence, the system memorizes not only the 

magnitude, but also the direction of the error. 

 

The activation function for each unit will now be 

 Vi(n) = || yi(n) || , (33) 

where yi(n) is the error vector given by 

 yi(n) = (1-α) yi(n-1) + α( x(n)-wi(n) ) (34) 

This formulation of the Recurrent SOM is shown in Figure 19 

Recursive SOM 

The TKM uses, for the computation of the activity of each unit, only the previous output of that 

unit. The RSOM also uses only local feedback. Another alternative is to feedback the outputs of 

all the units of the map to each of them. This alternative was first proposed in (Harmelen 1993), 

later in (Barreto and Araújo 1999), and was analyzed in detail in (Voegtlin 2000; Voegtlin and 

Dominey 2001), and with slight modifications in (Ruf and Schmitt 1998). The latter authors first 

named this approach Contextual Self-Organizing Map (CSOM), and later Recursive SOM. In this 

paper we use the  name Recursive SOM to clearly differentiate it from the Hypermap architecture 

that also uses the term “context”. The dimensionality of each unit is increased significantly. 
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Figure 19 - Structure of each unit in a recurrent SOM 
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is to be compared with actual outputs in the previous instant. The activation function defined by 

(Voegtlin and Dominey 2001) is 

 

 Vi(n) = exp( -α || x(n)-wi
input(n) || 2 – β  || V(n-1)-wi

output(n) || 2), (35) 

where α and β  are constant coefficients that reflect the importance of past inputs. 

 

The formulation of the Recursive SOM is shown in Figure 20. 

SOM with Temporal Activity Diffusion (SOMTAD) 

Another approach, similar to recursive SOM, was proposed and analyzed in (Kopecz 1995) 

(Euliano and Principe 1996; Euliano, Principe et al. 1996; Euliano and Principe 1998; Euliano 

and Principe 1999) and, in the latter paper, named SOM with Temporal Activity Diffusion 

(SOMTAD). In a SOMTAD, instead of feeding back all past outputs (and learning their 

respective weights), only the activations of neighboring units are fed back. This leads to a sort of 

shock wave that is generated in the best match unit, and propagates throughout output space of 

the map. Adapting the proposed algorithm to the formalism we have been using, we will have 

 Vi(n) = (1-α) Vi(n-1) + α || x(n)-wi(n) || , (36) 

 just as in a KTM, but each unit i will also have an enhancement E given by 

 Ei = f( Vneighbour(t-1)), (37) 

x
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Figure 20 - Structure of the Recursive SOM 
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where f(.) is some function, that couples the enhancement of one unit with the activity of its 

neighbor. 

 

The best match is then  

 best-match(t) = arg min( || x(n)-wi(n) || + β  Ei(t) ), (38) 

where β  is called the spatio-

temporal parameter, and 

controls the importance of past 

neighboring activations. The 

structure of each unit of a 

SOMTAD is shown in Figure 

21. 

It must be noted that when β  

tends to 0, the SOMTAD 

becomes a standard SOM. As 

it increases, the behavior will 

be similar to a Kangas map, 

since the best match will tend to be in the vicinity of the last best-match, and as β  tends to +∞, 

the model degenerates into an avalanche network.  

Discussion 

None of the above proposals is universally better then any other, so one can always find an 

example of an application where a given approach outperforms the others. There are, however, 

some well-known characteristics that can help us choose a good approach for a given problem. A 

good theoretical comparison of the Temporal Kohonen Map (TKM) and the Recurrent SOM 

(RSOM), can be found in (Varsta, Heikkonen et al. 2000), where the authors show that TKM 

lacks RSOM’s consistent update rule. Thus, while a RSOM will converge to optimum weights 

for its units, following a gradient descent algorithm, the TKM will not, hence in some way it will 

be unreliable. In a series of experiments, the authors show that generally a RSOM will provide a 

more efficient mapping of the input space signals then a TKM, which tends to concentrate its 

units in certain regions of that space. On the other hand in (Voegtlin and Dominey 2001) it is 

shown that for a classical benchmark problem, the Mackey-Glass chaotic time series, the 

Recursive SOM will provide a far better mapping then the Recurrent SOM. This will generally 

TKMx

input TKM unit

β

intermediate
activation

Vi

Vneigh

activation of
neighbors

+

output

 

Figure 21 - Structure of each unit in a SOMTAD based map 
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be the case when a global perspective of the signal space is necessary, which means that in those 

cases, when a global perspective of the past inputs is necessary, a strictly local approach, such as 

TKM and RSOM, can not give good results. However, it must be noted that the complexity of the 

system is also considerably increased when we use a Recursive SOM. 

 

Examples 

Recurrent SOMs have probably been the most used model. They have been successfully applied 

to the Mackey-Glass Chaotic Series, infrared laser activity, and electricity consumption (Koskela, 

Varsta et al. 1997), as well as clustering of epileptic activity based on EEG (Koskela, Varsta et 

al. 1998). As described earlier, the Recursive SOM was also used to study the Mackey-Glass 

series, and has outperformed the RSOM. It was also used, with slight modifications, in (Ruf and 

Schmitt 1998). To our knowledge, the SOMTAD model has only been applied by its authors to 

digit recognition, and to small illustrative problems in (Euliano and Principe 1996; Euliano, 

Principe et al. 1996; Euliano and Principe 1998; Euliano and Principe 1999). 
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4.3.6.3.2 - Hierarchical SOMs 

Basic idea 

Hierarchical SOMs are often used in application fields where a structured decomposition into 

smaller and layered problems is convenient. Here, one or more than one SOMs are located at 

each layer, usually operating at different time scales (see Figure 22). Hierarchical SOMs in 

temporal sequence processing have  been successfully applied to speech recognition (Kempke and 

Wichert 1993; Jiang, Gong et al. 1994), electricity consumption (Carpinteiro, Silva et al. 2000), 

vibration monitoring (Jossa, Marschner et al. 2001), motion planning (Barreto and Araújo 1999) 

and temporal data mining in medical applications (Guimarães and Urfer 2000). 

Discussion 

The main difference between hierarchical SOMs lies in the type of codification of the results of 

one level SOMs to the next upper level. They also differ in the number of levels used, which 

strongly depends on the type of application. Finally, they differ in the number of SOMs at each 

level, and the interconnections between the levels.  
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Figure 22 - Structure of a Hierarchical SOM 
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The rationale for using hierarchical SOMs is that of “divide and conquer”. By focusing 

independently on different inputs we do lose information, but we gain manageability. We can 

thus use a relatively low complexity model, such as a SOM to handle each of the small groups of 

inputs, and then fuse this partial information to extract higher- level results. Good results can thus 

be obtained with hierarchical SOMs in complex problems that cannot be modeled by a single 

SOM (Guimarães, Peter et al. 2001). 

 

There are mainly three different ways to calculate the input vector for the next level SOM. First, 

the weights of the lower- level SOM are used as input without any further processing, either 

taking into account the information of the previous known classes (Kempke and Wichert 1993) 

or without considering any information on the classes (Walter and Ritter 1996). In this case, the 

first level SOM is simply being used for vector quantization. Second, a transformation of the 

network results is possible, for instance: 1) calculating the distances between the units 

(Carpinteiro 1998); 2) concatenating subsequent vectors into a single vector, thus representing 

the history of state transitions (Simula, Alhoniemi et al. 1996); or 3) taking into account the 

information about clusters formed at this level, and adjusting the weights towards the cluster 

center (Guimarães and Urfer 2000). The third possibility lies in interposing other algorithms or 

methods, such as segment classifiers (Behme, Brandt et al. 1993). 

Examples 

This approach was first introduced in speech recognition, where each layer deals with higher 

units of speech, such as phonemes, syllables, and word parts (Behme, Brandt et al. 1993; 

Kempke and Wichert 1993). For instance, in (Behme, Brandt et al. 1993) at each layer a SOM 

operating at different time scales is used, which is connected to a segmentation unit for the 

segmentation of the input and to segmentation classifiers. Each of the classifiers was trained to 

recognize a special class of segments, thus producing an output vector for each segment. These 

output vectors, i.e. the activities of the classifiers, form the input for the next level, which thus 

operates on a larger time scale. Each segment classifier m produces an output activity am = Σi 

ci·wim, ci denoting the activity of the SOM unit i and wim the synaptic strength from SOM unit i to 

classifier m. These connections may be inhibitory (wim<0), but always fulfill Σiw2
im=1.  

 

In (Jiang, Gong et al. 1994) a speaker recognition system based on the auditory cortex model is 

proposed. Since an auditory cortex can be generally considered as a layered upward structure 
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with complex connections, three hierarchical levels of SOMs with local connections have been 

introduced. The output of the first map contains leaky integrators and is calculated as follows: 

 

 yi(n) = α ⋅ (k / (1 + ||wi(n)-x(n)||)) + (1 - α)⋅ yi(n – 1) , 0 < α < 1 . (39). 

For the sake of comparison with other approaches, this equation can be transformed into the 

following that should be minimized: 

 

 yi(n) = (1 - α)⋅ yi(n – 1) + α ||wi(n)-x(n)|| . (40) 

The units of the second and the third layer have input connections from the units of the 

immediately lower level. Additional connections exist from the first to the third level. 

 

Kemke and Wichert (Kempke and Wichert 1993) also used hierarchical SOMs at different time 

scales, as mentioned before. The codification of the input at the next layer is based, however, on 

a pre-classification of the signal. A class is associated with each unit on the map. In order to 

calculate the output for a given input vector, the mean of the weights of all units belonging to the 

class is calculated, and used as input to the map of the next higher- level map.  

 

Hierarchical SOMs have also been applied to monitoring and modeling the dynamic behavior of 

complex industrial processes, such as the dynamic behavior of a computer system (Simula, 

Alhoniemi et al. 1996). The main problem in process analysis is to find characteristic states or 

clusters of states that determine the general behavior of the system. In this approach, a 

hierarchical SOM with two levels was constructed containing a “state map” used to track the 

operating point of the process with trajectories, and a “dynamics map” used to predict the next 

state on the state map. Each unit on the dynamics map then represents a "path" leading into the 

corresponding state. The training set of the state map for the dynamics map is formed by 

concatenating subsequent vectors into a single vector, representing the history of state transitions. 

In prediction, the state map vector having the best matching trajectory in its dynamics map is 

then the predicted state.  

 

An application of hierarchical SOMs in medicine, namely in sleep apnea research, is given in 

(Guimarães and Urfer 2000). Here, SOMs are used at different hierarchical levels, in order to 

handle the complexity given by the large number of signal channels. At the lowest level, 
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primitive patterns in multivariate time series are discovered for distinct time series selections, 

while more complex patterns are identified at the next higher-level SOM. This approach 

considers the patterns obtained by the low-level maps, using the information provided by the U-

matrix to identify the clusters. Thus, based on this information, a cluster center is calculated, and 

in order to calculate the input to the next-higher level map, all weights are approximated towards 

its cluster center ck according to the following adaptation rule: 

 wi,new = wi + α ||wi - ck||, if ck > wi , (41) 

and  

 wi,new = wi - α ||wi - ck||, if ck ≤ wi. (42) 

A two-level hierarchical SOM has also been applied to short-term load forecasting (Carpinteiro, 

Silva et al. 2000), and to music data, the Bach’s fugue (Carpinteiro 1998). In this approach the 

input to the second layer SOM is determined by the distance between the best-match ui(n) and all 

the other k units of the map uj(n), j≠i, leading to a k-dimensional input vector.  

 

A hierarchical approach to parameterized SOMs (PSOMs) was proposed by Walter and Ritter 

(Walter and Ritter 1996), in order to cope with only a very few number of examples. This 

approach was applied to rapid visuo-motor coordination. One possible solution is to split the 

learning into two stages, both on distinct PSOMs: 1) a first level PSOM, considered as an 

investment stage for a pre-structuring of system, which may process a large number of examples; 

and 2) a second level PSOM, named as Meta-PSOM, that now is a specialized system with fast 

learning, and only needing a few examples as input. The weights of the first level are then used 

as input to the second level Meta-PSOM. 

 

4.3.6.4 – A survey of papers 

As we shall see in part II of this thesis, we opted for using embedded time in our SOMs, and 

allowed the user to visually do some trajectory based analysis. So as to have an idea how popular 

the various temporal SOMs are, we surveyed 68 papers that we considered relevant, and the 

results are presented in Table 3. Due to the large number of papers involving SOMs for temporal 

sequence processing, and due to the somewhat fuzzy borders of what are or are not temporal 

SOMs, many papers that could be considered relevant are not referenced. 
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In proposing this taxonomy, we focused on identifying the core concepts involved when 

introducing time into SOMs. As mentioned before, for many applications it is useful do draw on 

more than one of these ideas. Naturally, our taxonomy is not complete and exhaustive, in the 

sense that more specific and detailed approaches do exist or can be developed in the future. Also, 

due to the large number of papers involving SOMs for temporal sequence processing, and due to 

the somewhat fuzzy borders of what are or are not temporal SOMs, many papers that could be 

considered relevant are not referenced. 

 

We identified three main approaches for temporal sequence processing with SOMs. These are: 1) 

methods requiring no modification of the basic SOM algorithm, such as embedded time and 

trajectory-based approaches; 2) methods that adapt the activation and/or learning algorithm, such 

as Hypermaps or Kangas Maps; and 3) methods that modify the network structure, introducing 

feedback connections, or hierarchical levels. The use of each of these approaches, which are not 

mutually exclusive, depends highly on the application, and none is universally better than any 

other. The best results are usually obtained by using a carefully tailored combination of these 

methods. Table 1 provides a classification of some existing and relevant approaches in this 

taxonomy. 
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(Alhoniemi et al., 1999)  X     
(Atlas et al., 1995) X      
(Barreto & Araújo, A. 1999)     X X 
(Barreto & Araújo, 2000)     X X 
(Behme  et al. , 1993)  X    X 
(Brückner et al., 1992)   X    
(Carpinteiro, 1998)       X 
(Carpinteiro & Silva, 2000)      X 
(Chandrasekaran & Palaniswami, 1995)   X  X X  
(Chandrasekaran & Liu, 1998)   X  X X  
(Chappel & Taylor, 1993)      X  
(Chappelier & Grumbach, 1995) X      
(Crichley, 1994)      X  
(Euliano & Principe 1996)     X  
(Euliano et al., 1996)     X  
(Euliano & Principe 1998)     X  
(Euliano & Principe, 1999)      X  
(Guimarães, 2000) X X    X 
(Guimarães et al., 2001a)   X     
(James & Miikkulainen, 1995)   X  X X  
(Jiang et al., 1994)      X X 
(Jossa et al., 2001) X X    X 
(Joutsiniemi et al., 1995) X X     
(Kangas et al., 1990)  X      
(Kangas, 1992)    X   
(Kangas et al., 1992) X X     
(Kaski & Joutsiniemi, 1993) X X     
(Kasslin et al., 1992)  X     
(Kemke & Wichert, 1993)  X     X 
(Kohonen et al., 1984)  X X     
(Kohonen, 1988) X X     
(Kohonen, 1991)   X    
(Kopecz, 1995)     X  
(Koskela et al., 1997)      X  
(Koskela et al., 1998a)     X  
(Koskela et al., 1998b)     X  
(Lakany, 2001)  X      
(Leinonen et al., 1992) X X     
(Leinonen et al., 1993)  X X     
(Lin & Si, 1998)   X     
(Lobo et al., 1998) X      
(Midenet & Grumbach, 1994)    X    
(Moshou & Ramon, 2000)  X      
(Mujunen et al., 1993)  X X     
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 Embd Traj. Hyp. Kang. Feedb Hierar 
(Pesu et al., 1996)  X      
(Principe & Wang, 1995)     X  
(Principe et al., 2000)      X  
(Ritter et al., 1989)    X    
(Ritter, 1994)    X    
(Ruf et al., 1998)     X  
(Simula et al., 1996)  X X    X 
(Speidel, 1992)  X      
(Srinivasa & Ahuja, 1999)  X     
(Tryba & Goser, 1991)   X     
(Ultsch, 1993)  X     
(Ultsch et al., 1996)   X    
(Utela et al., 1992) X X     
(Varsta et al., 1997)        
(Varsta et al., 2000)      X  
(Vesanto, 1997)    X    
(Vesanto, 1999)        
(Voegtlin, 2000)      X  
(Voegtlin & Dominey, 2001)      X  
(Von Harmelen, 1993)      X  
(Walter & Schulten, 1993)   X    
(Walter & Ritter, 1996)    X   X 
(Walter, 1998)    X    
(Zandhuis, 1992)  X    X 

Table 3- Overview of the approaches used in 68 different papers. 

 

4.3.7 – Other variants on the basic SOM  

Multiple variants of the basic SOM algorithm have been proposed some of which are reviewed in 

(Kangas, Kohonen et al. 1990) and (Kohonen 2001). Besides the Temporal SOMs mentioned in 

the previous section, these include: non-time related Hierarchical SOMs; Adaptive Sub-Space 

SOM (ASSOM), where the neurons have a lower dimension than the original pattern, thus 

“living” in one of its sub-spaces; Self-growing SOMs, that automatically expand when certain 

criteria are met; Neural Gas, where there are no pre-defined output space neighborhoods, and 

instead are defined and modified during training; MST-SOMs where the grid neighborhoods are 

replaced by neighborhoods defined on a Minimum Spanning Tree of the units (Kangas, Kohonen 

et al. 1990); and many more.  

 

Besides the U-Matrices mentioned before, a number of other techniques have been proposed to 

visualize the output SOM, or to post-process it so that other representations of the data may be 

provided. 
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One visualization technique, presented in (Kaski, Venna et al. 1999) maps the SOM units 

directly into a color space, the CIELab space (CIE 1986). This method has two main advantages 

to the normal display of labeled SOMs. On one had, it avoids the arbitrary assignment of colors 

to the labels, in such a way that similar units will be assigned similar colors. This will give a 

better visual insight into the relationships amongst different units and clusters. On the other hand, 

this color mapping dos not need labeled units, and can thus be applied to pure unsupervised 

learning problems. 

 

Producing rules from SOMs, as a means of knowledge discovery is becoming an important topic 

too. One approach followed by (Guimarães and Urfer 2000) uses hierarchical SOMs to achieve 

higher degrees of abstraction before attempting to generate those rules. Fuzzy rules have also 

been extracted from SOMs, as for example in (Drobics, Bodenhofer et al. 2000), where an 

algorithm named FF-Miner was developed. 

 

Finally, there have been many hardware implementations of SOM. A number of special built 

VLSI chips have been designed specifically to implement SOM. Some, such as (Gioiello, 

Vassallo et al. 1992) where projected, simulated, and had their performance theoretically 

predicted, while others, such as (Rueping 1994) where actually build at foundries. While most of 

them can boast impressive performances, none has become mainstream. One reason for this is the 

simple fact that they are custom make for SOM, and thus have little flexibility in being used for 

other purposes. The small volume of sales makes for a high price, that turns away potential 

clients. The fact that none of the implementations is clearly better than others, and that all are 

quite different, makes the learning curve for using them quite steep, again discouraging potential 

users. Finally, the impressive evolution of general purpose microprocessors makes software 

implementation a safer bet for investors. It is our opinion that SOM hardware is still searching 

for a “killer application” to get into the mainstream of computing. 
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PART I 

CHAPTER 5 

Classifier design 

5.1 – Introduction 

The term classification can be used in a variety of contexts, with slightly different meanings. 

From a computer science and engineering point of view, the term generally refers to data-driven 

classification, i.e., the ability classify new data, based on previously classified data and, only 

when possible, on prior knowledge about the problem. 

 

Classification, in the sense that we will consider in this thesis, can be defined as follows: 
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Given a set X  of multidimensional patterns x1, x2,…, xn, each one with an associated cla ss θ1, θ2, 

..., θq, decide which is the class θ of a new pattern x. 

 

The patterns may be multidimensional patterns of any type, namely their components may be 

real-valued, categorical, binary, or anything else. In some instances, they may even be trees or 

graphs. As for the class, it must be categorical. A real-valued class leads to regression, which is a 

closely related subject, but one which we shall not address in this thesis. The relationship 

between the two has been explored in many papers, such as (Torgo and Gama 1997). 

 

As will be discussed in Chapter 6, the set of patterns used to design the classifier is called the 

training set, referred to as Xtrain. Other patterns, that constitute the validation set, Xvalid, may be 

used to control the design process. Finally, some patterns, that are not used for designing the 

classifier, may be used to estimate the probability of error of the classifier and are called the test 

set, or Xtest. 

 

The first classifiers where developed by researchers in the field of statistics and engineering, and 

followed what we shall call a statistical approach to classifier design. With the emergence of the 

field of Artificial Intelligence, many new approaches where devised, which we will call AI-based 

approaches. In recent years there has been a general convergence of these two basically different 

points of view, for it has been recognized that they have many points in common (Schurmann), 

and sometimes the same method has been re- invented in one community years after it was 

developed by the other (Ripley 1996). Statistics can give a sound theoretical foundation for many 

AI-based methods, and can solve in an optimal and efficient way many problems, while Artificial 

Intelligence can provide solutions that, if many times not optimal, can solve difficult problems in 

reasonable time. Comparisons and taxonomies of AI-based and statistical classifiers can be found 

in (Holmstrom, Koistinen et al. 1997), or some of the pattern recognition textbooks referenced.  

 

Following this more modern unifying approach, we will overview the purely statistical classifiers 

an AI based approaches together, making the necessary distinctions when necessary. I hope that 

pure statisticians will not be offended by the lack of rigorous mathematical proof for the AI based 

methods, nor AI researches will be bored with the formalism of statistics. Due to our background, 

it will necessarily be more of an AI based approach. 
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5.2 - Classifiers 

There are basically two types of statistical approaches to designing classifiers: the parametric 

approaches, and the non-parametric approaches. Parametric approaches assume that the known 

patterns have a probability distribution that follows a known analytical function. From the data, 

the parameters of that function are estimated, and an optimal decision boundary is obtained. 

Excellent reviews of parametric classifiers can be found in any patterns classification book, of 

which we may recommend (Duda, Hart et al. 2001), (Fukunaga 1990), (Bishop 1995), (Ripley 

1996), or (Marques 1999)(which is written in Portuguese). 

 

Non-parametric approaches assume no pre-defined distribution, and try to obtain the decision 

boundary directly from the data. 

 

This usually implies estimating some measure of the probability density of the data’s distribution. 

To estimate the probability density at a given point, p(x), from the data itself we may take n 

patterns of the desired class, and find out how many of them (say k) fall within a given area (∆V), 

and calculate the ratio (Duda, Hart et al. 2001): 

 
V
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∆

≈
/

)(  (43) 

This estimate will converge to the true probability density as n increases if three conditions are 

met: 
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Clearly the first and second conditions are difficult to meet, even approximately, with any given 

finite training set. Thus, no data driven probability density estimation will be without error. 

 

The two most used approaches to effectively calculating p(x) require fixing ∆V and counting k/n, 

or letting ∆V grow to achieve a desired k. The former technique leads to Parzen Windows based 

approaches, while the latter leads to k-Nearest Neighbor based approaches, of which the 1-
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Nearest Neighbor, or simply Nearest Neighbor is the most common. In this thesis we will only be 

interested in studying the latter family of non-parametric classifiers. It must be noted that for 

classification purposes, we do not need to explicitly calculate the probability density of each 

class in any given point of the input space, but simply find out which class has a higher value of 

that probability density. Thus, the total number of patterns (n in the above equation), is irrelevant, 

as is the exact value of ∆V. If those two parameters are equal for all classes, we need only 

compute the number k of patterns of each class that fall into some n-dimensional volume ∆V. If 

we are only interested in crisp “yes or no” decisions, we are not even interested in knowing the 

exact k of each class, but only which one is greater. 

 

5.3 - Nearest Neighbor Classifiers 

One of most widely used methods for non-parametric classifiers is the nearest neighbor classifier. 

It is generally recognized that the first serious study of the nearest neighbor rule for classification 

was done by Fix and Hodges from the US Air Force School of Aviation Medicine, in a technical 

report dated February 1951, named “Discriminatory analysis, non-parametric discrimination: 

consistency properties” (Fix and Hodges 1951), available in (Dasarathy 1991). However, the first 

paper to be published in a major journal, with a sound theoretical justification of the method is 

due to Cover and Hart in (Cover and Hart 1967). 

 

The nearest neighbor rule for classification can be stated as follows: 

 

 

Algorithm 4 - Nearest Neighbor Classification Rule 

Let 
 
 XTrain Be the training Set composed of patterns and associated 

classes (x1, θ1), (x2, θ2),… ,(xn, θn) 
 xnew Be a new pattern  
 θnew The unknown class of the new pattern 
 
Do 
 
1 For i=1 to |XTrain| do  
2   Calculate the distance di= || xi – xnew || 
3 Find i that minimizes di ( i=argmin(di) ) 
4 θnew=θi   
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Stated in plain English, the rule says: “find the class of the pattern that is nearest to the new 

pattern, and that will be the new class”. 

 

We can now ask ourselves if this intuitively sound rule does in fact make sense, under which 

conditions will it perform better or worse than other rules, and how does it compare to Bayes 

rule, when such can be calculated. As pointed out by many authors (e.g. (Mitchell 1997) ), the 

nearest neighbor classifiers are a particular case of the more general non-parametric probability 

density estimators, that are at the root of every classification procedure that tries to achieve 

optimality. As seen in the previous section, to estimate the probability density from data we must 

compute the values for equation (43), and to achieve the  optimum Bayes error, the class we want 

is the one with greater probability density at that point. Whether or not the nearest neighbor rule 

converges to this value is known as the convergence problem, which has a number of variants. 

 

The first convergence problems where solved in the 60’s when (Cover and Hart 1967) showed 

that given mild assumptions on the continuity of the probability density function, asymptotically, 

when the size of the training goes to infinity: 

 

a) If the classes are separable, the nearest neighbor rule converges to the true class, with 

probability 1. 

b) If the classes are not separable, the nearest neighbor rule converges to an error rate that is 

less than twice the optimum Bayes error rate, also with a probability of 1. 

 

Easier to follow, and very elegant proofs for the same problem are given in (Ripley 1996) and 

(Duda, Hart et al. 2001). More research into the asymptotical properties has also been presented 

in a number of papers, e.g. (Peterson 1970; Gyorfi 1978; Krishna, Thathachar et al. 2000). 

  

Unfortunately, these good properties occur when the number of training patterns tends to infinity. 

Naturally, this is not the case in real applications, and so a lot of work has been done to try and 

find bounds for the error rate in finite cases. (Cover and Hart 1967) analyzed the 1-dimensional 

case, which was subsequently broadened to the n-dimensional case by (Gyorfi 1978; Rogers and 

Wagner 1978; Devroye and Wagner 1979; Fukunaga and Hayes; Psaltis, Snapp et al. 1994; 

Drakopoulos 1995; Bax 2000), and (Nock and Sebban 2001). We recommend (Bax 2000) for a 

general overview of solutions to the problem. Generally, the best results (Nock and Sebban 2001) 

show that under very weak assumptions: 
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where Ebayes is the Bayes error, Enneighbors is the error of the nearest neighbor classifier, c is the 

number of classes, and δmx(x) is a likelihood function, originally introduced by (Drakopoulos 

1995). As shown in (Nock and Sebban 2001), this likelihood function, that can be estimated for 

any given finite sample, is usually small. 

 

As a conclusion, the error rates using the nearest neighbor rule with a finite number of training 

patterns are quite close the optimum Bayes error in theory, and very acceptable in practice, as has 

been verified in innumerous experimental situations. 

 

The error rate in variants of the nearest neighbor classifiers have also been studied, amongst 

others, by (Wilson 1972) for edited nearest neighbors, (Kulkarni, Posner et al. 1998) for k-nn, 

and (Krishna, Thathachar et al. 2000) for broad family, including LVQ and Nearest Neighbor 

based Multilayer Perceptrons (NN-MLP) (Zhao and Higuchi 1996). 

 

5.4 – Variations on nearest neighbor or prototype based 

systems 

With the widespread use of powerful computers, and the enormous amount of data available in 

data warehousing systems, nearest neighbor systems have enjoyed a great deal of attention and 

found their way into various practical applications. Many improvements have been made on the 

original algorithm, and sometimes the same technique has been re- invented in different areas of 

knowledge with different names. 

 

The first point we want to make, is that there are many common points between a vast array of 

classifier systems that rely on two fundamental principals, that can be used as the definition of 

prototype based classifiers : 

 

a) When designing the classifier, store instances of patterns x. These patterns are in the same 

input space as the patterns we will want to classify later. They may be the training 
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patterns themselves, a selection of them, or new patterns generated in some way. 

Depending on the approach we take, they may be called reference patterns, reference 

vectors, prototypes, neurons, stored patterns, examples, cases, etc. In this thesis we 

choose to adopt the term prototypes as we feel it captures the general idea in a better way, 

and has been widely adopted (Chang 1974; Bezdek, Reichherzer et al. 1998). 

b) When classifying a new pattern, compute the distance (or similarity) to each of the stored 

patterns, and decide on the new class based on the class of the nearest neighboring 

prototype or prototypes. Once again, there are small variations on whether we take the 

actual distance into consideration or not, on whether we consider only the nearest 

neighbor or a number of nearest neighbors, etc.  

 

Any classifier that uses these two techniques shall be called a prototype based classifier in this 

thesis. It must be noted that there is no widespread consensus as for the best name for this family 

of classifiers, and a variety of different names have been used, such as Nearest Prototype 

Classifiers (NPC) (Kuncheva and Bezdek 1998), Voronoi networks (Vnets) (Krishna, Thathachar 

et al. 2000), Generalized Nearest Prototype Classifiers (Bezdek and Kuncheva 2001), memory 

based classifiers (Dietterich, Wettschereck et al. 1994), etc. 

 

We shall now briefly overview some of the types of classifiers that we consider prototype based 

classifiers. 

 

5.4.1 - k-means, and fuzzy c-means clustering 

Although originally developed as clustering algorithms, the k-means technique and its 

derivatives, such as fuzzy c-means, have also been used as a way to obtain prototypes for nearest 

neighbor classifiers (Bishop 1995; Duda, Hart et al.). These techniques were reviewed, as 

clustering techniques, in Chapter 4. When used as classifiers, each centroid is assigned a label, 

based on the labels of the training patterns that are closest to it. Normally, it is assigned the label 

of the majority of the patterns, but we may use a more complex scheme, and assign a 

“probabilistic label”, that estimates the probability of that centroid belonging to any class. When 

a new pattern is presented, it is assigned the label of it’s nearest centroid. 
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5.4.1 - SOM and LVQ 

One family of prototype based classifiers stems from the work done on vector quantization, that 

led to vector quantization-based classifiers, and later to Kohonen’s Self-Organizing Maps (SOM) 

(reviewed in Chapter 4), and Linear Vector Quatization algorithm (LVQ). In this context, the 

prototypes are named neurons, and are generated by the algorithms based on the original training 

patterns. In the case of SOM, the prototypes are generated without any knowledge of the classes 

of the training data, and only after learning has stopped is an “inverse nearest neighbor” rule 

applied to yield the class of the prototype, which is then called a “labeled neuron”. When using a 

SOM to perform classification, the distance from the new pattern to each neuron is computed, 

and the class of the nearest neuron (if it has any) is given to that prototype. As noted in various 

papers, SOMs can be quite effective when a mixture of classification/novelty detection is 

required, and as prototype generators, they have the advantage of filtering out outliers, and 

smoothly covering the input space. The LVQ neural networks are more apt for classification, and 

rely on training algorithms similar to SOMs. However, in LVQ, the classes of the training 

patterns are taken into account making it a supervised learning algorithm right from the start. If 

care is not taken, a lot of the smoothness that makes the SOM so useful may be lost when using 

LVQ. When a LVQ map converges to a stable position, the neurons belonging to different 

classes are clearly separated, and outliers may not be filtered out. 

 

As with SOM, many LVQ based variants have been proposed, besides the original LVQ1, 

OLVQ1, LVQ2, and LVQ3 proposed by Kohonen. Two of them are the Generalized Linear 

Vector Quantization (GLVQ) and its fuzzy version GLVQ-F (Karayiannis, Bezdek et al. 1996), 

which have been used in benchmark comparisons with prototype minimization techniques that 

we shall overview later in this chapter. Another, that used different update rules and feature 

weight adaptation, is proposed by (Huang, Chiang et al. 2002), and called LVQ-H. 

5.4.2 – Neural Gas, Growing Cells, and GTM 

Amongst the SOM related variants some must be mentioned explicitly either because they part 

with the notion of map present in SOM, or have significantly different update rules, or simply 

because they have diverged quite a bit from the original techniques. One is the Neural Gas 

approach (Martinetz, Berkovich et al. 1993). In this approach, the notion of neighbor in the 

output space of SOM is substituted by neighborhood in the original input space. Although the 

update rule is quite similar, the topological mapping present in SOM is lost, and the network 
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produces just a number of neurons spread out in the input space, in a fashion that resembles the 

k-means. As a purely sampling technique, the neural gas can have a closer representation of the 

data than the SOM, especially when the dimensionality of the input space is greater than that of 

the output space, since there are no distortions imposed by a mapping. 

 

Other are the Growing Cell networks (Fritzke 1991). These networks start with very few units, 

and add more units are they become necessary. The output plane will not be forced to be a 

rectangular or hexagonal grid of units, but unlike pure neural gas models, there will be “output 

space neighborhoods”. More recent developments have unified the Growing Cell and Neural Gas 

models in the Growing Grid (Fritzke 1995), and Growing Neural Gas (Fritzke 1995) models. 

 

One of the most important alternatives to Kohonen’s SOM is the Generative Topographic 

Mapping (GTM), proposed in (Bishop, Svensén et al. 1996) and (Bishop, Svensen et al. 1998), 

as a statistically well founded alternative to SOM. Each unit in a GTM represents a Gaussian 

distribution. The parameters of that distribution are determined in a fashion similar to the 

Gaussian Mixture Model (GMM) (Bishop 1995), using a Expectation-Maximization (EM) 

algorithm. However, unlike in GMM, constraints are introduced between the units, so that they 

form a low-dimensional grid that keeps topological neighborhoods. 

 

5.4.3 – RBF 

Another neural model called Radial Basis Function Networks, (RBF) was proposed by 

(Broomhead and Lowe 1988). Once again many variants have been developed, but the main idea 

remains the same: “center” the neurons in positions that are learned in the input space of patterns, 

and then assign a certain radial function to each of these neurons. There may be one function for 

all neurons, or each may adjust its parameters separately. In any case, the centers of the RBF 

networks clearly correspond to our notion of prototypes. 

 

5.4.4 – CBR 

Case Based Reasoning (CBR) has been used in artificial intelligence for many years. The first 

proposal of CBR as a AI technique is due to (Schank 1982), but it has older philosophical and 

psychological foundations. The rational behind CBR is to solve problems by analogy to known 

solutions or, in other words, to learn by example. A CBR system will store known cases, and 
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when a new problem arises, finds the most similar case. It will then try to adapt the known 

solution to the new problem. Many improvements have been proposed, and CBR has evolved 

into a quite mature area, with many good textbooks, such as (Kolodner 1993) for a good 

overview of early work, (Maher, Balachandran et al. 1995) for a indus try-oriented perspective, or 

(Watson 1997) for a more recent and very practical and easy to follow reference. Several well 

kept internet sites, such as www.cbr-web.org and www.ai-cbr.org are dedicated solely do CBR 

issues.  

 

Basically CBR systems are a particular case of prototype based systems, for they store the 

training data (cases), and use similarity between these and new data (new cases), to find solutions 

for these. However, while most prototype based systems deal with patterns that are simple 

multidimensional vectors with real-valued, integer, or categorical data, CBR systems will 

frequently deal with more complex patterns. As an example, (Emam, Benlarbi et al. 2001) 

presents a comparison of various CBR techniques for evaluating the risk associated with software 

components, represented by their source code and a number of associated indicators. After 

finding the best match amongst stored cases, CBR systems will sometimes go beyond what a 

classifier would do (simply find the class), and generate a more elaborate answer. From this point 

of view, a CBR would be a prototype based classifier followed by a post-processing system. 

 

CBR, with small variants, is also known by many other names such as Exemplar-Based 

Reasoning (Kilber and Aha 1987), Instance-Based Reasoning (Aha 1991), Memory-Based 

Reasoning, and Analogy-Based Reasoning, as noted by (Aamodt and Plaza 1994).  

5.4.5 – Lazy Learning 

Lazy learning is the name given to a number of techniques, most of them reviewed in (Aha 

1997). The common factor in these approaches is that little or no processing is done while 

constructing the classifier with training data. The data patterns are simply stored, and processing 

is postponed until a new pattern has to be classified. Lazy Learning algorithms are a type of 

prototype based algorithms because they store all training patterns and all use some type of 

similarity measure to compare the new patterns with the stored ones. In the preface to (Aha 

1997), it is recognized that Lazy Learning is one more name for a broad family that includes the 

CBR systems mentioned in the previous section, and many other nearest neighbor based 

techniques. The editor of the book is personally responsible for quite a few different names, but 
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argues that each name focuses on a particular aspect, thus creating sub-families that put different 

emphasis on different characteristics of prototype based classifiers.  

 

5.4.6 –SVM (Support Vector Machines) and other Kernel Based 

classifiers 

In recent years there has been a lot of interest for Support Vector Machines (SVM), which are a 

particular case of a more general family named Kernel Based classifiers (Herbrich 2001), that 

include the above mentioned RBF networks. SVM stem from the theoretical work of Vapnik on 

learning theory and risk minimization, presented originally in (Boser, Guyon et al. 1992), and 

edited as a book in (Vapnik 2000). An enormous amount of papers and books that have been 

published on the subject, and quite a few software packages implement SVM, both for research 

and for commercial purposes . For an overview of SVM we would recommend (Cristianini and 

Shawe-Taylor 2001). For a complete yet easy to follow description of theoretical aspects of 

kernel machines and learning theory, we would recommend (Anthony and Bartlett 1999), while a 

more practical overview of the same subjects is presented in (Herbrich 2001). A short and easy to 

follow tutorial on the use of SVM is available in (Burges 1998). There are also a few very well 

kept internet sites on the subject, such as “kernel-machines.org” or “svm.research.bell- labs.com”. 

 

The basic idea behind SVM is that it always possible to transform the data into a space where the 

classes are linearly separable (Bishop 1995), which will have a dimensionality at least equal to 

the data’s Vapnik-Chervonenkis (VC) dimension (Anthony and Bartlett 1999). In that space, a 

SVM will find the data patterns that are closest to the border between the classes. These patterns 

are called the Support Vectors, since they are the support for choosing the optimal hyperplane 

that separates the cases. A SVM will then choose the hyperplane that is equidistant from the 

patterns of different classes. Clearly the support vectors chosen correspond to our notion of 

classifier prototypes, and can be used as such. 

 

Other Kernel Based classifier also rely on finding some sort of function, called kernel function, 

that will be localized some ware in a given feature space. There is a very wide variety of possible 

Kernel functions (although they must satisfy Mercer’s theorem (Herbrich 2001)), including 

polynomials and RBFs. If we consider appropriate similarity (or distance) functions, the centers 

of these kernel functions can be seen as prototypes for nearest neighbor classification. 
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5.5 – Other research on nearest neighbor related problems 

5.5.1 - k-Nearest Neighbors, and voting schemes 

Slightly better accuracies are possible using a variety of k-nearest neighbor schemes (Bishop 

1995) which have been studied together with the basic nearest neighbor rule since (Wilson 1972). 

The Nearest Neighbor classifier can be seen as a particular case of these k-Nearest Neighbor 

schemes, with k=1. Nonetheless, we will not overview them in this thesis. One reason is that they 

require fine-tuning of a certain number of parameters, such as the number k of neighbors to 

consider, or the method to assign weigh ε to the neighbors (Devijver and Kittler 1982). The main 

reason however is that they do not lend themselves easily to prototype minimization, which is our 

main interest. 

 

5.5.2 - Influence of distance or similarity measures 

The original papers on nearest neighbors, and indeed most of all the work done on nearest 

neighbors, use patterns in Rn, and use the Euclidean distance to find the nearest neighbors. 

Although widely used, this measure has several drawbacks, such as its inability to deal with non-

numerical attributes, and its sensitivity to irrelevant attributes. This has lead to a great deal of 

research into the use of other measures of distance or similarity, and their influence in the 

behavior of classifiers. 

 

For lists and descriptions of different similarity measures that have been used in nearest neighbor 

classifiers, we would recommend annex A of (Webb 1999), the second chapter of (Devroye, 

Gyorfi et al. 1996), or the introductory chapter of (Kohonen 2001). 

  

The reason why nearest neighbor classifiers are so sensitive to the similarity measure, it that 

different measures may lead to different neighbors, and indeed to a very different topological 

ordering. The choice of similarity measure is thus critically dependant on the specific problem at 

hand, and many similarity or distance functions have been used. A contribution for the choice of 

the optimal metric for nearest neighbor classification, under certain constraints, is presented in 

(Short and Fukunaga 1980) (Short and Fukunaga 1981). 
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The similarity measure does not have to be unique, and different (or local) measures may be used 

depending on the patterns being considered. This type of approach is used by (Hastie and 

Tibshirani 1996; Wettschereck, Mohri et al. 1997; Wilson and Martinez 1997; Ricci and Avesani 

1999). 

5.5.3 - Fast search for nearest neighbors 

With the growing size of databases and available data for training prototype based classifiers, the 

problem of finding the nearest neighbor within these very large sets of prototypes has become a 

subject of great practical interest. Most techniques rely on efficient database organization, 

sometimes dividing the input space into sub-regions where fewer prototypes have to be searched, 

using hierarchical proximity graphs, or using “approximate nearest neighbor” techniques. Some 

of these techniques produce nearest neighbor classification systems that have a structure similar 

to those of the prototype minimization techniques that we shall see in the next section. One such 

method is the Reduced Complexity Nearest Neighbors (RCNN) (Lee and Chae 1998), that 

separates the prototypes into anchors and non-anchors in a fashion that resembles the search for 

small prototype sets described later. Of the many papers proposing efficient ways to store and 

look for data, we may suggest (Ramasubramanian and Paliwal 1992; Tai, Lai et al. 1996; Song 

and Ra 2002). 

 

5.6 - Prototype minimization 

Despite its simplicity, soundness, and ease of use, the nearest neighbor classifier has a few major 

drawbacks: 

  

a) Large memory requirements. All the training set must be stored in memory. 

b) Heavy processing requirements. For every new pattern that is to be classified, the distance 

to all stored patterns has to be calculated. Since there are many patterns, this will take a 

lot a time. 

c) Sensitivity to noise, outliers, and overlapping distributions. 

 

As we saw in the previous section, the latter two drawbacks are addressed, albeit without really 

good and efficient solutions, with fast searching techniques and k-nearest neighbor rules. 

However, both drawbacks would be significantly minimized if we could reduce the number of 

patterns in the set used for classification, and do so in an “intelligent” manner. This new, smaller 
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subset of patterns will be from now on called classification set, or set of prototypes, since these 

patterns are representatives of the class they try to classify. 

 

One of the co-authors of first major paper on Nearest Neighbors (Cover and Hart 1967), 

presented a first attempt at obtaining a smaller classification set in (Hart 1968), calling it 

Condensed Nearest Neighbors (CNN). Since Hart’s original paper in 1968, several proposals 

have been made to obtain a smaller amount of prototypes then the whole training set, namely 

Reduced Nearest Neighbors (RNN) (Gates 1972), Edited Nearest Neighbors (Wilson 1972), 

Iterative Condensation Algorithm (ICA) (Swonger 1972), Multiedited Nearest Neighbors 

(Devijver and Kittler 1982), Spanning Tree based nearest neighbors, or Chang Algorithm (Chang 

1974), Selective Nearest Neighbors (SNN) (Ritter, Woodruff et al. 1975), Ordered CNN (Tomek 

1976), (Tomek 1976),(Gowda and Krishna 1979), Symbolic Condensed Nearest Neighbors 

(Gowda and Ravi 1994), Dasarathys Minimum Consistent Subset (Dasarathy 1994), Proximity 

Graph (PG) editing (Dasarathy and Sanchez 2000), DYNAGEN (Laha and Pal 2001), Tabu 

Search generated nearest Neighbors (Zhang and Sun 2002), and many others that we will 

mention later, such as (Ullmann 1974; Bezdek, Reichherzer et al. 1998; Ferri, Albert et al. 1999). 

 

These different approaches can broadly be classified into editing techniques, when the main goal 

is to reduce errors by omitting certain patterns, and condensing techniques, when the sole 

objective is to reduce the number of patterns. 

 

Over time, various reviews and comparisons have been made of these different condensing, 

editing, selection, or generating techniques. We must mention a few major ones, namely the book 

(Dasarathy 1991) that reviews all the early work, and contains copies of the original articles, and 

(Wilson and Martinez 1997), that contains a brief but very good review of more recent work. For 

a more up to date review this thesis is hopefully a good reference, and we intend to present a 

short paper with the key concepts shortly. 

 

The first question that arises is whether there is an “optimal” classification set, in the sense that it 

has the minimum number of prototypes necessary for the classification of a given training or test 

set. This is a sensitive question, since this optimal classification set for one set of test patterns is 

not necessarily the optimum set for another set of test patterns. Worse still, what really matters is 

the optimal classification set for the unseen data patterns, which obviously cannot be computed. 

Another problem arises as to whether that “optimal classification set” must be selected from an 
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available set of prototypes, or whether new prototypes may be generated at the “optimal” 

locations. To clarify concepts, we shall define some concepts before overviewing prototype 

minimization techniques. 

 

5.6.1 - Consistent Subset 

The concept of consistent subset was introduced by (Hart 1968), and can be defined as follows: 

 

Let X be a set of patterns. The set of patterns C ⊂ X is said to be a consistent subset of X if and 

only if for every pattern x∈X, the closest pattern to it in C has the same class. 

 

A consistent subset is said to be minimal2 if its cardinality is less or equal to any other consistent 

subset. It was proved (Wilfong 1991) that finding a minimal consistent subset for patterns in R2 

is equivalent to the disc covering problem, and thus NP-complete. Although a general case proof 

has not been produced, it is reasonable to extend the concepts used in (Wilfong 1991) and believe 

that save for very particular cases, the search for a minimal consistent subset is always NP-

complete. This probably explains why so many different techniques have been developed for 

finding it, and why none is truly optimal and practical at the same time. 

 

A minimal consistent subset of prototypes is what is sought when we attempt to find an 

“optimal” classification set by selecting available prototypes. However, this minimal consistent 

subset may produce decision boundaries that are quite far from the original sets boundary, and 

thus another concept was developed, that is closer to these boundaries. 

 

                                                 
2 Some authors, like Wilfong (1991). Nearest Neighbor Problems.  7th ACM Symposium on 

Computational Geometry.  use the term mimimum, while others such as Ritter, G. L., H. B. 

Woodruff, S. R. Lowry and T. L. Isenhour (1975). "An Algorithm for a Selective Nearest 

Neighbor Decision Rule." IEEE Transactions on Information Theory: 665-669.,Dasarathy, B. V. 

(1994). "Minimal consistent set (MCS) identification for optimal nearest neighbor decision 

systems design." IEEE Transactions on Systems, Man, and Cybernetics 24(3): 511-517. use 

minimal. We choose to use the latter. 
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5.6.2 - Selective Subset 

The concept of selective subset was introduced by (Ritter, Woodruff et al. 1975), and with a few 

modifications can be defined as follows: 

 

Let X be a set of patterns. The set of patterns S ⊂ X is said to be a consistent subset of X if and 

only if for every pattern x∈X, the closest pattern to it in S has the same class, and is closer than 

any pattern x∈X that has a different class. 

 

A selective subset is said to be minimal, if its cardinality is less or equal to any other selective 

subset. The difference from the definition of consistent subset may seem subtle, but is crucial. In 

a selective subset, we require that the prototypes of each class not only classify correctly all 

patterns when we use the all prototypes for classification, but that they still classify correctly all 

patterns, when all patterns of the other classes are used as prototypes. Thus, each class has to 

choose its prototypes assuming that the other classes will retain all their patterns as prototypes. It 

is a “keep every inch” approach, that leads to final interclass boundaries very close to the original 

nearest neighbor boundaries. Given the well-known properties of these boundaries, it can be 

argued that the minimal selective subset, though having more prototypes than the minimal 

consistent subset, will yield a better classifier. Once again, the question of the applicability of 

Occam’s razor to classification can be raised (Nataranjan), but we leave that discussion for 

(Domingos 1999). 

  

5.6.3 – A taxonomy of prototype minimization techniques 

Since there are so many prototype minimization techniques, and they vary so much amongst 

themselves, we shall attempt to classify them according to their characteristics, before going into 

the details. We choose to do that classification according to the following parameters. 

 

5.6.3.1 - Consistency ( Consistent, Selective, none ) 

 

Some approaches generate only consistent subsets, others selective subsets, and others attempt 

neither. When using this categorization, we relax the requirement that the classifier prototypes be 

a proper subset of the original set of prototypes, and consider that it may be a subset of a 
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hypothetical superset of prototypes. We do this to allow algorithms that generate their own 

prototypes to be considered consistent, if they have the consistency properties. Techniques that 

are neither consistent nor selective, generally admit errors in the training set. Selective subsets 

are always a particular case of Consistent subsets, so if a method produces Selective subsets, we 

will not include it the consistent methods. 

5.6.3.2 - Selection/Generation (Select, Generate) 

Some approaches only select prototypes from the initial available ones, while others will generate 

new prototypes at more convenient locations. In some applications, it may not make sense to do 

so, since these would lead to prototypes at locations that, for some reason, do not make sense (for 

example, families with 2.3 children or cars with 4.8 wheels). It may also be difficult to generate 

new prototypes when the patterns are not real valued, such as when they are trees, complex data 

structures, or probability distributions. 

 

5.6.3.3 - Determinism  (Deterministic, Order dependent, Parameter dependant, 

Random dependent) 

Some approaches will, given the same prototypes and patterns, generate always the same 

classifier, and are thus dubbed deterministic. Those that are not deterministic, may have a 

number of different factor that affect the outcome, and these factors may occur simultaneously. 

Some approaches will depend on the order by which the patterns or prototypes are presented to it. 

Others rely on one or more parameters that are user-definable, such as maximum allowed error, 

or the choice of a kernel function. Others still rely on random variables to search for the best 

solutions, as is the case with genetic algorithms or simulated annealing. 

 

We shall now review the main methods, and in the process present the theory developed by each. 

 

5.6.4 – Prototype Minimization techniques 

Over the years many different techniques have been developed to minimize the number of 

prototypes necessary for classification. We shall now attempt to review them. 
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5.6.4.1 – CNN - Condensed Nearest Neighbors  

The first attempt to minimize the number of prototypes, named Condensed Nearest Neighbors 

(CNN) was proposed by Hart in (Hart 1968). CNN has become a benchmark against which most 

other algorithms are compared. Formally the algorithm can be described as follows: 

Algorithm 5 - Building Condensed Nearest Neighbors set (CNN) 

 

This algorithm guarantees that all patterns in the training set will have the same classification 

with CNN and with the original classification set, and that the new set will not be larger that the 

original one. In practice, the classification set thus obtained, which we shall call CNN, is much 

smaller than the original set. 

 

While simple and reasonably efficient, this algorithm is far from optimal, and has a number of 

shortcomings.  

 

The first concerns minimality. The final classification set, CNN, depends on the order by which 

the patterns are presented. Besides being annoying for many applications, this fact by itself 

shows that CNN will not find a absolute minimal classification set. In may cases the first 

prototypes to be added to CNN will later be made redundant, since prototypes closer to the 

border between the classes will inevitably be selected. The sensitivity to the order by which the 

patterns are presented may be partially overcome by re- initializing CNN with different 

permutations of the training set, as done in (Cerverón and Ferri 2001). 

 

Given 
 
 XTrain  Training set, with patterns x1, x2,…,xn 
 |XTrain|  Number of patterns in the training set 
 CNN  Condensed Nearest Neighbor set 
 Additions A Boolean flag 
 
Do 
 
1  CNN = {x1} 
2  Repeat 
3   Additions=FALSE 
4   For i =2 to |XTrain|  
5    Classify xi with CNN 
6    If xi is incorrectly classified 
7     CNN = CNN ∩ { xi } 
8     Additions=TRUE 
9  Until Additions = FLASE 
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The second concerns robustness no noise. Since all patterns in the training set will be classified 

exactly as they were in the original classification set, any outliers will be retained. Since the CNN 

will have fewer prototypes, those that remain will have greater importance, because we can no 

longer use the knn algorithm to smooth out the outliers. Thus, the CNN method works best when 

the classes are separable. The issue of separability is discussed in (Cover 1965) and (Haykin 

1999). If the classes are not separable, it is advisable to use some editing algorithm (see 5.6.4.3 - 

ENN - Edited Nearest Neighbors) before CNN, since editing will “clean up” the overlap area. 

This general principle is applicable to many of the prototype minimization techniques that we 

will overview. 

 

To show the effectiveness of the CNN algorithm, a toy problem is proposed in (Hart 1968), that, 

with only minor modifications, has been used as benchmark and visualization example for many 

other authors (such as (Ritter, Woodruff et al. 1975), (Gowda and Krishna 1979), (Tomek 

1976)). In this problem, which we shall call Hart’s problem, we have 2 classes with uniform 

distribution in the areas shown in Figure 23. The two classes form “F” shapes (one of them 

inverted), one with boundaries defined by the line that joins (0,0), (7.5,0), (7.5,5), (15,5), (15,10), 

(7.5,10), (7.5,15), (15,15), (15,20),(0,20), and the other by its complement in the rectangle 

limited by (0,0),(22.5,20). Each class has 200 patterns used for training, and another 200 used for 

validation. 
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Figure 23 – Hart’s problem: two classes, each with 200 patterns, with uniform distribution in the "F" shapes 
given 

 

In the next section, a comparative study is done on the performance of the different prototype 

minimization techniques, but just as an example, in a we show the results of applying CNN to 
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Harts problem. In this run, only 47 of the original 400 patterns were selected as classifiers (21 

patterns for class 1, 26 for class 2). 
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Figure 24 - Comparison of NN and CNN for Hart’s problem. In the right figure, only 47 of the original 400 
patterns were selected as classifiers. 

 

More recent studies on the properties and complexity of the original CNN procedure have been 

made by (Baram 2000), and shown that in the general case, the complexity is  O(n3), where n is 

the size of the original set, and the expected  

5.6.4.2 – RNN - Reduced Nearest Neighbors  

One of the main reasons why the CNN will not yield a (at least local) minimal number of 

prototypes is that, in the first steps of the algorithm, prototypes are included that will later be 

made redundant by new additions. An obvious solution was proposed by (Gates 1972), named 

the Reduced Nearest Neighbors. This method of obtaining a classification set uses as a starting 

point the CNN, and then prunes it. It can be stated as follows: 
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Algorithm 6 - Building the Reduced Nearest Neighbor set (RNN) 

 

As we did for CNN, in Figure 25 we present an example of the use of RNN on Hart’s problem 

(exactly on the same data used for CNN). In this case, the number of patterns used for 

classification dropped to only 29 (14 for class 1, 15 for class 2). 
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Figure 25 - Comparison of NN and RNN for Hart’s problem. In the right figure, only 29 of the original 400 
pattern were selected as classifiers. 

 

The RNN will select the Minimum consistent subset (MCS) of the available prototypes if and 

only if the MCS is contained in the CNN, as proved in (Gates 1972). This last condition is 

generally not met, and thus the set of prototypes selected, although small, might not be the MCS. 

 

5.6.4.3 - ENN - Edited Nearest Neighbors 

As mentioned earlier, a k-nearest neighbor rule, with k>1, can give slightly lower errors that the 

simple nearest neighbor rule. One of the reasons, is that the k-nearest neighbor rule will filter out 

 Given 
 
 XTrain Training set, with patterns x1, x2,…,xn 
 CNN Condensed Nearest Neighbor set 
 |CNN| Number of patterns in CNN 
 RNN Reduced Nearest Neighbor Set, with prototypes rnn1, rnn2,..., 

rnnn 
 Candidate_RNN A set of prototypes 
 
Do 
  
1  RNN = CNN 
2  For i =1 to |CNN| 
3  Let Candidate_RNN = RNN – {rnni} 
4   Classify all XTrain with Candidate_RNN 
5   If all patterns in XTrain are correctly classified 
6    RNN = Candidate_RNN  
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the outliers. With this in mind, (Wilson 1972) proposed the use of what he called and editing 

technique, that used the 3-nearest neighbor rule to classify each of the prototypes. If the 

classification thus provided was incorrect, that prototype was dropped. The final set of prototypes 

with therefore be smaller, so as a byproduct, this technique is also a prototype minimization 

technique. The original paper has a very thorough theoretical study of the asymptotical properties 

of the obtained classifier, showing that is very close to Bayes optimal classifier. 

 

A number of improvements where rapidly developed for the basic Edited Nearest Neighbor 

technique (Tomek 1976), and these are rather well summarized in (Devijver and Kittler 1982). 

The first logical step is to apply condensing techniques to this technique so as further decrease 

the number of prototypes. The obtained classifier does in fact have smoother boarders than those 

produced by the classical condensing techniques. Another improvement that was attempted was 

to use different values of k for the editing phase, using weighted voting schemes, (k,ε)-nearest 

neighbors. Finally, the editing procedures can be iterated, giving rise to the so called multi edit 

techniques (Devijver and Kittler 1982). 

 

The same basic editing ideas have also been used with different neighborhood measures by 

(Dasarathy and Sanchez 2000), and where called Proximity Graph (PG) editing. In this approach, 

Euclidean distances where substituted by neighborhoods in Gabriel Graphs (GG) and Relative 

Neighborhood Graphs (RNG). 

 

Another approach, that while not citing edited nearest neighbors explicitly uses the same 

principle, is (De and Pal 2001), where fuzzy neighborhoods are used to select the prototypes. 

5.6.4.4 - ICA - Iterative Condensation Algorithm 

This approach, proposed in (Swonger 1972), tries to improve the original CNN by allowing some 

of the prototypes to be discarded. Unlike RNN, it will discard not only those that are not 

necessary for a correct classification, but also those that are responsible for more 

misclassifications than correct classifications. By allowing the error to greater than 0 (thus not 

producing a consistent subset), the ICA be more tolerant to outliers, and achieve better results 

when the classes are not separable. 
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5.6.4.5 - Chang – Chang’s Algorithm  

The Chang algorithm was originally proposed by (Chang 1974), and later adapted to batch 

processing (Yen and Chang 1994), and a modified version was used by (Bezdek, Reichherzer et 

al. 1998). Chang’s algorithm main idea is to generate new prototypes, by merging two existing 

prototypes into only one, located at their weighted mid-point. The merging process stops when 

the classification error starts to rise. This algorithm can be described by: 

 

Algorithm 7 – Chang’s Algorithm 

 

This algorithm was inspired by the Minimum Spanning Tree algorithm (MST) (Baase and Gelder 

2000), and thus techniques developed for MST can easily be applied to Chang’s algorithm. 

 

The modifications proposed by (Bezdek, Reichherzer et al. 1998) do not use Chang’s weights, 

apply the merging processes locally (by dividing the input space into regions), allow merging of 

more that two prototypes simultaneously, use the distance between prototypes as weights for 

merging, and when the two nearest neighbors cannot be merged, the modified version will 

attempt to merge the next best matches. 

 

 Given 
 
 XTrain Training set, with patterns x1, x2,…,xn 
 |XTrain| Number of patterns in the training set 
 Chang  Chang’s set of prototypes chang1, chang2,…  
 Changwi  Weight associated with prototype changi in Chang 
 Error  Real valued variable, to store the error rate 
 
Do 
 
1  Chang = XTrain 
2  changw = 1 for all prototypes 
3  Repeat 
4   Find the two nearest neighbors changi, changj in Chang 
5   Remove changi, changj from Chang 
6    Create changk at the weighed mid point between changi, 

changj, so that changk= 
(changwi*changi+changwj*changj)/(changwi+changwj) 

7   changwk=changwi+changwj 
8   Classify XTrain with Chang, and calculate the error rate 

Error 
9   If Error is greater then the desired error, remove changk 

from Chang, re-insert Changi and Changj and terminate the 
merging 

10  Until Error exceeds the desired error rate 



100  Part I, Chapter 5 

 

While good classification results have been obtained with Chang algorithm classifiers, it must be 

pointed out that, as they generate new prototypes, the distances from prototypes to training 

patterns has to be computed many times, thus imposing a heavy computational burden. 

 

5.6.4.6 - SNN - Selective Nearest Neighbors 

The Selective Nearest Neighbors (SNN) was originally proposed by (Ritter, Woodruff et al. 

1975). It was one of the first papers that aims at optimality, and its approach is quite similar to 

that of (Dasarathy 1994) and to the new approach presented in part II of this thesis. The main 

concern of (Ritter, Woodruff et al. 1975) is that a consistent subset, such as those produced by 

the CNN rule, may lead to interclass boarders that are quite far from the original nearest neighbor 

boarders, that we know are quite close to the optimum Bayes decision boundaries. This happens 

because prototypes close to these boarders can easily be deleted by the condensing techniques, 

and almost certainly the minimum consistent subset will not contain most of these prototypes. 

The paper then introduces the concept of selective subset discussed earlier, arguing that it will be 

closer to the original boarders. The problem is then to find the minimal selective subset. 

 

A key concept of this paper is that of selective neighbor of a pattern i, denoted Yi. A prototype is 

a selective neighbor of a pattern if it has the same class as the pattern, and is closest to it than any 

pattern of a different class3. A selective subset of the original prototypes must include at least one 

selective neighbor of each pattern. A binary matrix A is then constructed, where each column i 

corresponds to a pattern, and each row j to a prototype, such that 

 




∉
∈

=
ij

ij
ij Yp

Yp
A

 if  0
 if  1

 (48) 

It then starts the SNN algorithm, that is described as follows: 

 

                                                 
3 The selective neighbors of a pattern, in Ritters sense, are equivalent to the Q-set of a pattern in 

the positive only approach described in part II of this thesis, or to the Q0(x), since in Ritters 

framework R0(x) will always be empty. 
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Steps 1 to 11 of Algorithm 8 will select the obvious choices of selective nearest neighbors, and 

will prune Ritter’s matrix, while the computationally hard choices are left to step 14. Step 1 to 5 

will choose the prototypes that are the only selective neighbor of any given pattern. These steps 

are exactly the same as the first steps of the positive-only Q-set heuristic presented in Chapter 1 

of Part II. Steps 6 to 8 will prune Ritter’s matrix by eliminating prototypes that are selective 

neighbors of only a subset of the patterns “covered” by another prototype. These prototypes 

should not be chosen as selective nearest neighbors, since there is another prototype that 

classifies correctly all the patterns that they do, and still some more. Steps 9 to 11 will prune 

Ritter’s matrix by eliminating patterns that will be correctly classified if another pattern is 

correctly classified, i.e., that are particular cases of a more difficult classification. These pruning 

steps will greatly reduce the computational effort of search performed in step 14. 

 

Algorithm 8 – Selective Nearest Neighbors 

Given 
 
 A  Ritter’s binary matrix 
 P  Set of all prototypes ( p1, p2,…,pn ) 
 SS  Selective subset of prototypes, initialized to ∅ 
 
 |XTrain|  Number of patterns in the training set 
 CNN  Condensed Nearest Neighbor set 
 Additions A Boolean flag 
 
Do 
 
1  For all i corresponding to columns remaining in A  
2   If column i of A has only a single 1, then: 
3    Store the index of the row j where that 1 occurs 
4    SS = SS + {pj} 
5    Delete all columns of A where row j has the value 1 
6  For all j corresponding to rows remaining in A 
7   For all k ≠ j corresponding to rows remaining in A 
8    If for all i Aji ≤ Aki , delete row j 
9  For all i corresponding to columns remaining in A 
10   For k ≠ i corresponding to columns remaining in A 
11    If for all j Aji ≤ Ajk , delete column i 
12  If A is empty, terminate the algorithm 
13  If any deletions where made in steps 1 to 8 go back to step 1 
14  Use a branch and bound algorithm to select the minimum number 

of prototypes, corresponding to the rows, that will guarantee 
that each column has at least one 1. 
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The search procedure of step 14, for which a specific algorithm is proposed in (Ritter, Woodruff 

et al. 1975), is computationally very hard, effectively limiting the use of SNN to simple 

problems. 

 

It must be noted however, that the results produced by the SNN procedure are identical to those 

produced by the positive-only Q-sets with optimal selection, presented later in part II of this 

thesis. 

 

5.6.4.7 – Voronoi - Voronoi boundary nearest neighbors 

Most of the data condensing techniques change the 

actual boundary between the classes, even if they do 

keep exactly the same error rate. When considering 2-

dimensional patterns, (Toussaint and Poulsen 1979) 

developed a technique based on Voronoi tessellation4, 

based on the earlier work by (Dasarathy and White 

1978). The Voronoi tessellation is a partition of space 

into disjoint regions around a number of reference 

points, in such a way that any point in the region 

around a reference point is closer to it than to any 

other reference point, as seen in Figure 23. In simpler 

words, a Voronoi tessellation determines the “area of 

influence” of a reference point. All prototype based classifiers are implicitly defining a Voronoi 

tessellation, and the borders between classes are the edges of the tessellation that lie between two 

reference points (in this case prototypes) that belong to different classes. If we keep only the 

prototypes whose edges are edges of prototypes with a different class, we will have exactly the 

same borders, and hopefully less prototypes. One of the fastest ways of computing the Voronoi 

                                                 
4 As pointed out by Halls, P. J., M. Bulling, P. C. L. White, L. Garland and S. Harris (2001). 

"Dirichlet neighbours: revisiting Dirichlet tessellation for neighbourhood analysis." Computers, 

Environment and Urban Systems 25(1): 105-117., the Voronoi tesselation is really due to 

Dirichelet who developed it for the 2-dimensional case. Voronoi later extended the concept to the 

n-dimensional case, and Thiessen further improved it for practical applications. It is thus 

alternatively known as Direchelet tesselation, or Thiessen tesselation 

 

Figure 26 - Example of a Voronoi 
tessellation, defined by a set of 2-

dimentional prototypes represented by 
points 
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edges, is to compute first the Delaunay triangulations (Mathworks 2001). The Delaunay 

triangulation algorithms produce a list of sets of 3 points (patterns) that define the triangles, and a 

simple inspection of the classes of these sets will determine which points (patterns) to include: if 

a triangle has more than 1 class in its 3 vertices, all 3 vertices need to be included. Although we 

have not seen this explicitly mentioned in any paper, we use this principle in one of our Matlab 

routines presented in part III of the thesis. 

 

For high dimensional dataset, a Voronoi will be extremely difficult to compute, and we do not 

know of any procedure that is easily extendable to a n-dimensional case. Algorithms for 

computing it in R2 are O(n log n), where n is the number of points (Baram 2000), and for R3 they 

are O(n2 log n). For higher dimensions, we do not know of any results. 

 

Although not keeping the exact Voronoi boundary, recent papers have used Voronoi boundaries 

do extract small sets of prototypes, such as (Baram 2000), and same principle is used in the 

neural network community, leading to the Voronoi-diagram based Neural Networks (Gentile and 

Sznaier 2001). 

 

5.6.4.8 - MNV – Mutual Neighborhood Value 

The Mutual Neighborhood Value (MNV) algorithm was originally proposed by Gowda (Gowda 

and Krishna 1979) using work done for his PhD thesis in 1978 (we were not able to find a copy 

of this thesis). 

 

A modification of the original MNV is proposed by (Gowda and Ravi 1994), in which the actual 

values of each pattern are substituted by symbolic values, implicitly performing a varying 

quantization of those values, and a new symbolic similarity measure is used. This new approach 

is sometimes called Symbolic Nearest Neighbors. 

 

5.6.4.9 – RPC - Reduced Parzen Classifier 

The Reduced Parzen Classifier was initially proposed by (Fukunaga and Hayes 1989). The basic 

idea is somewhat similar to the Reduced Nearest Neighbor (RNN), in that it tries to improve a 

classifier by tentatively eliminating each of it’s prototypes sequentially. Unlike RNN, the criteria 

used for keeping the prototypes is not the classification error, but the change in density estimate 
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using Parzen windows. The RPC also allows the introduction of new prototypes from the training 

set, provided there is a significant improvement in the density estimation, as compared to that 

that is possible using the full training set. Unfortunately, this technique is computationally very 

demanding. 

5.6.4.10 – IBL, IB2, IB3, TIBL, BIBL – Instance Based Learning  

In (Aha, Kibler et al. 1991), a number of optimizations for Instance Based Learning (see 5.4.4) 

are proposed. Of these, the IB2 and IB3 became the most popular, and have been the subject of 

further improvements. The original IB2 is just a re- invention of CNN (see 5.6.4.1), but IB3 

introduces additional heuristics that make it more effective in certain circumstances. The IB 

algorithms became important in the Instance Based learning community, and are frequently used 

as benchmark references, e.g. (Brighton and Mellish 2002), (Zarndt). 

 

Typical Instance Based Learning (TIBL), proposed in (Zhang 2002) tries to use the centermost 

prototypes first, considering them more typical than the border prototypes. The measure of 

“typicalness” takes into account the similarity with other prototypes of the same class and the 

distance from prototypes from different classes. The same author also tries to use the exact 

opposite of TIBL, that tries to select the less typical, or boundary instances first. This latter 

approach is called Boundary Instance Based Learning (BIBL). In the experiments proposed by 

(Zhang 2002), TIBL is compared with BIBL, pure nearest neighbors (there called Instance Based 

Learning – IBL), and a variation of IB2 (there called Storage Reduction Based Learning – 

SRBL). As expected, the results varied widely from dataset to dataset. TIBL would sometimes be 

outperformed in accuracy, although never by much, and it would always yield far fewer 

prototypes than the other methods. 

5.6.4.11 - NGE – Nearest Generalized Exemplars 

Nearest Generalized Exemplars (NGE) where introduced by (Salzberg 1991). The basic idea is 

similar to Parzen windows and RBF, since it tries to construct ever larger hyper-rectanges around 

the selected prototypes. This approach has proved to be very popular. An implementation of 

NGE is supplied in (Aha 1995), and comparisons with other methods are available in 

(Wettschereck and Dietterich 1995), that also proposes changes to the basic NGE. 
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5.6.4.12 – DMCS - Dasarathys Minimum Consistent Subset  

Dasarathys Minimum Consistent Subset (DMCS) procedure was proposed in (Dasarathy 1994), 

originally claiming to find the minimum consistent dataset. It bears some resemblance to the 

SNN algorithm (Ritter, Woodruff et al. 1975), but it does not attempt to build a selective subset, 

and reconstructs the neighborhood of each pattern each time a prototype is excluded. On the 

other hand, it also resembles ICA (Swonger 1972) in that it iterates successive consistent subsets, 

re-evaluating them against the original patterns, and trying to improve them. Dasarathy 

introduces the concept of nearest unlike neighbor (NUN) of a pattern, that is the closest prototype 

to it that has a different class. It is argued that this NUN is critical for defining how much 

simplification can occur for the class of the pattern in question. The prototypes of the same class 

that are nearer than the NUN form Ritters selective neighbor set. The patterns then cast a vote for 

all the prototypes in their selective neighbor set, and the most voted prototype is selected for the 

next generation consistent subset. The patterns that voted for this prototype are then removed, 

and a new vote is performed. This process is repeated until no more patterns remain. Thus far, the 

MCS is a heuristic approach to the SNN optimal method, more or less equivalent to the positive-

only heuristic presented in part II of this thesis, and it produced a selective subset of the 

prototypes. However, the process is now iterated, using only the prototypes obtained in the last 

iteration, and inserting any of the original prototypes that do not increase the number of errors. 

This new iterative process will hopefully calculate in each iteration NUNs that are further away 

than the previous, since the prototypes close the boarder tend not to be chosen. 

 

Unfortunately, the claim that the iterative process will converge to a minimal consistent subset is 

not well founded and a counter-example to this claim has been found, for example, in (Kuncheva 

and Bezdek 1998)5, (Cerverón and Fuertes 1998), and (Zhang and Sun 2002). This last paper also 

provides an explanation why the process is not optimal. 

                                                 
5 Interestingly, the Iris datasets used by Dasarathy, B. V. (1994). "Minimal consistent set (MCS) 

identification for optimal nearest neighbor decision systems design." IEEE Transactions on 

Systems, Man, and Cybernetics 24(3): 511-517. and Kuncheva, L. I. and J. C. Bezdek (1998). 

"Nearest Prototype Classification: Clustering, Genetic Algorithms, or Random Search ?" IEEE 

Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 28(1): 160 -

164. are not exactly the same, as is discussed in Bezdek, J. C., J. M. Keller, R. Krishnapuram, L. 

I. Kuncheva and N. R. Pal (1999). "Will the real iris data please stand up?" IEEE Transactions on 
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5.6.4.13 – GA - Genetic Algorithm Selection 

Genetic algorithms (Fogel 1999) have been used successfully in pattern selection (Chang and 

Lippmann 1991), (Kuncheva 1995), (Kangas 1999), (Ho, Liu et al. 2002). The basic idea is to 

consider sets of prototypes as chromosomes, and apply the genetic operators of replication, 

crossover, mutation, and natural selection to find the best set.  

 

As has happened in many fields, the use of the evolutionary inspired algorithm yields quite good 

results, using moderate computing resources. No claim can be made on the optimality of the 

results, while most algorithmic approaches can guarantee that they are at least locally optimal. 

Thus, genetic algorithms should, if possible be followed by a local gradient descent based 

method, to ensure that at least locally, they are in fact minimal. 

 

Interestingly, it was through the use of genetic algorithms that a counter-example to some 

optimality claims was found (Kuncheva and Bezdek 1998). In that paper, a 12 element set of 

prototypes was found, using genetic algorithms, that classifies without error the Iris dataset (see 

section 1.6.1 of Part II). On exactly the same data set, the other algorithm could find only a 14 

element set6. 

 

5.6.4.14 - RISE – Rule Induction from a Set of Exemplars 

Rule Induction from a Set of Exemplars (RISE) is the name given by (Domingos 1995) to an 

algorithm that unifies rule induction with instance based learning. There are several versions of 

RISE, described in detail in (Domingos 1996) and (Domingos 1997). Version 3.1, described in 

(Domingos 1997) is the most recent one, and the best performer in benchmarks. It is arguable 

whether RISE should be considered a prototype based system. In our definition of prototype 

based systems, it is implicit that the stored entities have the same dimension as the data patterns. 

RISE is a rule inducing system, and as such it does not store the data patterns themselves, but the 

                                                                                                                                                              

Fuzzy Systems 7(3): 368 - 369. However, later mails exchanged between the authors, concluded 

that when the MCS algorithm is applied to the true Iris dataset, the results are even worst, since a 

14 set consistent subset is found, when a 12 set consistent subset has been found. 
6 Due to an error, a 13 element set was originally claimed. 
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rules extracted from them. However, we can see these rules as entities in a subspace of the 

original data pattern space, and thus as stored patterns. This view is implicit in RISE’s algorithm 

for classifying new patterns, as it computes a “distance” between the new pattern and the stored 

rules. In accordance with this line of thought, rule generation is a form a feature selection, and 

this is explicitly mentioned in (Domingos 1997). Therefore, we consider RISE to be in the broad 

family of prototype based classifiers. Since RISE will try to form ever more general rules (and 

thus fewer rules), it can also be seen as a prototype minimization technique. 

5.6.4.15 - RT – Reduction Technique 

In (Wilson and Martinez 1997), three slightly different prototype minimization techniques are 

proposed, named Reduction Technique 1 (RT1), RT2, and RT3. The basic idea of RT1 is to 

build, for each prototype, a list of it’s nearest neighbors (belonging to same class), and a list of 

it’s so called associates. A prototype is said to be an associate of a given pattern if it is the closest 

prototype to that pattern that has a different class. In Q-set formalism (see Chapter II-1), it would 

be the first prototype in either R0 or R1. The algorithm will attempt to remove each prototype in 

turn, checking to see if the number of associates that will become correctly classified outweighs 

the number of nearest neighbors that cease to be correctly classified. 

 

The author points out that RT1 is very sensitive to the order by which prototypes are removed, 

and may sometimes enhance outliers instead of filtering them out. To reduce sensitivity to order, 

a more complex procedure, named RT2, is proposed. RT2 sorts the prototypes before attempting 

their removal, in such a way that “border” prototypes are removed last. Finally, since RT2 is still 

sensitive to outliers, RT3 is proposed. RT3 basically applied a data editing technique (similar to 

(Wilson 1972)) before applying RT2. This editing step, that as mentioned before improves most 

of the prototype minimization techniques, makes RT3 the best performer of the three techniques. 

5.6.4.16 – RS - Random Selection  

Although it might seem almost childish at first sight, random selection of prototypes has shown 

to produce reasonable sets of classification prototypes (Kuncheva and Bezdek 1998). The use of 

random selection, and random walk methods in general became possible with the advent of 

widely available powerful computers, and relies on pure luck to find the best solution. Naturally 

that luck is enhanced by attempting many different selections. Unlike genetic algorithm 

approaches where the randomness is guided with the genetic selection rules, in pure random 

selection no attempt is made to guide the process. 
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 In this approach, a given number of prototypes are randomly selected from amongst the 

available ones, and the set with fewer classification errors is chosen. The number of prototypes 

selected in each run may be itself a random variable, or may be modified to increase/decrease the 

error rate until a satisfactory value is reached. 

 

5.6.4.17 – SHC - Stochastic Hill Climbing Selection 

Stochastic hill climbing is a simple optimization technique that randomly chooses a candidate 

direction, and moves along it if there is any decrease in the cost function. It has been used by 

(Kuncheva 2001) do search for minimal classifier sets. A prototype is randomly selected or 

excluded, and a certain fitness function is computed, that weighs classification accuracy and the 

size of the training set. If the value of the fitness function increases, the change is made 

permanent, and if not, it is reversed. In the paper where it is proposed, it performs worst than the 

combination of Hart’s CNN and Wilson’s ENN. 

5.6.4.18 – SVM - Support Vector based methods 

Support Vector Machines (SVM) are a particular case of kernel based methods presented earlier. 

A SVM will find the most representative patterns fo r the interclass boundary definition (called 

support vectors), and thus can also be used as a condensation algorithm. They do however have 

the inconvenient that they require a fair amount of training, and are thus computationally very 

hard to find. (Mitra, Murthy et al. 2000) proposes a mixed SVM/CNN algorithm, that basically 

uses the CNN procedures, but when deciding to add new prototypes, uses a SVM classifier 

instead of the nearest neighbor rule. Their experimental results show that this mixed method 

achieves considerably better condensation then the original CNN on very large datasets, but 

requires far less time than the pure SVM approach.  

5.6.4.19 - DYNAGEN  

 (Laha and Pal 2001) proposes a method, called DYNAGEN that relies on a very small SOM to 

find initial candidate prototypes, and then follows a certain number of steps, somewhat similar to 

Chang's spanning tree procedures, to create new prototypes and adjusting them to better fit the 

data. It relies on 4 modification procedures: merging two prototypes; modifying a labeled 

prototype; splitting a prototype into two; and deleting a prototype. It then starts iterating 

applications of these 4 procedures, subject to data-dependant conditions, until the desired 
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accuracy is reached. Although very heuristic in its approach it was tested on standard datasets, 

and achieved a reasonable error rate with a very small number of prototypes. 

 

5.6.4.20 – TS - Tabu search 

Tabu search (Glover and Laguna 1997), is a optimization technique that tries to avoid local 

minima by “outlawing” search strategies that have to them. Since finding a minimal consistent 

subset is a optimization problem, it is only natural that tabu search has been used on this problem 

(Cerverón and Ferri 2001), (Zhang and Sun 2002). There are several ways in which tabu search 

can be applied, and both referenced papers use slightly different techniques, but a direct 

experimental comparison is not possible since they use different datasets. On the Iris dataset, 

(Zhang and Sun 2002) obtained a number of prototypes that varied between 11 and 15, having an 

average of 14 ± 0.8. 

 

The tabu search for consistent sets is not deterministic, depending both on the order by which the 

patterns are presented, and on random internal variables, and thus there is always a certain 

variance associated with the number of prototypes selected for any given problem.  

 

5.6.4.21 – Simulated Annealing 

Simulated Annealing is an optimization technique inspired in physics (Kirkpatrick, Gelatt Jr. et 

al. 1983). It tries to simulate what happens in certain materials when a decrease in temperature 

leads to rearrangements of particles. When used for optimization, this technique consists of 

allowing random searches around known solutions, providing the cost function does not increase 

more than a certain amount, that corresponds to the simulated “temperature”. As the optimization 

progresses the “temperature” decreases, (i.e. the allowed increase in the cost function decreases,) 

until only solutions that have a lower cost are accepted (i.e. the temperature is zero), and thus the 

optimization algorithm becomes greedy. 

 

Simulated Annealing has been used for prototype minimization by (Huang, Liu et al. 1996; 

Decaestecker 1997; Liu and Nakagawa 2001; Devi and Murty 2002), with promising results. 
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5.6.4.22 – DMCNN - Devi Modified CNN 

A recent paper (Devi and Murty 2002) proposes an incremental CNN based method, called 

Modified Condensed Nearest Neighbor, to which we add the author’s name (DMCNN). The 

method is really a mix between the simple means and CNN. The process starts by using only the 

simple means of each class as prototype for that class. It then finds which patterns are 

misclassified by this first set of prototypes, and calculates means of these patterns, adding them 

to the prototype set. This process is iterated until no more patterns are misclassified. A further 

improvement of the procedure deletes prototypes that are no longer essential to keep the error 

rate from growing. The authors present encouraging experimental comparisons with other 

methods, on standard and private datasets. Although we have not experimented with their 

method, it seems intuitive that this procedure is not applicable to datasets where each class may 

have disjoint areas of significant probability density, or is “highly non-convex”.  

 

5.6.4.23 - ICF - Iterative Case Filtering 

In a recent paper, (Brighton and Mellish 2002) proposes a method named Iterative Case Filtering 

(ICF). It is based on the ENN (see 5.6.4.3) with the iterations proposed by (Tomek 1976), but 

uses the concepts of neighbors and associates of RT (see 5.6.4.14), albeit with different names, to 

decide on whether remove prototypes or not. Although its name is very similar to ICA (see 

5.6.4.4), the principles used in the iterations are quite different. In some of the benchmarks, ICF 

outperformed the other methods with which it was compared, namely RT3 and ENN. 

 

5.6.5 – Benchmark comparisons between methods 

As stated before, none of the discussed algorithms is universally better than the others. The 

performance of each is extremely problem dependant, and different parameters can be used when 

judging them. Nevertheless, it is useful to compare the different methods in various toy and 

practical problems. Many authors have produced such comparisons. Since there are so many 

variants, there is no global comparison, but for reference, we present a list of some papers and the 

methods compared in Table 4. 
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Paper Algorithms compared 

(Bezdek, Reichherzer et al. 1998) Chang, Modified Chang, LVQ, GLVQ-F, DR, Dasarathy 

(Kuncheva and Bezdek 1998) Chang, Modified Chang, GA, RS, Dasarathy, M-FCM, 

simple means, LVQ, GLVQ-F 

(Kuncheva 2001) CNN, ENN, GA, TS 

(Liu and Nakagawa 2001) LVQ, MLVQ3, GLVQ, DSM, MCE, SA, MSE, 

MAXP,DA, k-means, PMSE, CMSE, MAXP MAXP1, k-nn 

(Kangas 1999) GA, selection mean,  

(Devi and Murty 2002) GA, SA, TS , CNN, DMCNN. 

(Huang, Chiang et al. 2002) LVQ, SA, LVQ-H 

(Cerverón and Ferri 2001) TS, MCS, CNN, MNV 

(Zhang and Sun 2002) TS,CNN,MCS 

(Bezdek and Kuncheva 2001) CNN, ENN, RS, GA, TS, LVQ, DSM, GLVQ-F, FCM, 

Bootstrap 

(Wilson and Martinez 1997) k-nn, RT1, RT2, RT3, H-IB3 

(Brighton and Mellish 2002) ICF, RT3, ENN 

Table 4- List of some papers that compare prototype minimization techniques 

 

Just for the sake of curiosity, in Table 5 we present the best attempts to produce a consistent 

subset for the Iris dataset, discussed in Chapter II-1. 

 

Algorithm Nº of Prototypes Paper 

Mod Chang 11 (Kuncheva and Bezdek 1998) 

TS 11 (Zhang and Sun 2002) 

GA 12 (Kuncheva and Bezdek 1998) 

Dasarathy 14 (Dasarathy 1994) 

Chang 15 (Kuncheva and Bezdek 1998) 

QSET 17 (Lobo 2002) 

CNN 18 (Zhang and Sun 2002) 

Table 5 - Smallest size of consistent subsets obtained for the Iris data 
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PART I 

CHAPTER 6 

Validation 

6.1 – Introduction 

After obtaining a classifier by any of the discussed methods, it is important to have an idea how 

reliable that classifier is, i.e., when a new pattern is given to the classifier, what is the probability 

that it will be correctly classified? The answer to this question is the true error rate. 

 

The true error rate, also known as actual error rate, conditional error rate, or eT, is defined as the 

expected probability of misclassifying a randomly selected pattern (Webb 1999). In some very 
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particular cases, when the exact probability distribution of the data is known, this error may be 

calculated exactly. Such is the case for the simple problems presented in Appendix A and B. 

Generally, the true probability distribution of the data is not known, and thus the true error rate 

must be estimated from the data itself. 

 

To estimate error rates from data, we must present patterns for which the true class is known to 

the classifier, and see whether it assigns them their true class. If it does not, we consider that the 

classifier committed an error. The error rate will be the total number of errors divided by the total 

number of patterns tested, and is usually expressed as a percentage: 

 

100
setgiven  in the patterns ofnumber  total

set given  in the patterns fiedmissclassi ofnumber 
   rateError ×== e  (48) 

 

Depending on the dataset on which the error rate is computed, we will obtain different estimates 

of errors. 

 

If it where possible to use an infinitely large dataset, the error rate on that dataset would be an 

unbiased (and zero variance) estimate of the true error. Naturally, it is impossible to obtain and 

use such a set. Therefore, we must use finite size sets to estimate the true error rate. Let us then 

clarify what sets may be used, and by which names they are used. 

 

6.2 – Known sets, training sets, validation sets, and test sets 

The set of patterns for which the associated class is known is sometimes called the training set, 

since it can be used to train the classifier. However when we are designing classifiers, it is 

convenient to use only a subset of these patterns for actual training, and keep the rest of them to 

check the performance of the classifier. Thus, the name training set should be used in a more 

precise manner, and a precise definition should be given for these different sets. Since different 

authors use slightly different names for these sets, we shall define them as follows: 

  

known set - Set of all patterns for which the class is known (Xknown). 

training set - Set of patterns used to train (or design) the classifier (Xtrain). 
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validation set - Set of patterns available during the training process, but used only to assess 

that process, or select one of the available models (Xvalid). 

test set - Set of patterns not used at all during the training process. These patterns may 

be used only for the final assessment of the classifier (Xtest). 

 

 

While the definition of known set and training set are quite clear, the difference between test and 

validation set can be confusing, and their use (or even existence) depends a lot on the method 

used to obtain the classifier. The validation set, although not actively used for training, in the 

sense that the design parameters are not derived from it, is available during training as a means of 

checking the performance of the system. In a neural network, for example, it may be used to 

check that the network is not overfitting, and thus be used to generate the stopping criteria of the 

training process. On the other hand, the test set must never be used at all during the design 

process, not even for iterating it, for that would “shape” the classifier to it’s particular 

characteristics. Another difference between these two sets is that in many design algorithms (for 

example, when leave-n-out multiple classification trees (Breiman, Friedman et al. 1984) are 

used), validation and training sets are interchanged, while test sets are always left out of the 
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Figure 27 - Different data sets involved in the classification process 
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process. Finally, it should be noted that many authors use the term test set for what we here call 

validation set7. 

 

It is arguable whether the use of test sets is important or not. In practice, when the available 

known set is small, only a training set and, if necessary, a small validation set are used. As the 

results obtained with the test set do not influence the design of the classifier, only our confidence 

in it, we are usually quite happy to trade it for a better training and validation set. In any case, 

when a classifier is necessary for a real world problem, the classifiers obtained with training and 

test sets should only be used as a means of estimating the true error. The final classifier, that will 

perform the real classification task, should use all available known data for training. 

 

Even when the known set is large, some authors do not use an independent test set, because in 

that case, the training and validation sets will be good unbiased estimators of the distribution of 

the data. As long as some other technique can be used to guarantee that there is no overfitting, the 

error rates obtained with the training and validation sets will not differ considerably from those 

obtained with the test set. 

 

6.3 – Error rate estimates 

As mentioned above, the true error rate cannot generally be computed, and will usually be 

estimated from available data. 

 

The most optimistic estimate is the apparent error rate, also known as resubstitution error rate. 

This error rate is calculated by computing the proportion of training patterns that are 

misclassified. Since those patterns where used for training, the classifier will have been fine 

tuned to try and classify them, and thus the apparent error rate will be lower than that obtained 

                                                 
7 When I started to write this thesis, I though it would be clearer to call test set to the data used to 

“test the progress of the training process”, and use the term validation set to identify the data 

used for “final validation of the classifier”. This convention would take into to account that many 

authors use what they call “test set” to control the overfitting of the training process. However, 

Prof. Joseph Kittler, although recognizing that different communities call different and 

sometimes opposing names to the same things, convinced me that it is better to stick to the 

convention used in the pattern recognition community, which is explained in the text. 
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with an independent test set. The bias of the resubstitution error rate can be reduced using 

jackknife techniques (Miller 1974) (Webb 1999) but will always be optimistic.  

 

A more reliable estimate for the true error can be obtained using an independent test set. This 

error rate estimate is known as holdout estimate (Devijver and Kittler 1982), and will depend the 

size of the test set (assuming that this test follows the probability distribution of the problem at 

hand). The following deduction of the confidence of the holdout estimate is based on (Mitchell 

1997). 

 

Let us assume that the true error rate for a given classifier is p. Given any pattern in the test set, it 

will be incorrectly classified with probability p, and correctly classified with probability 1-p. 

Given n such test patterns, the total number of errors r will follow a binomial distribution P(r) 

given by: 
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The expected value for the number of errors, and it’s standard deviation will be 

 nprPE =)]([  (50) 

 )1( pnpp −=σ   (51) 

We may thus obtain an unbiased estimate for p using 
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and substituting E[P(r)] by the r obtained in a given experiment leading to the estimator 
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 If we whish to calculate confidence intervals for p, we may, providing n > 30 and np(1-p) > 5, 

approximate the binomial distribution of p to a Gaussian distribution (Mitchell 1997), and in that 

case, we will have: 

 [ ]pNpN ZpZpp ˆˆ ˆ,ˆ σσ +−∈ , (55) 

where ZN is a constant, function of the desired confidence. 

 

Thus, the larger the test set, the better our estimate will be. If data can be generated at low cost, a 

large test set will yield a very accurate estimate of the true error. Even when the exact true error 

can be calculated analytically, as is the case in Appendixes A and B, using a test set may be 

simpler and more cost efficient. 

 

However, if the total number of known patterns is limited, increasing the test set will decrease the 

number of patterns available for training, and thus produce a less reliable classifier. The holdout 

estimate will thus be a pessimistic estimate of the true error. 

 

Having both a optimistic apparent error rate and a pessimistic holdout error rate, bootstrapping 

techniques (Efron 1979; Efron; Jain, Dubes et al. 1987; Efron 1990) may be used to obtain an 

estimate of the true error that will have less bias than any of the above. 

 

The less biased holdout estimate would be obtained using almost all known patterns for training, 

and very few (in the limit only one) for testing. The variance of this estimate would be very large, 

but can be reduced using a technique called cross-validation. 

 

The cross validation error rate is also known as U-method, leave-one-out (or leave-n-out), 

rotation estimation (Kohavi 1995), or deleted estimate error rate (Webb 1999). It is obtained by 

partitioning the known data into m sets on n patterns. We then select one set as test set, and use 

the remaining m-1 as training set, and repeat the process m times selecting a different test set 

each time. The average error rate obtained, although slightly pessimistic, will be closer to the true 

error than a standard ho ldout estimate. The minimum bias will be obtained when all but one 

patterns are used for training, leading to the pure leave-one-out technique. Other schemes for 

partitioning the available data into different training and test sets are possible, and discussed in 

(Mullin and Sukthankar 1999). 
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Many good and comprehensive reviews of how to measure error rates and compare classifiers 

have been published, such as (Fukunaga and Hayes 1989; Michie, Spiege lhalter et al. 1994; 

Dietterich 1998; Lim, Loh et al. 2000). 

 

6.4 – Confusion Matrices 

The error rate estimates presented in the previous section give equal importance to all types of 

errors, i.e., as long as the class given by the classifier is not the same as the true class of the 

patterns we increase the number of errors by 1. 

 

There are a few reasons for wanting to know more about what errors are being committed. The 

main one is that there may be a cost associated with each type of error. If, for example, we want 

to detect intruders with an alarm system, the cost of not detecting an intrusion when it occurs (a 

false-negative classification), is greater than the cost of thinking there is an intrusion when none 

has occurred (a false-positive classification). This problem has been the subject of a lot of 

attention in classical detection theory, and has been thoroughly addressed in many text books, 

such as (Kay 1988; Kay 1998), the latter including examples of MATLAB code for 

implementing most of the techniques. 

 

Another reason for wanting to known more about what types of errors are occurring has to do 

with the exploratory data analysis issues discussed in chapter 4. By observing which classes tend  

to be misclassified, and what those misclassification are, we may be able to add some pre-

processing or extra classifier to distinguish amongst those cases. 

 

The most common way of presenting a detailed description of the errors is the confusion matrix 

(Fukunaga 1990). The rows of a confusion matrix represent the actual class of the patterns, while 

the columns represent the class assigned by the classifier, as seen in Table 6. 
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 Assigned  

class 

True 

class 

A B C 

A 80 20 0 

B 13 87 0 

C 1 0 99 

Table 6- Example of a confusion matrix. Numbers on the diagonal correspond to correctly classified patterns. 
In this case, it clear that class C is correctly classified, but there are errors in distinguishing class A from class 

B. 
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PART II 

CHAPTER 1 

Q-Sets: A Boolean formalization for minimizing prototype-

based classifiers 

1.1 - Introduction 

As overviewed in Chapter 5 of Part I, prototype-based classifiers constitute a broad and very 

important family of non-parametric classifiers. As stated, this family of classifiers has 2 common 

characteristics: 
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a) The classifier stores labeled patterns, which we have called prototypes, which are of the 

same nature as the patterns that are to be classified. 

b) When a new pattern is presented for classification, a similarity measure is used to find the 

prototype or prototypes that are nearest to it, and the class is decided based on the classes 

of these classes 

 

As was seen, a lot of effort has been put into finding a small set of prototypes that will perform 

the classification efficiently and with as low an error rate as possible. The holy grail of this quest 

is to find the minimal set that will perform such a task. Under certain assumptions, (Wilfong 

1991) proved that finding this set is equivalent to a certain special case of the Disk Cover 

problem, that is known to be NP-Complete.  

 

In this chapter, we will present a new formalization for the problem of finding the minimum set 

of prototypes to classify a given set of patterns, that was first proposed in (Lobo, Swiniarski et al. 

1998), and that transforms this problem into Boolean function manipulation problems. This link 

between the areas of classification and Boolean algebra, brings not only insight into the core of 

our problem, but also a vast array of techniques that can be used to efficiently compute small sets 

of classifier prototypes. 

 

1.2 - Informal presentation of the theory 

Before going into the formal and complete description of the Q-set formalization, let us first 

overview the method informally. While not complete, this overview is nonetheless accurate and 

gives an insight that makes the necessarily detailed formalization more palatable. 

 

Our aim is to select a few prototypes from a large set of candidates that will correctly classify a 

given set of training patterns. 
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The basic idea behind what we have come to 

call Q-set formalization is quite basic, and 

requires us just to invert the nearest neighbor 

rule when training the classifier: when using 

the nearest neighbor rule, each pattern’s 

nearest neighbor must have the same class as 

that pattern. If a given pattern does not meet 

this requirement, i.e. if its nearest neighbor 

has a different class, then it will be 

misclassified if we use all candidate 

prototypes, and we will ignore it when 

selecting the final prototypes. As for the rest 

of the patterns, they will have at least one, 

and generally a set of prototypes with the 

same class that are closest to it than any 

prototype of another class. This is, at first 

glance, the Q-set of that pattern: the set of prototypes that will correctly classify it using the 

nearest neighbor rule. In Figure 28  we can see a graphical example of a Q-set for a 2-

dimensional problem. The existence of any of the prototypes of the Q-set in the final classifier is 

sufficient to guarantee that that pattern will be correctly classified. If we consider a Boolean 

function that indicates whether that pattern is correctly classified (having logical value of 1) or 

not (a logical value of 0), as a function of the presence in the final classifier of the candidate 

patterns, it will be a logical-OR of the presence of the prototypes in the Q-set. Without trying to 

be rigorous, we can say that 

∑
∈

=∪∪∪==
)(

...)(
xQsetp

xQ ppppx kba  classified correctly is   Pattern  (56) 

 where pa is a Boolean variable with the value 1 if and only if prototype pa is in the final 

classifier. From the point of view of the training set, any single one of the prototypes of the Q-set 

is equally good for the classification task, but we should choose one that apart from classifying 

this patterns also classifies others. The basic idea, is that we must classifier all the patterns: 

pattern x1 ,  x2,… xn (i.e. all the patterns). Once again, without being too formal we may say that  
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Figure 28 - Example of a Q-set for a 2-dimensional 
problem. The center cross represents the patterns for 
which the Q-set is being calculated. Crosses represent 
prototypes with the same class as the pattern, and 
circles represent prototypes with a different class. 
The white area represents the Q-set, containing 3 
prototypes. 
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Since the conjunction and disjunction operators of Boolean algebra are both distributive in 

relation to each other, we can rearrange the above equation into 

 ∑∏∏∑ ′== kk pp classified correctly are patterns All  (58) 

This last form, a sum of products, is ideal for finding the minimum number of prototypes. If we 

simply select the prototypes that appear in the shortest term of the sum, then the global function 

will be one, and we will correctly classify all patterns in the training set that were classified by 

the ensemble of all candidates. The shortest term of a Boolean function written as a sum-of-

products is its minimum prime implicant, and the problem has been studied extensively. 

Unfortunately it is a hard problem to solve since factoring out the original function can be 

computationally very expensive, so a number of heuristic methods have been devised, and later 

in this thesis we propose one that is particularly suited to the classification problem. 

 

What we have just presented is what we will later call the positive-only Q-set approach, which is  

a particular case of the broader formalization. In this positive-only approach, we assumed that we 

had to have at least one of the prototypes of a pattern’s Q-set in the final classifier. We assumed 

that because if that were not the case, there would be another prototype, of a different class, that 

would be nearer to the pattern than any other prototype, thus yielding a classification error. But is 

that really true? What if that prototype with the wrong class was not selected for the final 

prototype? There may be another prototype of the same class as pattern x, that is further away, 

but that will perform a correct nearest neighbor classification if the “bad” prototype is removed. 

We must then revise our concept of Q-set and associated q- function to include the possibility that 

if we exclude a certain prototype, then other prototypes, further away, may be acceptable choices. 

Thus, the Boolean function that determines whether the classifier performs correctly as a function 

of the prototypes it includes will now have negations, and will cease to be in the convenient 

conjunctive normal form (CNF). We will later see that it takes the form 

 ∏∑ ∑∏= ))()(( qr pp classified correctly are patterns All  (59) 

This more general approach, while far more complex may allow us to force the correct 

classification of all the training set patterns, even those that were originally incorrectly classified. 

We shall see later that is equivalent to the rather well known Satisfiability Problem, that was the 

first problem proved to be NP-Complete (Cook; Cook; Stoffel, Kunz et al. 1997). Since no one 

has, up to date, proved that NP=P, no simple solution to this classification problem is yet 

available. However, since no one has been able to prove otherwise, there is still hope, and in the 
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mean time, a vast array of methods have been developed to find acceptable solutions. The main 

point is that we can use well known techniques from other areas to simplify our classifier design 

problem. 

 

Now that a rather intuitive introduction has been made, we may proceed with a formal 

description of the Q-sets. 

 

1.3 - Theoretical framework 

Let X be a space of n-dimensional patterns x, for which we want to design a classifier. Let Xtrain 

⊂ X be the set of patterns x∈ X that we have available for designing that classifier.  

 

Let s be a measure of similarity defined in [ ]0,1: →× XXs . It is not important for this measure 

to give values in the range [0,1], but it can be done without loss of generality. As a similarity 

measure, it is necessary that s(x,y)=1 ⇔ x=y. We choose to use a similarity measure as it is more 

general than a true distance measure: any distance measure may be mapped to a similarity 

measure with the required constraints, but the inverse is not true.  

 

Let P be the set of classifier prototypes p available (P⊂X). These prototypes are simply the 

patterns, for which the true class is known, that will later be used to perform the classification. 

Let ( )PP=H  the power set of P, i.e., the set of all the subsets of P. Let h∈H be a classifier, 

constructed with prototypes available in P (sometimes also called the model for X (Mitchell 

1997)). Let us now define an indicator function }1,0{:)( →Xph , associated with each set h 

(Schneeweiss 1989),  as 

 ( )


 ∈

=
otherwise

hpif
ph

0
1

. (60) 

Later, for the sake of clarity and when there is no possible confusion about whether we are 

referring to the prototype p or the indicator function h(p), we shall use p to mean that h(p)=1 and 

p to mean that h(p)=0. 

 

Let C be the set of all possible classes defined as { }CccC ,,1 L= . Let c(x,h) be a function 

defined in C: →× HXc , that assigns the pattern x to a class c., according to the model h. That 
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function c(x,h) computes the similarity between pattern x and each of the prototypes p∈h, and 

assigns to x the same class as the prototype p that is most similar to x. Let us denote the true class 

of pattern x as ctrue(x). 

 

The classifier with fewer prototypes is the one that minimizes the integer-valued sum (that we 

shall name classifier cost) given in the following equation 

  Classifier cost = ∑
∈Pp

ph )(  (61) 

It must be noted, however, that if we impose no restrictions, the trivial solution of considering no 

prototypes (i.e. ∀p,  h(p)=0) would be the minimum. It would also not classify anything, so when 

minimizing equation (61), we must impose the restriction that the classifier should classify 

correctly (or with a certain given error rate) the set of patterns Xtrain. 

 

To do this, we introduce the concept of Q and R sets, and the associated “good” and “bad” 

neighborhoods. 

 

1.3.1 - Definition of Q and R sets 

Let us introduce the concept of “good neighborhood” order i, of the pattern x, denoted by Qi(x), 

or Q-set order i of x, and “bad neighborhood” order i, of the pattern x, denoted by Ri(x), or R-set 

order i of x. 

 

The good neighborhoods of x are sets of prototypes p∈P that have the same class as x, while bad 

neighborhoods are sets of prototypes that have a different class. The order of the neighborhood is 

determined by the similarity between the given pattern x and the prototypes of the neighborhood. 

The prototypes of the bad neighborhood order 0 are closer to the pattern x then any prototype of 

the same class as x. If the bad neighborhood order 0 of all patterns is empty ( R0(x)={} ), then the 

prototypes can certainly classify the whole set without errors, if they are all included in the final 

classifier. The good neighborhood order 0 of x ,Q0(x), is the set of prototypes p that have the 

same class as x, are not as similar to x as any of the prototypes of the bad neighborhood order 0, 

but are closer than any other prototypes of a different class (namely they will be closer than those 

of the bad neighborhood order 1). For the sake of simplicity we shall use “+”to represent the set 
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reunion (A+B ≡ A∪B) and “-“ to represent the set exclusion (A-B ≡ A\B). We can now define 

recursively all the good and bad neighborhoods formally as: 

 ( ) ( ) ( ) ( ) ( ) ( ){ }pxrxpxPprxPrxR0 ,,,,,)( sscccc >=∈∀≠∈=  (62) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }rxpxrxxRPrpxPpxQ 00 ,,,,, sscccc >≠−∈∀=∈=  (63) 

 ( ) ( ) ( ) ( ) ( ) ( ){ }pxrxpxxQPprxxRPrxR 00 ,,,),(,)()(1 sscccc >=−∈∀≠−∈=  (64) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }rxpxrxxRxRPrpxxQPpxQ 0 ,,,),(, 101 sscccc >≠+−∈∀=−∈= (65) 

or in general 
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The construction ceases when the first Q-set or R-set is empty. The R-set of the same order 

contains patterns that have a different class and are further away from the pattern x than any 

prototype with the same class. For practical purposes this last R set may be ignored, but its 

simple definition permits also a recursive but symmetrical definition of the R and Q sets. The 

total number of Q sets for a pattern x will be the order of the last plus one. 
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In Figure 29 we may see a graphical 

example of these sets for a 2-dimensional 

problem. Let us now reflect for a moment 

on the meaning and properties of these Q 

and R sets. 

 

Each Q and R set of a given pattern x 

encompasses patterns that are in a 

hyperspherical crown around that pattern. 

The space around this pattern is thus 

divided in multiple layers, like skins in 

an onion. The width and number of these 

crowns will vary considerably from case 

to case. There will be at least two non-

empty sets for any given pattern (and 

thus two crowns), and there may be as 

many sets as patterns in P. The simplest 

case, from a classification point of view, 

is when there are only 2 non-empty layers, with R0={}, Q0={ p ∈ P : c(x)=c(p) }, R1={ p ∈ P : 

c(x)≠c(p) }. In such a case, any single one of the prototypes of the same class as x can be used to 

classify it correctly. 

 

In most cases, R0(x) will be an empty set. When this is not the case, then using the original 

nearest neighbor rule with all available prototypes in P will result in a classification error for 

pattern x. Whenever there is a pattern for which R0(x)≠{}, there may be no subset of P that 

classifies the given set X without errors, as we shall see later. 

 

1.3.2 - Partial and generalized q-functions 

Having defined the Q and R sets of patterns, we may now define the associated Boolean indicator 

functions. For reasons that will become clear later, let us call these Partial Q-functions. Let us 

then define the functions 0,1}{n:, →×× HXpartialparial rq  as 

Q0Q1Q2 R1R2

R3

Q0Q1Q2 R1R2

R3

 

Figure 29 - Example of a Q and R sets for a 2-
dimensional problem. The center cross represents the 
patterns for which the sets are being calculated. 
Crosses represent prototypes with the same class as the 
pattern, and circles represent prototypes with a 
different class. The white areas represent the Q-sets, 
while the gray represent the R-sets. 
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and likewise 
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Since the model membership functions h(p) are Boolean, the definitions given for the partial q-

functions are equivalent to the following: 
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We may also use the more practical notation common when dealing with Boolean functions, and 

represent the disjunction as the Boolean sum, or 
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Naturally, the partial R-function will be 
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Let us now introduce the concept of generalized q-function, defined in [ ]0,1: →× HXq : 
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Simply stated, the generalized q-function is 1 when the pattern is correctly classified by model h. 

 

THEOREM 

Given a model h and a pattern x,  
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PROOF 
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For c(x,h)= ctrue(x), it is necessary that the closest prototype, in model h, of pattern x, have the 

same class as x. Therefore, it is necessary that at least one prototype of the correct class (i.e. of a 

good neighborhood) exists, i.e., ∃n : qpartial(h,x,n)=1, and that no prototype of a different class 

(i.e., of a bad neighborhood), of lower order exist, i.e., ∀m≤n, rpartial(h,x,m)=0, or alternatively 

1),,(
partial

=mxhr . Thus, if any of the products ∏
=

⋅
n

i
partialpartial irnq

0

),,(),,( xhxh =1, then q(x)=1. 

Since this may occur for any of the orders of the neighborhood, we have  
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Q.E.D. 

 

It must be noted that, for any given pattern, its q- function is a Boolean function of the indicator 

functions h(p). Unfortunately, the form given is not canonical. Its logical value may be changed 

by changing the values of these functions, i.e., by including or excluding prototypes p from the 

model h. We must therefore choose an assignment of h(pj) for j=1 to |h| that forces q(h,x) to be 

true. For a single pattern this is always possible, provided that at least one of the Q-sets is non-

empty. 

 

1.3.3 - Correctness function 

When designing the classifier, we usually want it to classify all patterns of the given training set 

Xtrain without errors. If we are willing to accept errors, we may consider only a subset of Xtrain 

and call that subset Xtrain. Let us define our final function, which we shall call correctness 

function, as { }1,0: →× HXCorrect : 

 

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otherwise

hcXiif
hXCorrect train
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From the above definition it is clear that we can define Correct(X train,h) as a function of the q-

functions of the patterns in Xtrain: 
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Going back to the original problem of minimizing the classifier cost ∑
∈Pp

ph )( , it is now clear that 

this minimization must be done with the constraint that Correct(Xtrain,h)=1. 

 

We shall now analyze a particular case where this minimization can be done efficiently, before 

going on to the more general case.  

 

1.4 - Positive-only q-functions 

The problem of finding an assignment for h(p), p∈P that minimizes the cost while maintaining 

Correct(Xtrain,h)=1 is greatly simplified if we consider positive-only q-functions. By positive-only 

q-functions, we mean that we may only force positive assignments of h(p) (i.e. h(p) =1) when 

attempting to force a q- function to be 1. In other words, we never assume that a particular h(p) 

will be 0: we either assume it is 1 or it is a “don’t care“. This is equivalent to admitting that all 

the bad neighborhood patterns may be in the final classifier, and thus each class must minimize 

its own prototypes without assuming the other classes will do any minimization, just like when 

two warring factions rearrange their defenses without trusting their opponent will withdraw 

anything. When Xtrain and P are one and the same, as is many times the case, this is equivalent to 

finding the minimum selective subset of P (Ritter, Woodruff et al. 1975).  

 

It is clear that the set of prototypes found using this approach may be larger than the absolute 

minimum set necessary to classify a given training set of patterns. We must however bare in 

mind that the goal of classification is to perform well in the unseen data, not the available 

training data. By using the positive-only approach, we are keeping the original class boarders as 

untouched as possible, and thus we may be safeguarding that the error in the unseen does not 

increase. On the other hand, we are not allowing much smoothing of those boarders, which in 

some circumstances may also have adverse effects. 

 

When considering positive-only q-functions, Correct(Xtrain,h) can only be 1 if ∀x rpartial(h,x,0) =0. 

If for any pattern x this is not the case, then that pattern cannot be correctly classified unless we 

guarantee that the patterns of its 0 order R-set are removed (which violates our positive-only 

assumption).Thus, we must ignore these patterns as errors. As we shall see later, some of these 

patterns may actually end up being correctly classified, for the prototypes in their 0 order R-set 

may not be chosen for the final classifier. The number of patterns for which the 0 order R-set is 0 
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will contribute to what we called the a priori error rate, which is the maximum error rate that the 

procedure might yield on the training set. 

 

For the remaining patterns, the q- functions are greatly simplified. All R-sets of order greater than 

1 are necessarily non-empty, so if we cannot assume that we will remove any of their prototypes, 

the partial r- functions will have to be assumed 1, and thus all terms but the first of eq.77 must be 

assumed 0. The resulting q- function is thus 
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Consequently the resulting correctness function Correct(Xtrain,h) will be 
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Finally this function is almost in a canonical form. In fact it is in the Conjunctive Normal Form 

(DNF) (Wegener 1987), which has been studied extensively. It also has the peculiarity that it 

contains only positive (or affirmative) literals, since there are no negations involved in this 

equation. To find the minimum cost classifier we must simply find the minimum number of 

assignments that will make the function 1, which is an equivalent definition of a minimum size 

prime implicant of the Boolean function (Wegener 1987). This exact problem is of great 

importance in a number of different fields, namely in Computer Aided Design (CAD) and fault 

diagnostic, so we shall briefly review the techniques developed in those fields. Unfortunately, it 

has been proved that in the most general case, finding a minimum size prime implicant is NP-

complete (Eiter and Gottlob 1995). 

 

1.4.1 - Known methods for finding prime size implicants 

The simplest way to find the minimum size prime implicant is simply to factor out the terms of 

equation (79). Since the conjunction and disjunction operators of Boolean algebra are both 

distributive in relation to the other, a product of sums can be factored out to a sum of products: 
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Any of the terms of the summation (a product of h(pk) ) can make the function 1, so we need only 

assign the values 1 to the h(pk) of the shortest of those terms. Unfortunately, that is easier said 
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than done, and the indexes of the summation and products in equation (80) were deliberately left 

unspecified, because they can only be found by actually factoring out the previously equation. 

Factoring out that equation has a complexity tha t is exponential on the number of patterns used. 

We wrote MATLAB code to perform this function, and when we later compare numerical 

results, we shall see that factoring out is only possible for rather small toy problems.  

 

As with many NP-Complete problems, the branch-and-bound technique (Fukunaga 1990) can be 

used to find the exact solution in what may be reasonable time. We also wrote MATLAB code to 

implement this approach, but although it does improve dramatically the processing time, we will 

see that it is still only viable for small size problems. 

 

The complexity of this problem is very well explored in (Wegener 1987), but significant 

improvements have been made since then in finding the most efficient ways possible of solving 

it. One of the most promising solutions is to use Integer Linear Programming (ILP) techniques. 

This approach was proposed in (Pizzuti 1996), and later improved by (Silva 1997). The proposed 

method is designed to solve general propositions in CNF, so one of the steps involves 

transforming it into a affirmative only propositions, substituting negated literals by a associated 

positive literal, and adding the restriction that only one may be true. This obviously is not 

necessary in our case, and so we are left with a relatively simple unbounded minimization 

problem to be solved by ILP. 

 

1.4.2 - Algorithm for building positive-only Q-sets 

It is possible to construct positive-only Q-sets for a training set, with a time complexity O(n×m) 

where n is the number of patterns in the training set, and m the number of prototypes. As for the 

memory requirements, they are between O(n) and O(n×m), depending on the particular problem. 

  

The algorithm is as follows: 
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Algorithm 9- Computing Positive -only Q-sets  

 

A MATLAB implementation of this algorithm is given in appendix, and was used extensively 

throughout the experimental part of this thesis. 

 

The memory requirements for this algorithm are relatively modest and are mainly reduced to 

those necessary for the input and output data. The only internal variable that requires any 

considerable memory is a single vector of length |P|, that has to store an index and a similarity 

value in each element. This requirement, linear in |P|, is absorbed by requirements needed for the 

input and output. The input data requires O( |Xtrain|, |P| ). It the worst case, the output requirement 

are O(|Xtrain| × |P|) since each Q-set may have as many elements as there are prototypes. In 

practice, the Q-sets will be much smaller rendering the requirements closer to O(|Xtrain|). 

However, in some implementations sets are rather cumbersome to work with, and it is simpler to 

substitute them by Boolean vectors, where membership is represented by a logical 1 in the 

corresponding component of the vector. In those implementations the memory requirements are 

O(|Xtrain|× |P|), but since each value is Boolean, that cost is really quite small.  

 

It is also important to stress that the similarity values (or distances), need not be kept, and they 

usually require far more space than a simple index or Boolean value. 

 

The time requirements for the algorithm are O(|Xtrain| × |P|). In step 2, we repeat the procedure 

|Xtrain| times, and in step 3 |P| times, making it at least O(|Xtrain| × |P|). Steps 5 and 6 are both 

linear in |P|, and thus asymptotically absorbed by the previous step. 

 

Let 
 Xtrain be the set of training patterns x 
 P be the set of candidate prototypes p 
 Q be a vector with the Q-sets of each pattern, initialized to ∅ 
 
1 Do 
2 For i=1 to |Xtrain| 
3  For j=1 to |P| 
4  Calculate the similarity s(xi,pj) 
5   Find the largest value v of s(xi,pj), for which the class pj 

is different from that of xi. 
6  For each s(xi,pj), add index j to Q(xi) if s(xi,pj)>v 
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1.4.3 - Heuristic Q-set algorithm for selecting prototypes 

Since an optimum selection of the prototypes is equivalent to finding the minimum size prime 

implicant of a Boolean function, and that has been shown to be NP-Complete, we must resort to 

some sort of heuristic algorithm to obtain acceptable solutions in acceptable time. Most heuristic 

algorithms explore certain characteristics, so we developed our own heuristic, that is very similar 

to the one proposed, using a completely different formalization, by (Ritter, Woodruff et al. 

1975), and very similar to the Davis-Putnam algorithm for refutation (Davis and Putnam 1960) 

that has been used previously for minimizing Boolean functions (Barth 1995). The main idea is 

that we must select the prototypes that are the only element of any Q-set, and after that, we 

should be greedy and choose the prototype that classifies correctly more patterns. The algorithm 

can be presented as follows: 

Algorithm 10 - Qset Heuristic for selecting prototypes 

 

The algorithms memory requirements are basically that of its inputs, and thus are not a problem. 

As for the time complexity it is O(|P|×|Q|2). In step 3, all components of Q(i) have to be searched, 

making it O(|Q|). In step 4, for each component of Q all P may have to be searched, making it 

O(|P|×|Q|). Step 5 will iterate at most #Q times the next steps, of which steps 6 and 8 must search 

at most |P|×|Q| possibilities, rendering the algorithm O(|P|×|Q|2).  

 

Let 
 Q be a vector length i with the Q-sets of each pattern xi 
 P be the set of indexes of candidate prototypes p, appearing in 

Q 
 Psel be the set of indexes of the selected prototypes 
 
1 Do 
2 Let Psel = ∅ 
3 Find all Q(i) that have a single element, and add that element to 

Psel,, remove it from P, and remove those ith components from 
vector Q 

4 For all remaining components of Q, remove them if they have any 
element that is also in Psel 

5 While there are any components remaining in Q do 
6  For all elements of P, calculate how many times they appear 

in Q 
7  Find the most occurring element, add it to Psel, and remove it 

from P 
8  For all remaining components of Q, remove them if they have 
   any element that is also in Psel 
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The fist part of this algorithm (selecting the prototypes that are the single element of a Q-set) is 

inevitable, and thus, at least in some sense optimal. The second part, where the most occurring 

prototype is selected is clearly non-optimal, and many different search strategies can be used. 

 

It must also be noted that since this procedure generates selective subsets, there is no interaction 

between the choice of prototypes for each class. Therefore, this last step of selecting prototypes 

can be done independently for each class, thus reducing considerably the complexity of the task. 

 

1.4.4 - Other selection techniques 

One of most interesting approaches for selection of prototypes is to consider prototypes as 

features of the Q-set, and use feature selection techniques to choose the best prototypes. In this 

type of approach, each Q-set is seen as an object, which has a certain number of features: the 

prototypes.  

 

As was reviewed in part I of this thesis, Rough Set Theory (Pawlak and Slowinski 1994) 

provides us with tools to make an optimal choice of features. Moreover, for this application, it 

has the advantage over other feature selection techniques that it was developed for categorical 

data, as is the case with prototypes that are either are part of a given Q-set or not. 

 

Rough Sets have also another advantage in this case, since they provide not only reducts with 

minimum sets of classifier prototypes, but also cores, which will contain the prototypes that 

appear in all minimum sets of classifiers.  

 

1.5 – General case 

When considering the general case, i.e., the case in which may exclude certain patterns from the 

final classifier, we will be able to construct a classifier with less prototypes then the one obtained 

with positive-only Q-sets. However the computational cost of constructing it will be considerably 

greater. 

 

Let us look again at the correctness function in this case: 
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Both r and q-functions are disjunctions (or Boolean sums) of literals, but as the r-functions are 

negated, due to DeMorgans laws the result we be a conjunction (or Boolean product) of negated 

literals. Thus the product of r-functions will be a single product of negated literals. Due to the 

presence of the final q- functions, the result will be a 4 level Boolean formula (Wegener 1987), 

with products of sums of products of sums. 

 

The first remark that must be made is that there may be no assignment of logical values to the 

literals h(p) that make the function 1. In fact this is the classical Satisfiability (SAT) problem 

(Cook 1971; Cook 1983): Given a generic Boolean formula, find an assignment for its variables 

that makes its logical value 1. This problem was proved to be NP-complete, and a great deal of 

effort has been put to solving it with a P-complexity algorithm (Baase and Gelder 2000), for that 

would revolutionize many fields of science. 

 

The fact that there may be no solution means, from the classification point of view, that it is 

impossible to classify correctly the given set of patterns with any combination of the available 

prototypes. To obtain a classifier we must therefore relax our constrains and assume that there 

may be errors. It may be quite difficult to pinpoint the exact patterns that are causing problems, 

but it certainly is one that has a non-empty 0 order R-set (R0(x)?∅ ). As we saw when discussing 

the positive-only Q-sets, if the first R-set is empty, then any prototype of the 0 order Q-set will 

correctly classify the given pattern. Thus, removing all patterns for which R0(x)?∅ guarantees 

that an assignment is possible that makes Correct(Xtrain,h)=1. 

 

Unlike the positive-only case, when dealing with the general case we need to find the minimum 

number of positive assignments that make the function 1. This is no longer equivalent to finding 

the minimum size prime implicant, since there may be another prime implicant that, although 

having more literals, has fewer of them in the affirmative form. Nonetheless, it is still useful to 

find the prime implicants of the function, since the we can then search only these to find the one 

with less affirmative literals.  

 

A number of different techniques have been developed to work with binary functions with a large 

number of literals. One of the most successful, stems from graph theory and is known as BDD – 
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Binary Decision Diagrams (Bryant 1986). Most of the techniques involving BDD are concerned 

with solving the SAT problem, but many of them have the specific aim of finding prime 

implicants. One such technique for computing prime implicants of multi- level Boolean functions 

is presented in (Stoffel, Kunz et al. 1997). 

 

1.5.1 – A Heuristic for the general case – G2P 

One of the main reasons why a heuristic for the general case is not trivial is there is a lot of 

interaction between the different classes, i.e., a choice of one prototype for one class will have a 

big impact on the available choices for other classes. Such an interaction, as has been pointed out 

does not exist in positive-only approach. One possible solution is to try and de-couple the classes 

once again, through a certain pre-processing, which we have called G2P – General to Positive-

only. 

 

The G2P algorithm relies predetermining an acceptable maximum error rate (AMER) on the 

training set, and then assigning a cost/benefit (CB) ratio to each of the prototypes that we are 

considering for exclusion. As we exclude prototypes, it is possible that the 0 order R-set of some 

patterns will cease to be empty, and thus that pattern would be (a priori) incorrectly classified by 

the positive-only approach. When this happens, we will assume that the number of errors has 

increased by 1, and will check to see if the AMER (acceptable maximum error rate) has been 

reached, and thus we should stop attempting to exclude prototypes. The CB (cost/benefit) ratio 

will decide which prototype we will exclude next. We consider that there is a cost of 1 if the 

removal of a prototype makes pattern loose all its 0 order Q-sets, thus turning the 1st order R-Set 

into the 0 order R-set, and producing a a priori error for the positive-only approach. We consider 

that there is a benefit of n, when the exclusion of a prototype will increase by n the size of the 0 

order Q-set of a patterns (thus giving more possibilities when choosing a prototype for that 

pattern). We will remove the prototype with smallest CB, calculate the a priori error rate, and 

proceed to the next removal until the AMER is reached. 
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To apply the G2P algorithm we must now compute the complete Q-sets8 of the patterns, apply 

the algorithm, and then feed the resulting q-functions to the prime implicant finding procedure 

(possibly the Q-set Heuristic). Let us then see how to perform the first 2 steps. 

 

1.5.1.1 - Computing the complete q-functions 

The algorithm for computing the complete q-functions may be described as follows: 

 

Algorithm 11 - Computing the complete Q-sets 

 

The algorithm is quite similar to that of computing the positive only Q-sets, but for each pattern, 

we must now order prototypes by decreasing similarity. This increases the time complexity to 

O(n × m log m ) where n is the number of patterns in the training set, and m the number of 

prototypes. The complete Q-sets will also have a fixed length m, thus fixing the memory 

requirements for the output at O(n × m). 

 

The associated general case q-function can easily be obtained from the given complete Q-sets by 

observing the following rules: 

 

a) Insert a OR (+) operator after any prototype that has the same class as the pattern. 

b) Insert a AND (•) operator after any prototype that has a different class to that of the 

pattern. 

                                                 
8 The term complete Q-sets refers to the ensemble of all Q-sets and R-sets of a given patterns, 

and is a easier way to call them. 

Let 
 Xtrain be the set of training patterns x 
 P be the set of candidate prototypes p 
 Q be a vector with the complete Q-sets of each pattern  
 Qlval be a companion vector to Q with the logical values  
 
1 Do 
2 For i=1 to |Xtrain| 
3  For j=1 to |P| 
4   Calculate the similarity s(xi,pj) 
5  Let Q(i) be the list of prototypes ordered by increasing 

values of s(xi,pj). 
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c) Open a parenthesis whenever a prototype of a different class is followed by one that has 

the same class of the pattern. 

d) Close all parenthesis at the end of the expression.  

 

1.5.1.1 – Applying G2P 

We must now apply the described procedure G2P, which can be summarized in the following 

algorithm: 

Algorithm 12 - G2P - General to Positive  

 

It may seem strange that steps 4 and 18 are introduced to actually go one iteration further than 

what is apparently necessary. However, it must be noted that it is possible to remove prototypes 

Let 
 Q be a vector with the Q-sets of each pattern xi 
 P be the set of indexes of candidate prototypes p, appearing in 

Q 
 Pcand be the set of indexes of the candidate prototypes for 

exclusion 
 Pxcld be the set of indexes of the excluded prototypes 
 AMER be the acceptable maximum error rate 
 
1 Do 
2 Let Pxcld = ∅ 
3 Repeat 
4  Save the Q to Qold so as to be able to backtrack later 
5  Let Pcand = ∅ 
6  For i=1 to #Q 
7    Find the first p of Q(i) that has a different class to xi 

and add it to Pcand if the next p on the list has the same 
class as xi 

 
8  For all p in Pcand 
9   Let cost(p)=1 and benefit(p)=1  
10   For i=1 to |Q| 
11    If p has the same class as xi then 
12   If p is the first prototype and the next one  

 is of the wrong class add 1 to cost(p) 
13    else 
14   If p is the first prototype of the wrong 

 class, count the number of prototypes of 
 the right class that immediately follow 
 it, and add them to benefit(p) 

15   Select the p with smallest ratio cost(p)/benefit(p), add it 
to Psel, remove it from P and from all Q(i) 

16  Calculate the present a priori error rate apriori_error 
17 Until apriori_error > AMER 
18 Restore Qold to Q 
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without any impact on the error rate in the training set, and thus, even after we have reached the 

maximum error allowed, it is still worth trying to remove more prototypes. 

 

Steps 6-7 also provide considerable speedups, since the search for a prototype to remove will 

occur only within those that will certainly give benefits. 

 

Although this procedure does require considerable computing power, its complexity is still quite 

acceptable. Each iteration is less than O(|Q|, |P|). 

 

 

1.6 - Comparison with other methods 

Despite its elegance, the practical value of the Q-set theory can only be appreciated when 

compared with other prototype minimization techniques, in practical applications. The vast 

amount of minimization techniques, some with may parameters that have to be fine tuned for any 

given application, makes an extensive comparison out of the scope of this thesis. We will 

therefore limit ourselves to a comparison with the most standard and reliable methods, using 

widely known benchmark data sets. From amongst these, we chose the Hart’s double F problem 

(already discussed in part I), and the classical Iris Dataset. Both these problems are difficult to 

solve using exact minimization techniques, so we added a very simple “straight line” problem 

(explained later), to compare Q-sets with exact minimization and the other techniques. 

 

As stated in Part I, the CNN-Condensed Nearest Neighbor (Hart 1968), together with the RNN-

Reduced Nearest Neighbor, are the two fastest and simplest prototype minimization techniques, 

yet they have proved to compare vary favorably with most other techniques. Like Q-sets, they 

only select prototypes amongst a given set, as opposed to other methods that generate new ones. 

We shall therefore use CNN and RNN as benchmarks for comparisons with Q-sets. It must be 

noted that, unlike these two methods, the Q-set method does not rely on order, and thus we can 

expect lesser variance in the results. 
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1.6.1 – The double F problem 

This problem, initially proposed by (Hart 1968) and 

already presented in Part I, consists of two classes 

of bi-dimensional patterns with a uniform 

distribution in two interlocked F shapes, as seen in 

Figure 30. The two classes lie in the 22.5 x 20 

rectangle with the bottom left corner at the origin 

(0,0), and have boundaries defined by the line that 

joins (7.5,0), (7.5,5), (15,5), (15,10), (7.5,10), 

(7.5,15), (15,15), (15,20). In most papers, 200 

patterns of each class are used. We generated a 

“reference set” with 200 patterns of each class, that 

was used in part I, but for comparisons, we generate multiple random datasets with the double F 

distribution, using different numbers of prototypes. Since the true borders between the classes are 

known, the generalization error of a given classifier set of prototypes may be calculated exactly. 

The generalization error is simply the area between the true boundaries and the Voronoi 

boundaries defined by the selected prototypes (divided by the total area if an error rate is 

desired). However, the direct computation of this error is very time consuming. Therefore, we 

use a Monte Carlo method that consists of using a test set of 100.000 patterns of both classes, and 

classifying them with the selected prototypes. Besides obtaining a estimate of the generalization 

error, we also obtain an estimate of the time each classifier takes to classify a large dataset. Given 

the number of test patterns available, and the estimated error probabilities, the variance of the 

estimate for each of the classifiers is always less than 0.1%. 
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Figure 30 - Hart's Double F problem. 
Class 1 has a uniform distribution in 
the rightmost F shape, while class 2 has 
the same type of distribution in the 
leftmost, inverted, F shape. 
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Figure 31 - Number of prototypes used for Hart's double F problem. 
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Figure 32 - Error rate for Hart's double F problem. 

We compared the basic nearest neighbor (NN) rule with CNN, RNN, Q-sets with positive-only 

heuristic (Qset-P), Q-sets with negations (general case) using the G2P heuristic with one 

admissible error (Qset-N), and the same algorithm using zero admissible errors (Qset-N0). We 

started by using a total of 100 training patterns (50 of each class), and steadily increased that 

number to 3200 training patterns. In each case, we repeated the experiments 30 times, using 
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different randomly generated datasets. The complete results are presented in Appendix A, and 

summarized in Figure 31, Figure 32, and Figure 33. 

 

Training time /s

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500

Size of training set

T
ra

in
in

g
 t

im
e 

/s CNN

RNN

Qset-P

Qset-N

Qset-N0

 

Figure 33 - Training time required for Hart's double F problem. 

It was observed that, for this problem, the Q-Set positive-only heuristic’s performance was 

consistently between that of CNN and RNN. The number of prototypes was always less than that 

obtained with CNN, but larger than that obtained by RNN. It is only natural that the number of 

prototypes be larger than RNN, for while RNN will produce a consistent subset, positive only Q-

Sets will yield selective subsets, that are closer to the original Voronoi boundaries. Accordingly, 

the error rate obtained with positive-only Q-Sets is consistently smaller than that obtained with 

RNN. It is higher than that obtained with CNN, although the error rates all converge as they 

decrease exponentially when the training set becomes very large. The training time required for 

positive-only Q-sets also lies between the very short training time required for CNN and the time 

required for RNN. 

 

As expected, the general case Q-set heuristics require a great deal of training time, and provide 

only modest improvements. The error rate was very close to that obtained with positive-only Q-

sets, with the error rate sometimes increasing slightly when 1 error was allowed during training. 

The number of prototypes obtained was higher than that obtained with RNN, but less than that 

obtained with positive-only Q-Sets. It must be said that although the training time required for 

general case Q-Sets heuristics will always be considerable higher than that for the positive-only 
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case, our implementation of the G2P procedure is very inefficient. Matlab is notoriously 

inefficient when “for” cycles are required, as is the case with G2P. Thus, a C/C++ 

implementation would decrease the relative difference in training time between these methods 

and the others. The same argument also applies to the differences between the positive only Q-

Set and the remaining methods, since the Matlab implementation uses 8 byte floating variables to 

store binary values, and varying size matrices to store sets. A lower level implementation, as 

mentioned before, will greatly increase the performance of Q-Set heuristics. Nevertheless, the 

asymptotic behavior is the same, no matter which implementation is used.  

 

1.6.2 – The iris dataset 

The Iris dataset is probably the best known benchmark dataset in the world. It was originally 

proposed as a classification problem by Fisher (Fisher 1936), based on data collected by E. 

Anderson. We where not able to find Anderson’s original article, published in 1935 in the 

Bulletin of the American Iris Society, volume 59, pages 2-5, titled “The Irises of the Gaspe 

peninsula”. The dataset contains measurements of 4 different characteristics ( septal length, 

septal width, petal length, and petal width) of 150 different irises. The iris is a plant that has 3 

different species, namely Iris Setosa, Iris Versicolor, and Iris Virginica. The dataset includes 50 

samples of each species. 

 

This dataset is available at the Machine Learning Repository at the University of California at 

Irvine, but as pointed out in (Bezdek, Keller et al. 1999) some errors have crept into the datasets 

that have been circulating amongst researchers. In this thesis, we use the original dataset. 

 

Applying the Condensed Nearest Neighbor (CNN) algorithm to the Iris dataset, just as it is 

presented in the original paper, produces 24 prototypes. Reduced Nearest Neighbors will bring 

the number of prototypes down to 16. The Q-set positive-only heuristic will produce 17 

prototypes, while the general case Q-set heuristic, allowing no errors, will produce only 15. 

 

We also performed leave-one-out validation on the Iris dataset. The results are presented in Table 

7. Since for classification a single pattern is used each time, the processing time is too small to be 

measured reliably, and thus is not included in the results. Similarly, for each test there is either 

one or no errors, so an analysis of variance is pointless, and the total number of error obtained in 

the 150 trials is shown in parenthesis. Due to the particularly good results obtained using the 
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general case Q-Set heuristic with one error allowed, we also included the results obtained when 

allowing 2 errors (QSet-N2). 

 

 

Method Nº Prototypes Error rate Training 

time / s 

NN 149.0 ± 0.0 4.0 (6) 0 

CNN 23.7 ± 1.5 ................................8.0 (12) 0.14 ± 0.03 

RNN 15.9 ± 0.5 8.0 (12) 0.26 ± 0.04 

QSet-P 16.9 ± 0.4 8.0 (12) 0.06 ± 0.02 

QSet-N 13.9 ± 0.5 7.3 (11) 2.06 ± 0.21 

QSet-N0 14.9 ± 0.4 6.7 (10) 1.11 ± 0.09 

QSet-N2 12.0 ± 0.4 8.0 (12) 2.47 ± 0.15 

Table 7 - Leave-one-out cross-validation for the Iris Dataset. Together with the error rate, the actual number 
of errors is shown in parenthesis 

 

As can be seen in Table 7, the positive only Q-Set heuristic continues to be have a performance 

between that of CNN and RNN. The number of prototypes obtained by this heuristic is much less 

than that of CNN, and only slightly more than that obtained by RNN. Since the dataset is quite 

small, the error rate for all three methods is the same. The most revealing result when comparing 

these methods, is that the Q-set approach takes considerably less time to train. This happens 

because while Q-Set techniques search a Boolean space, CNN and RNN perform that search in 

the original space, that is now 4-dimensional. As the number of dimensions grows, the evaluation 

of distances will be ever greater, and that difference will increase. Even if all distances are 

computed beforehand and stored in memory, the Q-Set approach will still be faster for it only 

needs to compare binary values, as opposed to the possibly real-valued distance measurements 

required for CNN and RNN. 

 

More important still, the general case Q-Set heuristics, both allowing errors and not, achieve the 

lowest number of prototypes, and maintain or actually improve the error rate. Unfortunately, that 

is still obtained with a very high training time. 

 

The reasons why Q-Set approaches perform so much better than in the case of Hart’s double F 

problem can be traced to two main factors. The first, already mentioned, has to do with the higher 
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dimensionality of this problem. The second, is that while in Hart’s problem there is no margin 

between the two classes (patterns of one class may be arbitrarily close to patterns of another), in 

this case there is a fair distance between patterns of different classes. Thus, small shifts in the 

Voronoi boundaries generated by the prototypes will not have a significant impact in the error 

rate. 

 

1.6.3 – The straight line problem 

In the above mentioned problems we where not able to compare the results with those obtained 

using Q-Sets with an exact minimization technique. While there are techniques and software for 

finding exactly the smallest prime implicant in problems with many variables, it was not practical 

to include them in our comparisons. Therefore, we wrote a Matlab routine using branch-and-

bound to perform that search. This routine could easily find the smallest prime implicants in 

problems with up to 40 variables (or prototypes). The branch-and-bound technique is extremely 

sensitive to the starting point, and thus the time required to find a solution has very high variance 

when the technique is applied to a series of similar problems. Thus, while sometimes we could 

obtain results using up to 58 variables in just a few minutes, other times we had to abort the 

process after running it for 24 hours. 

 

These limitations led us to compare Q-Sets with exact minimization and other methods only for a 

very simple problem, that we called the straight line problem. In this problem, we generate 2-

dimensional patterns with uniform distribution in the unit square limited by (0,0) and (1,1). 

Those that lie in the left side of that square (i.e., with x<0.5) are considered to belong to class 1, 

and the others to class 2. 

 

We forced the number of training patterns of each class to be equal, and performed a number of 

trials, increasing the total number of training patterns from 4 up to 40. The complete results are 

presented in Appendix B, and summarized in Figure 34, Figure 35, and Figure 36. 
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Figure 34 - Number of prototypes used for the straight line problem 
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Figure 35 - Error rate for the straight line problem 
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Figure 36 - Training times for the straight line problem. Note that the time axis uses a logarithmic scale to be 
able to show very different training times. Due to this, when the training time is too close to zero (as is the case 
for QSET-BB, CNN, RNN and QSET-P when the training set has fewer than 16 patterns), the value is not 
represented in this graph. 

 

For this very simple problem, it is clear that the positive-only Q-set heuristic solution is very 

close to the true minimal selective subset. Therefore, the enormous amount of time required to 

find the optimal solution is defiantly not worthwhile. This small problem also shows that RNN 

will generally produce prototypes that do not constitute a selective subset. 

 

1.7 – Extensions and applications of Q-set theory 

We shall now overview some ways in which Q-sets may be used, and point to ways in which 

they can be extended. 

 

1.7.1 - Choice of candidate prototypes and training sets 

To apply Q-set minimization we need to have a set of candidate prototypes, and a set of training 

patterns. In many cases, such as the comparisons in section 1.6, we assumed that they were the 

same. There are however many other possibilities, so let us see what are the consequences of 

each choice. 
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1.7.1.1- XTrain = P = Available known data 

A common approach is to take the whole original 

training data and use it both as candidate prototypes and 

training data. A good reason for considering this 

approach is that it maximizes the use of all available 

information. Moreover, we will always have a solution 

for the general Q-set case, because we can guarantee that 

R0(x)={}, ∀x. This happens because each pattern is 

closest to itself than any other, and has the same label as 

itself. 

 

From a computational point of view, this approach has 

the inconvenient that it is very costly. The heuristic 

positive-only Q-set algorithm is quite fast, and can be 

used for very large data sets, but is nonetheless O(n2). However, the optimal approach, and the 

general case approach may not be viable when the data set is large. 

 

From a classification point of view, considering the same patterns as prototypes and training set 

has a major drawback, that is common to the original nearest neighbor classifier: it is very 

sensitive to outliers. An outlier will not be removed from the prototype set, because there is a 

training set pattern (the prototype itself), that will be incorrectly classified if the prototype is 

removed.  
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Figure 37 - Same data used for 
prototypes and for selection 
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1.7.1.2 - Available known data divided into disjoint XTrain and P 

From a purely classification point of view, we should never use 

twice the same data when designing a classifier, so we should 

divide the available data into two separate sets: one to be used 

as the P prototypes, and the other to be used as XTrain patterns. 

Providing there is enough data, this should be the preferred 

approach. 

 

It must be noted that, in coherence with the nomenclature used 

in Part I, the P set is what was referred to as Training Set, since 

it is used to actively provide the classifying prototypes, and 

what in this chapter we called XTrain is closer to the concept of 

Validation Set, since it is not actively used to construct the 

prototypes, but just to select them. We will, however, keep the notation that we have used in this 

chapter, and continue calling XTrain the Training set.  

 

By having disjoint sets of prototypes and selection patterns, we may have patterns in XTrain that 

cannot be correctly classified, and must thus be ignored. In the positive-only approach this is 

done automatically, but when considering the general case, care must be taken, since the 

correctness function may or may not be satisfiable. 

 

Although the error rate in XTrain may be higher, this approach will provide a better generalization, 

since outliers and very rugged boarders between classes will be smoothed out. 

 

1.7.1.3 - P provided by another classifier design technique 

There are many prototype-based classifiers that do not provide even locally minimum consistent 

subsets, and all of these can be pruned by the Q-set technique. The idea is to use the prototypes 

provided by those methods as candidate prototypes, and then use the original training data, or 

another set of validation data as Xtrain to select the best prototypes. 

 

Techniques such as k-means (Duda, Hart et al. 2001) , Probabilistic Neural Networks (Specht 

1990), Radial Basis Function Networks (Powell 1987) (Broomhead and Lowe 1988; Poggio and 

Girosi 1990)
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Figure 38 - Separate data for 
prototypes and selection 
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, and Self-Organizing Maps (Kohonen 2001), require that the 

used specify a a-priori number of centroids, kernels, or 

neurons. Too few of these will result in a severe degradation 

in performance of the classifier, and so the number of 

prototypes is usually greatly over-dimensioned. A pruning 

algorithm may then be used, and the Q-set technique 

performs that job rather well. 

 

Using some clustering technique before applying Q-sets has 

the additional advantage that is removes outliers and 

smoothens the data distribution, thus eliminating, or at least 

reducing the sensitivity to outliers. 

 

We find the use of Self-Organizing Maps (SOM) particularly useful for this task, as we have 

shown in (Lobo, Swiniarski et al. 1998). As mentioned in Part II, a thorough and general 

theoretical description of the behavior the SOM is difficult, but it is generally accepted that there 

is a magnification factor, usually estimated at d/(d+2), d being the dimensionality of the problem. 

This magnification factor means that a SOM will represent sparsely populated regions of the 

input space with greater detail than the densely populated ones. This is particularly suited to Q-

sets, since SOM pre-processing under-represents the densely populated areas where the choice 

between basically equivalent prototypes would take a long time, it smoothes the borders between 

classes, removing the outliers, and it still has a good representation of those borders. Moreover, 

as argued in (Lobo, Swiniarski et al. 1998), the SOM algorithm can effectively be applied to very 

high dimensional data, or very large data sets, without requiring unreasonably high 

computational resources, and without having the numerical stability problems that can affect 

other techniques. As is normal when dealing with a supervised learning situation, we may still 

use the LVQ (Kohonen 2001) algorithm on the SOM before applying the Q-sets, so as to further 

separate the prototypes of different classes. 

 

One particularly simple pre-processing step before applying Q-sets is sample the original data to 

select the candidate prototypes. If done correctly, we will be left with a set of prototypes that 

have a distribution proportional to that of the original data, and from which it will be much 

simpler to select the best ones. 
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Figure 39 - Q-sets used a pruning 
technique 
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One final note on using Q-sets as a pruning algorithm must be made: some techniques already 

provide at least locally minimum prototype sets, and thus it is no use to try and prune them. Such 

is the case, for example of Reduced Nearest Neighbors (Gates 1972), or Selective Nearest 

Neighbors if we use positive-only Q-sets.  

 

1.7.1.4 - Q-sets used as pre-processing  

Besides being used as post-pruning method, Q-sets can 

also be used as a pre-pruning method, that is it may be 

used to select only a few data patterns that will later be 

used do design another classifier. While not directly 

concerned with the way we select the data (any of the 

above techniques can be used) we chose to include this 

section here since it is tightly related to data set 

manipulation. 

 

It could be argued that if Q-sets provide us with a 

classifier, that from a certain point of view is optimal, it 

would not make sense to use its output to design another 

classifier. However, we may not want to use a prototype-

based classifier, and prefer some other type, such as a 

discriminant function, or a Multi-Layer Perceptron neural 

network. These other methods may have distinct advantages for certain applications, such as 

providing an easily understandable distinction between classes, or a smoother border between 

them. However, training these classifiers on the original, large, data set may have inconvenient, 

such as require a lot of computing power. Therefore, some sort of sampling of the training data 

may be necessary. If we use the positive-only approach, the selected prototypes will be close to 

the border, and thus be good patterns to train the classifier. 

 

 

Sampling the training set with a prototype-based classifier design technique has been used by 

(Plutowski, Cottrell et al. 1996; Mitiche and Lebidoff 2001; Choi and Rockett 2002), and shown 

to be effective in reducing the computational effort of training neural networks. 
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Figure 40 - Q-sets as pre-processing 
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The idea of using a condensing algorithm as a pre-processing step for initializing another 

algorithm has also been used before, as for example in (Kim, Lee et al. 1993), where Tomek's 

(Tomek 1976) rule for CNN is used to initialize a LVQ network. 

 

1.7.2 – Extensions to fuzzy Q-sets 

A lot of effort has been made in using fuzzy set theory in classifier design (Bezdek, Keller et al. 

1999). There are many reasons to do so, but one of the most important is that these classifiers 

provide, in a very natural fashion, a degree of certainty to the given result. It is thus appropriate 

that we point ways in which fuzzy set theory may integrated with the Q-set approach. 

 

We feel that the best way to introduce fuzzy sets in this framework is to basically leave it out 

until the final classifier is produced, and only then assign a some membership function to each of 

the final prototypes, based on its distance to the nearest prototype of the opposite class. This 

keeps the process of selecting the prototypes fast and efficient, and introduces the fuzziness only 

where it is important for a correct interpretation of the results. One can, however, note that this is 

not a true integration of fuzzy set theory into Q-sets. 

 

An interesting way to use fuzzy set theory is to consider that the Q-sets are not crisp set of 

prototypes, but a fuzzy set, where the membership is a function of the similarity between the 

patterns and each prototype. We may even consider that the R-sets have a membership of 0, and 

the order of the partial Q-set imposes damping factor on the membership (alternatively, the size 

of the preceding R-sets may do the same). The q- functions generated would be functions not of 

h(p), but of h(p) × Membership to Qset From that point onwards, we may substitute the Boolean 

sum and product by the fuzzy equivalent. 

 

After we do that, we will be left with an expression for the correctness function that does not 

necessarily compute to 0 or 1, irrespective of the assignments we make to each of the indicator 

functions. Instead of having the problem of minimizing the classifier cost subject to the restraint 

that the correctness must be 1, we will have a multi-objective maximization problem, for we will 

want to minimize the cost and maximize the correctness. 
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This last approach has several advantages very dear to the fuzzy set community, namely it 

propagates the “goodness” of a prototype as a classifier throughout the processing, and allows for 

a graceful degradation in performance as we force a smaller set of final prototypes. 

 

It does however have the very big disadvantage that it requires far more computing power to 

achieve a result, and this result is consequence of more or less arbitrary assignments of 

importance (cost versus correctness) or “goodness” (membership in Q-sets). 

  

1.7.3 – Incremental Q-sets 

The Q-set methods described are designed for a “one-shot” design of the classifier. Many real 

world systems can benefit a lot from what is called incremental learning or incremental update. 

The basic idea is to change the classifier whenever relevant new information arrives. 

 

Let us see how we may adapt the positive-only Q-set to incremental learning. There are two new 

facts that may occur: the addition of a new prototype, and the addition of a new selection pattern. 

In any case, we must keep the original Q-Sets. 

 

1.7.3.1 – Adding new patterns to Xtrain 

If we plan to add new patterns for selection, we must keep the original prototypes, even though 

they are not used for classification. We will not have to change the calculated Q-sets ever again, 

so we have no need to keep the original patterns of Xtrain.  

 

When a new pattern is added, its Q-set must be computed, which is a relatively fast procedure. 

Next, it must be checked whether any of the prototypes of that Q-set is in the classifying 

prototypes. If any one is, then no modification is necessary, and we simply store the new Q-set 

together with the others. This is a necessary step, since there may be another simplification of the 

original correctness function that yields a solution that has none of the prototypes of this new Q-

set. 

 

If the new patterns is not correctly classified by the selected prototypes, i.e., if none of the 

prototypes of its Q-set are present, then an update of the classifier is required. This can be done in 

two ways: a temporary update, or a recalculation of a prime implicant. In the first case, we will 
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simply add one of the prototypes of the new Q-set to the selected prototypes. The resulting 

selection will still be a prime implicant, and thus a local minima of the cost function, but it may 

not be the minimum size one. The classifier that we had previously selected is one of a series of 

terms of the DNF of the correctness function. When we multiply this function by a disjunction of 

literals (the new q- function), we will be adding 0 or 1 literal to each of the terms, depending on 

whether that literal already existed or not. Without being too formal,  
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The question now arises as to which of the prototypes of the new Q-set should be added, since 

any of them will provide a locally minimum solution, with equal size. One again, the greedy 

option of including the one that appears more times in existing Q-sets seems to be the best. The 

number of occurrences of a prototype in the Q-sets may be seen as a measure of the probability 

of being in the Q-set of patterns of that class, so choosing it will maximize the probability that 

another pattern (that may be added later) will need it. 

 

However, if we value keeping the class boundaries more than lowering the number of prototypes, 

it can be argued that the prototype that appears less times in the Q-set is closer to the boundaries, 

and thus should be selected. 

 

1.7.3.1 – Adding new prototypes to P 

Adding new candidate prototypes, while being very valuable from the classification point of 

view, is the less favorable option from the computational point of view. When doing this, we 

must keep not only the original Q-sets and prototypes, but also the original selection patterns of 

Xtrain. Together with the Q-sets, we must also keep the similarity value of the last element of the 

set (the one less similar to the pattern), which we shall call sgood(x), and the similarity of the first 

element of R1(x) (the most similar pattern of the wrong class), which we shall call sbad(x). 
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When the new prototype is presented, we must compute the similarity between it and all the 

stores selection patterns of Xtrain. For each of these, if that similarity is less than sbad(x), no further 

action is necessary. If it is less, than some updating is necessary. If the pattern in question has the 

same class as the new prototype, than we only have to add that new prototype to it’s Q-set. 

However, if it has a different class, than the new Q-set for that pattern will have to be reduced. 

We must therefore compare the similarity of the new pattern with the similarity to all prototypes 

on the Q-set, and keep only those that are more similar than the new one. 
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PART II 

CHAPTER 2 

Binary Self-Organizing Map - BSOM 

2.1 – Introduction 

Although many variants of SOM exist, very few are designed to work with binary data. We did 

not find in the literature a detailed discussion of specific problems of adapting the SOM 

algorithm to binary data, so we prepared it and present it here. We will start by discussing the 

problems and advantages of using SOMs for binary data. We will then propose an adaptation of 

the SOM algorithm for binary data, we present the results we obtained with our implementation. 

Finally, we will briefly review the existing implementations of SOM that use binary data. 
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The main reason why so few attempts have been made at using binary data with SOMs it that at 

first sight it seems impossible. SOMs rely on the principle that one can slowly and smoothly 

make the units move towards the centers of data clusters, and that there can be a topological 

ordering of the data. 

 

Binary vectors will always be on the vertices of binary hypercubes, and thus a smooth approach 

between two vectors, along any axis, is impossible. It also seems counterintuitive to try and find 

a topological ordering amongst points on such vertices. 

 

However, we believe both these theoretical difficulties can be overcome. If two binary vectors 

differ in a number of bits, then we can make them closer by changing only some of those bits. It 

is true that the approach between those vector will be done in quantized jumps, but providing the 

number of bits is large, those jumps can be viewed as relatively smooth. Furthermore, there is no 

real reason for not it is possible to find topological ordering amongst binary data, since distance 

metrics exist for these data. 

 

The advantages of using a binary SOM are considerable. On one had, it makes it possible to 

directly use data that are by nature binary, without pre-processing or encoding. On the other 

hand, a binary SOM can be much faster than a conventional SOM. A binary SOM may be 

implemented directly in hardware (see Part I-Chapter 4), but more important, can be efficiently 

implemented in Assembler, making use of the multimedia instructions available in many modern 

processors. In the popular Intel Pentium architecture, for example, these multimedia instructions 

can make logical operations on 80 bits at a time, making it possible to train extremely high 

dimension binary SOMs efficiently. 

 

2.2 - Binary SOM algorithm 

The basic SOM algorithm was described in detail in Part I of this thesis, but can summarized as 

follows: 

 

For a given training pattern x :  
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1. Calculate the distance between each SOM unit and the training pattern x. (Calculation 

phase) 

 

2. Find the neuron with smaller distance, and call it the winner W. 

(Voting phase) 

 

3. Change the network neurons with a function G, which depends on the learning rate α, the 

distance d to W (in the output plane), and the neighborhood function F. Due to the nature of 

the neighborhood function, only the neurons closer to W (in the output space) will be 

changed. 

(Update phase) 

 

4. Update the learning rate α and the neighborhood function F according to some rule. 

Repeat steps 1 to 3 for the next training pattern, until some stopping criteria is reached. 

 

When using binary data two problems arise with this algorithm: 

 

a) Which distance metric is more appropriate. 

b) How should the updating be done. 

 

The first problem is quite easy to solve, and we chose to use the Hamming distance between the 

patterns, since this is a common distance metric for binary patterns. It must be noted however, 

that in this case using a Hamming distance is not very different from using Euclidean distance: if 

we consider each component of the feature vector to be an axis, the Euclidean distance is simply 

the square root of the Hamming distance. When using Hamming distances the distance increases 

linearly with the number of different bits, while the using Euclidean distances would result in 

smaller increments in the distance when the number of different bits grows. 

 

The second problem is slightly trickier. In the original algorithm, the neuron being trained can 

adjust its weights so that it moves slowly towards the input pattern, along the axis defined by the 

two patterns. When using binary valued patterns this is not possible, since the coordinate in each 

dimension can only be 1 or 0, making it impossible to take small steps, and limiting the 

directions along which the patterns can be updated. 
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One solution would be to allow the neurons to be real-valued. In this case, it would be possible to 

use the standard updating rule, and any standard SOM software (including Kohonen’s original 

software) could be used for training. After training, the map neurons could be converted back to 

binary-valued patterns, so as to enable a faster classification. The main problem with this 

approach is that training would be as slow as a conventional SOM, and we wouldn’t be using the 

full potential of a binary implementation. 

 

Another solution would be to multiply the learning rate by the Hamming distance and the 

neighborhood function value to obtain the number of bits to update. If the number of binary 

features is very large (such as in our problem), the number of bits to update will be fairly large, 

and this method could provide fairly smooth steps. If a neuron differed in only one bit from a 

given input pattern, it would never be updated by it, and thus there would always be a certain 

quantization error. As for the direction of those steps two possibilities arise: we can 

deterministically choose which bits to update (thus giving more importance to those bits), or we 

can use a random or pseudo-random choice, that would on average take us along the path 

towards the final target pattern. 

 

Our solution to this problem is to probabilistically change the bits in which the input pattern and 

the neuron differ, according to the value of the learning rate and neighborhood function. For each 

neuron W, the product u of the learning rate α by the neighborhood function F is computed. 

Then, for each bit in which the neuron W and the input pattern x differ, a random number rand 

(with a uniform distribution in the interval [0,1[ ) is generated, and compared with the product u. 

If rand<u that bit of the neuron is changed, to assume the value of the corresponding bit in the 

input pattern x.  

 

On average, the direction of movement is along the desired path, and the number of bits changed 

is proportional to the learning rate. 

 

Resuming, there are three possible approaches in the pure binary input space: 
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Number of bits to 

change 

What bits to 

change 

Fixed Fixed 

Fixed Random 

Random Random 

Table 8 - Proposed solutions 

 

These solutions where implemented in our version of SOM, presented in Part III-2. 

 

2.3 – Results obtained with BSOM 

Our implementation of BSOM was written in C++, without trying to take full advantage of the 

processor’s architecture. We did this because we did not have time to optimize the code, and 

because we wanted to try the BSOM approach before committing too much time to its 

optimization. Thus, we cannot present fair experimental comparisons between execution time of 

BSOM and conventional SOMs. 

  

We tested the BSOM with binary data extracted from the ship noise spectra described in Part III-

3. As mentioned there, is consists of 165 patterns with 2048 binary features each. First the whole 

data set was used to train the SOM, with each of the three update rules proposed. 

 

Surprisingly, the final SOM obtained was 

identical for all our experiments with the 3 rules, 

apart from the axis symmetries that are inherent 

to SOMs. The mapping obtained is shown in 

Figure 41. Although by no means conclusive, this 

shows that the BSOM algorithm is very stable, 

and all the update rules proposed are 

approximately equivalent. Since the fastest rule is 

the first, that modifies a fixed number of bits in a fixed order, that was the one used in subsequent 

experiments. 

 

 

Figure 41 - The 10x5 unit SOM trained 
with binary data. Each shade corresponds 

to a different type of ship 
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We proceeded to use the BSOM in subsequent experiments, where we divided the available data 

into various training and test sets to cross-validate the results. One more, we observed that, apart 

the mentioned symmetries, the mappings obtained were almost identical, varying in only one to 

four unit labels. 

 

2.4 – Other work 

A simple way to implement a binary SOM is to use the conventional SOM algorithm during 

training, with real valued units, and then threshold the final weights to obtain purely binary units. 

Such an approach is used by (Gioiello, M., G. Vassallo, et al., 1992) when constructing a LVQ 

map to process binary data. Using the conventional Euclidean distance is not very different from 

using a Hamming distance, as seen previously, and the use of real valued units makes the 

updating trivial. All the speed-up benefits of using a purely binary system are lost during 

training, but at least the final network can benefit from them when processing new data. 

 

Most of the SOM implementations for binary data are designed for processing images. The 

techniques used for determining similarities and updating images (i.e. making them more similar 

to a target image) are not applicable for general binary patters, at least directly, since they rely on 

specific 2-dimensional information. 

 

A recent example of the use of SOM for binary images is provided by (Pujol 2001), that follows 

up on previous work by the same research group, namely (Takacs and Wechsler 1998). A 

modified Hausdorff distance is used to compare images. A rather complicated update rule is 

used, that relies on derivatives in order of the x and y coordinates of a certain function of the 

image features. While achieving remarkable results, the technique is not readily adaptable to 

generic binary data, since it relies on relationships between the 2-dimensional coordinates of the 

pixels. Furthermore, both the Modified Hausdorff distance and the update rule require 

considerable computing time, defeating one of the main advantages of the BSOM. 

 

However, the most common approach to using SOM with binary images involves some sort of 

preprocessing that renders real-valued features, such as is done in (Tanomaru and Inubushi 

1995). 
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Although not dealing with SOMs, a recent paper (Girolami 2001) proposes a way of adapting the 

closely related GTM (Bishop 1995) to binary data. Another one (Coultrip 1998) uses a VSLI 

implementation of a classifier for binary data, based on Parzen windows. 
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PART II 

CHAPTER 3 

Parallel implementation of SOM over PVM 

3.1 – Introduction 

Although neural networks are intrinsically parallel algorithms, they are not easily implemented 

on distributed architectures because the strong interactions between neurons impose a very high 

communication overhead (neural networks are also called connectionist models).  

 

One of the neural models that has been implemented with more success onto parallel 

architectures is Kohonen’s SOM (Kohonen 2001), because, as seen in Part I-4, it requires very 
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little communication between units. However existing implementations have traditionally used 

either dedicated VLSI chips (Rueping 1994), or parallel machines that tend to be expensive and 

non-standard (Przytula, Prasanna et al. 1993). 

 

Over the last few years, a system called Parallel Virtual Machine (PVM) (Geist, Beguelin et al. 

1994), has been developed that enables a programmer to use networked computers (running 

different operating systems such as UNIX and MS-Windows 95) in a manner very similar to a 

single UNIX machine, using common languages such as C. Thanks to PVM, existing computer 

networks, no matter how heterogeneous, can easily be programmed. Moreover, simple PCs 

running MS-Windows (which abound in most organizations), can be put to work during 

otherwise unproductive times, such as nights and weekends. 

 

Our motivation for using this approach was to be able to train very large SOMs on the 

University’s computer laboratories, that contain large quantities of networked PC computers, 

running either MS-Windows or Linux. A more far reaching application would be to use the large 

networks of superstores (including the all the registering machines that are PCs) to cluster data 

from the previous day sales during the night. With this approach, it would be possible to use 

SOMs that otherwise could only be trained in reasonable time on supercomputers. 

 

3.2 - Distributed SOM algorithm 

The basic SOM algorithm was described in detail in Part I of this thesis, but can summarized as 

follows: 

 

For a given training pattern x :  

 

1. Calculate the distance between each SOM unit and that training pattern x. (Calculation 

phase) 

 

2. Find the neuron with smaller distance, and call it the winner W. (Voting phase) 

 

3. Change the network neurons with a function G, which depends on the learning rate α, the 

distance d to W (in the output plane), and the neighborhood function F. Due to the nature 
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of the neighborhood function, only the neurons closer to W (in the output space) will be 

changed. (Update phase) 

 

4. Update the learning rate α and the neighborhood function F according to some rule. 

Repeat steps 1 to 3 for the next training pattern, until some stopping criteria is reached. 

 

 

Many different distributed versions of Kohonen’s SOM are possible, each being more adequate 

for a certain machine architecture. For implementing in PVM, we think the most adequate is the 

following. 

Algorithm 13 - Algorithm 13 - The distributed SOM algorithm. 

 

Steps 1 and 2 form the initialization phase, that requires a lot of communication amongst 

processors. Step 5 consists of finding the local winner in each processor. Steps 6 and 7 are the 

voting phase, that does require some communication between processors. Step 8 is the update 

phase, that is again purely local. 

Given 
 
 Np  Number of processors, or PVM host 
 C  A coordinator process 
 Nt  Number of training patterns x1, x2,…,xn 
 Nn  Number of units forming the SOM 
 
Do 
 
1  Send the SOM units to the processors, so that each processor 

receives approximately Np/ Nn units   
2  Send all Nt patterns to all Np processors 
3  For each pattern xi 
4   In each of the Np processors do   
5    Find the BMU (Best Match Unit) within that processor 
6   Send the coordinates of the BMU, together with the 

 similarity measure, to the coordinator C 
7    Wait for the coordinator C to choose the global 

   BMU, and receive that information 
8   Update the local units according to the SOM rule 
9  In each of the Np processors update de learning parameters 
10  Repeat steps 3 to 9 until the stopping criteria is met 
11  Send all units back to the coordinator C 
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A graphical representation of 

the algorithm showing the 

messages involved is given in 

Figure 42. 

 

The initial and final phases of 

the algorithm (represented in 

white in Figure 42) are 

executed only once, and thus 

have very little influence in the 

overall performance. Most of 

the time is spent in the main 

loop (represented in gray in 

Figure 42), which iterates 

through the three main phases: calculation of the distances, voting for the global winner, and 

updating the units. 

 

The calculation phase of the algorithm (finding the winner) is inherently parallel, and its 

computational load can be spread evenly across the network if each processor has roughly the 

same number of units. 

 

The voting phase is the only one that requires communication (and synchronization) between 

processors, because the global winner must be known to all for the algorithm to proceed. If there 

was no coordinator, each processor would have to send information about its local winner to all 

other processors. While PVM does support a broadcast mechanism, this would translate to a 

multicast at the data link level, thus originating NP(Np-1) messages per iteration. With a 

coordinator, each process sends only one message to the coordinator, and it in return sends only 

one message back, thus originating only 2(Np-1) messages. Furthermore, the coordinator can 

piggyback additional information on the return message, that can be used to select the next 

training pattern, change the training parameters, etc.  

 

During the update phase, each processor will have to calculate the distance between its local units 

and the global winner (in the output plane), and then update only the units in the winner’s 

neighborhood. The computational load will be evenly distributed only if all processors have 

Coordinator
Assign neurons

Send patterns

Send start order

Find local winner

Send global winner

Update neurons

NEXT PATTERN

Receive neurons

Clients

Receive neurons

Receive patterns

Find local winner

Send local winner

Update neurons

NEXT PATTERN

Send Neurons

 

Figure 42 - Message exchange in distributed SOM 
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roughly the same number of units in this neighborhood. Thus it is very important to assign the 

units evenly during step 1 of the distributed algorithm. When the neighborhood radius is large, 

the computational load will easily be distributed. However, when the neighborhood radius is 

small, it is difficult to guarantee that all processors will have the same number of units, and thus 

some processors will have to wait for others. It must be pointed out that in this case, the number 

of units to update will be small, so the difference in processing time amongst the processors will 

also be small.  

 

3.3 - Experimental results 

During our experiments, we used networks of up to 12 PCs. Each was a Digital Venturis FX, 

with a Pentium running at 100 MHz, with 16 Mb of RAM (255 K cache). The computers where 

connected with a coaxial cable, using 10Base2 level 2 protocol (10 Megabits per second), and 

TCP/IP as the level 3 protocol. The computers where running the MS-Windows 95 operating 

system, WPVM 2.0 (Alves 1997) and Microsoft LAN Manager peer-to-peer network clients and 

servers. The computers had all screen-savers and anti-virus checkers disabled and where not 

running any other software during these tests. 

 

As the speedup obtained by using the distributed SOM depends critically on the amount of 

processing required before each synchronization, we used very large pattern vectors, with 1024 

features, and then varied the number of neurons on the map. 

 

We used square maps with 5 × 5, 10 × 10, 20 × 20, and 40 × 40 neurons. Although square maps 

tend to slow convergence, we used them because they have a shorter boundary than rectangular 

maps (for the same number of units) and thus are less affected by discontinuities of the 

neighborhood function on those boundaries. This discontinuity effect would also affect the 

smaller maps more then the large ones if we used the same initial radius in all tests. To avoid 

this, we used an initial neighborhood function radius equal to each map’s side. So as to make the 

radius decrease smoothly, we force it to decrease only 1 unit each time the whole training set 

patterns are presented. The map with 5 × 5 neurons will thus have only 5 × Nt iterations of the 

patterns, while the one with 40 × 40 will have 40 × Nt. So as not to make the simulation too long 

for larger maps, we use fewer training patterns for these maps. In the end, each map requires 

exactly 4 times more calculations then the previous one.  
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The number of patterns used for training 

does not influence the performance or 

speedup of the algorithm, so we use only 120 

patterns for the 5 × 5 map, 60 for the 10 × 10, 

30 for the 20 × 20 and 15 for the 40 × 40. 

While this number of patterns (and iterations) 

would be far too small for a useful 

classification or clustering, it is sufficient to 

prove that the system works reliably. The 

number of training patterns in the smaller 

maps has to be greater than for the larger maps, because otherwise the time intervals would be 

too small to be measured reliably. 

 

During these simulations we distributed 

the units amongst the processors in such 

a way that each processor has one or 

more diagonal lines of units. This 

distribution, although not ideal, provides 

a reasonable equilibrium of units by 

processors for rectangular 

neighborhoods (see Figure 43 - every 

uncut neighborhood has the same neuron 

load per processor at each radius). 

 

1 2 3 4 1 2

2 3 4 1 2 3

3 4 1 2 3 4

4 1 2 3 4 1

1 2 3 4 1 2

 

Figure 43 - Diagonal distribution of units 
amongst different processors 
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Figure 44 - Absolute execution times 
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The execution times where measured 

within the programs (with a call to a 

system timer), so as to measure only the 

time spent on the iterations (step 3 of the 

distributed algorithm, and shaded area in 

Figure 42). 

 

The numerical results are presented in 

Table 9 and in Figure 44, we can see a 

graph of the absolute execution times, 

while in Figure 45 we can see the relative times, that is, the speedup. 

 

 Size of map 

Nº of 

PCs 
5x5 10x10 20x20 40x40 

1 6 24 106 15268 

2 21 37 97 623 

4 27 29 58 222 

6 27 27 39 103 

8 32 28 39 85 

10 34 31 36 71 

12 36 37 41 69 

Table 9 - Execution times (in seconds) 

 

3.4 - Conclusions 

The results presented confirm the claim that the SOM can be efficiently distributed on an 

ordinary computer network. However, depending on the workload, we may obtain overwhelming 

gains (as in the 40 × 40 map), moderate but consistent gains (as in the 20 × 20 map), or even high 

losses (as in the 5 × 5 map). 
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There are a couple of extremely high running times corresponding to the 40 × 40 map running in 

a single machine or in a group of two. After that there is a sudden break and then the running 

times decrease smoothly. This initial peak is due to the machine configuration we are working 

on, namely because we have 16 Mb of RAM and a 40 × 40 map takes up to 13 Mb RAM, forcing 

the operating system to use the disk as swap-space. We used machines with this configuration 

because we needed to have a reasonable pool of highly similar computers to achieve fair 

comparisons, and these where the ones available. Nevertheless we consider this as an advantage 

instead of a shortcoming, since these were the most common machines around any office or 

university lab at that time, and allowed us to expose another very important fact when using 

distributed processing - the efficient use of each machine's memory. Using our distribution 

model, one can take advantage of each machine's local memory along with the corresponding 

processing power, effectively avoiding a RAM/HardDisk swapping situation which terribly 

slows down the SOM processing. 

 

In the more general case, the total execution time will decrease smoothly (except sometimes for 

the transition from 1 to 2 machines), and then start to increase slowly. Its not reasonable to 

expect an unlimited gains as you throw more and more machines into the pool because of the 

increase in network load. 

 

When distributing a process, there will be a minimum overload on the total running time, due to 

the network. In our tests this can be seen by observing that the highest jumps upwards happen 

when there is a switch from a single machine to two machines. The distribution is profitable only 

when there is a significant workload to be distributed, thereby overcoming this minimum 

network overload. After that initial step, all other machine extensions walk along an almost 

smooth curve, reflecting the converging equilibrium between each machine's designated 

workload and the network overload due to an increasing number of traded messages. 

 

The overload due to the network will increase linearly with the number of machines (each 

additional machine will be responsible for 2 new messages), until the network starts to saturate 

due to collisions and/or sending queues. The workload per machine, on the other hand, will 

decrease hyperbolically, so at a certain point a minimum execution time will be reached, and 

adding a new machine will not improve the overall performance. 

 



 

   

PART III 

Application 
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PART III 

CHAPTER 1 

Ship noise and target identification 

1.1 – Introduction 

The main objective of this thesis is to enable a submarine to identify the ships that are near it by 

analyzing the sound they produce. This is a crucial problem for submarine operation, and as we 

progressed in our work we found many other areas of application where the same techniques can 

be used, both for military and civilian purposes. 
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To solve this problem, it is necessary to understand how and why ships produce noise, how that 

noise is propagated in the ocean, how it is mixed with noise from other sources, and how it is 

received by the submarine. A graphical representation of this framework is shown in Figure 46. 

 

There has been a lot of research in underwater acoustics, driven not only by this application, but 

mainly because of its importance to communications (Green 1997) and underwater imaging. 

Many excellent textbooks exist on this topic such as (Medwin and Clay 1998), (Kleppe 1989) or 

(Kinsler 1982). A good reference is the Handbook of Acoustics (Crocker 1998). 

 

As for the specific problem of characterizing the sound radiated by ships and its recording by 

sonars, there is far less bibliography. The most cited textbook is undoubtedly (Urick 1982) which 

is still used by many navies. Since it is a re-edition of a book written in 1967 and because a 

significant amount of research has recently been done, we would recommend (Coates 1990) as a 

solid and general purpose textbook on underwater acoustics for sonar related problems. A short 

but detailed account of radiated noise with a lot of experimental data can be found in (Collier 

1998) which has a naval architect’s perspective. For a more military and strategic perspective, 

although scientifically correct and complete, we would recommend (Stefanick 1987). This last 

book gives a great deal of attention to the problems that were crucial during the Cold War but its 

appendices provide a quick reference for all underwater acoustics issues with military interest. 

For a more in-depth study of the physics of sound generation and propagation, we would 

recommend (Ross 1987). For the signal processing aspects of sonars (Nielsen 1991) or (Burdic 

1991) would be recommended.  

 

1.2 – The basic problem 

Ever since the first submarine was used, during the American War of Independence, their 

detection and identification has been one of the most important issues for any navy. On the other 

hand, submerged submarines have always had serious problems in recognizing and identifying 

the underwater world around them. Let us now see what means they have at their disposal and 

how they have been used. 

 

Visual detection is all but impossible underwater. Ocean water is quite opaque, and visibility is at 

best a few dozen meters, which is far too little to be of any use. Moreover, there is hardly any 
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light at the depths at which most submarines operate. Due to these factors, regular military 

submarines do not have any windows (or portholes) to observe their surroundings under water. 

Most modern ships use electromagnetic sensors intensively, such as radars. Unfortunately, ocean 

water is a reasonable electric conductor and, as such, does not allow easy propagation of 

electromagnetic waves. For VHF/UHF radio-frequencies, the typical depth of penetration in 

water (skin depth) is of only a few centimetres. For normal navigation radar frequencies, sea 

water is almost completely opaque and gets more and more opaque as frequencies rise. 

 

Very low frequency (VLF) and ultra low frequency (ULF) radiation can penetrate the ocean to a 

certain extent. In fact, these frequencies have been used successfully for communication with 

submarines. However, they have very long wavelengths and thus produce a high degree of 

uncertainty in the location of targets. They are also subject to strong diffraction and reflection 

effects that, together with a strong attenuation and the need for enormous antennas, render them 

useless for use by a submarine. 

 

Sound waves, however, can be used instead of electromagnetic waves and provide the much 

needed “eyes” for submarines, as indeed they do for many marine animals, such as dolphins and 

Ships generate noise
from a number of sources

Ship noise 
is passed

into the water

The ocean is a multipath and dispersive sound conductor
and will introduce distortion

Other sources of sound (wind, waves, marine animals,
seismic effects, etc)  are added to the ships noise

The submarine itself generates
noise and interference

The sonar equipment
captures the sound

Ships generate noise
from a number of sources

Ship noise 
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into the water

The ocean is a multipath and dispersive sound conductor
and will introduce distortion

Other sources of sound (wind, waves, marine animals,
seismic effects, etc)  are added to the ships noise

The submarine itself generates
noise and interference

The sonar equipment
captures the sound

 

Figure 46 - General description of the process of noise generation, transmission, and capture by a 
passive sonar. 
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whales (Roitblat, Moore et al. 1989) (Council 1994). Water, given its high density and low 

elasticity, is an excellent sound conductor. 

 

In 1490, Leonardo Da Vinci described an instrument that could be used to hear underwater sound 

and detect approaching ships (Urick 1982). Ever more sophisticated versions of this apparatus, 

which was based on a design of hollow tubes caped with flexible membranes, were used until the 

beginning of the 20th century. They generated the first scientific studies on underwater acoustics, 

on Lake Geneve in 1827, and enabled a human operator to determine a ship’s direction of 

approach with an error of less than one degree. 

 

With the discovery of the piezoelectric effect and electric/electronic engineering, mechanical 

devices gave way to electronic ones based on hydrophones, which have been used ever since 

World War I. In the first submarines, the crew simply listened to the sound surrounding the 

submarine, in hope of identifying the engine “roar” of any approaching ship. This is what is now 

called passive sonar9. 

 

With the development of electronics, a more sophisticated technique was devised, whereby a 

short burst of sound (called a ping) is generated, and the time between its generation and the 

arrival of its echo is measured. This enables the operator to extract two important pieces of 

information. The time interva l will enable us to know the distance to the source of the echo 

provided we know the speed of sound in the water at that time. The magnitude of the echo will 

give some information about the object’s size, rigidity, and attitude, i.e., a sandy bottom or a 

school of fish will give a faint echo while a rocky bottom or a large steel ship will give a strong 

echo. A device that uses these principles is what is called active sonar. Active sonars are widely 

used. Warships use them to detect targets, fishing ships use them to find fish, and almost every 

ship uses them to determine the water depth. When used for this purpose, they are known as 

sounders. 

 

                                                 
9 Sonar is the acronym for “Sound Navigation and Ranging”. The name originated in the British 

Royal Navy, when the first electronic prototypes were used to determine distances. Nowadays, 

the term is used to describe any naval system that uses sound as a means to detect, localize, or 

identify any object.  
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Modern active sonars are quite sophisticated pieces of equipment. Thanks to the development of 

signal processing and computing power, they now use elaborate signal processing techniques to 

perform beam forming and noise cancellation. The pings have also evolved to multifrequency (or 

coloured) signals that, when reflected, can bring back much more information about the target. 

 

Despite the undeniable advantages of active sonar, their use has several drawbacks. From a 

military perspective, the main one is that active sonars reveal the presence and position of those 

who use them. Therefore, their use by a submerged submarine would defeat the submarine’s 

most important advantage, which is its stealth. Active sonars also give little information about the 

target. A few characteristics of the target can be determined by the vessel’s echo (Group 1988), 

namely rigidity, shape, and speed, but much more can be revealed by listening to the target’s own 

distinctive noise. In addition, there has been concern that the widespread use of sounders and 

active sonars interferes with biological life and, in particular, with the navigation systems of 

marine mammals. 

 

Passive sonars have therefore become the preferred means of surveillance for submarines and for 

submarine hunting, also known as anti-submarine warfare. During the Cold War, the United 

States Navy installed a network of passive hydrophones to monitor the movement of Soviet 

submarines in strategic locations, first in the North Atlantic but later worldwide. That network, 

known as SOSUS, an acronym for “SOund SUrveillance System”, is still operational, although 

no longer permanently monitored as it was for so long. SOSUS has also been used for civilian 

purposes such as monitoring whales and earthquakes (Nishimura 1994). The interest in passive 

sonars for fishing is also increasing, both as a means of identifying species and for monitoring 

fishing stocks (Mueller 1993). 

 

Although papers on the subject have not, as far as we know, been published, we envision passive 

sonar systems as backup for vessel traffic monitoring and anti-smuggling surveillance. These 

systems traditionally rely on radar and, when necessary, on visual contact. However, radar 

visibility can suffer degradation under heavy rain and radar cannot be used to positively 

determine the identity of a ship. This is usually done by radio-contact between the surveillance 

station and the ship. Smugglers will try to jam the radars with chaff which can be discreetly 

dispersed by a small plane towing publicity banners. They will also use very fast small boats, 

having a tiny radar cross-section that is easily lost in the midst of sea clutter. These boats are 

however very noisy and will easily be spotted by passive sonar, no matter what the atmospheric 
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conditions. Networks of hydrophones on the sea bottom of shallow waters are relatively 

inexpensive to install and operate, and therefore there is potential for widespread use of passive 

sonars and target identification systems such as the one developed in this thesis.  

 

1.3 - Sound generated by ships 

There are four main sound sources on a ship: 

 

a) Machinery (main propulsion and auxiliary machines) 

b) Propellers (or other forms of in-water propulsion) 

c) Hydroacoustic noise generated by the flow of water on the hull 

d) Other noise generated within the ship, specially under the water line 

 

 

Figure 47 - Typical frequency ranges of different sources of ship noise (Collier 1998). 
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Each of these sources has a typical frequency band (see Figure 47) and exhibits different 

behaviour under different conditions. Most of the information is in the 10 Hz to 2 kHz range, 

although information also exists at other frequencies.  

 

The volume and characteristics of noise 

generated by a ship will depend on the direction 

from where it is heard. Mainly due to the 

propeller, ships tend to radiate more noise to 

their stern than to the bow, as can be seen in 

Figure 48. 

 

1.3.1 - Machinery noise 

Under normal operating conditions, machinery 

noise is dominant over other sources in most 

ships. Different types of machinery can generate 

quite a variety of noise, as shown in Figure 49. Diesel engines, the most common type of engine, 

have a number of cylinders and the firing rate of these will determine the dominant frequency of 

the noise generated. However, very slight inbalances always occur between the cylinders, and a 

small power peak is usually observed at the basic frequency of individual firings (Ross 1987). By 

comparing these two frequencies, the number of cylinders of that particular engine can be 

estimated. Turbine engines tend to be noisier than diesels but can be strongly damped if 

necessary. Their main fundamental frequency is rotation speed, due to slight imbalances between 

the blades. There will also be a strong component at a frequency corresponding to the number of 

blades multiplied by the rotation speed, since this is the frequency at which hot air hits various 

components. Electric motors and generators, either for the main propulsion or for auxiliary 

systems, will generate noise at the basic shaft rate. They will also generate noise at basic shaft 

rate multiplied by the number of poles on their armatures. Of the three most common types of 

machinery, electric engines are by far the most silent. Conventional submarines use these engines 

while submerged, making them very difficult to detect. After engines, the next most significant 

sources of noise are the reduction gear boxes, that make the coupling between the propulsion 

machines and the propeller shaft. Under certain circumstances, they may even produce more 

noise than the engines. The fundamental frequency corresponds to the number of teeth contacted 

 

Figure 48 - Acoustic power radiated by a 
ship (Urick 1982) 
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per second. Some types of engines, such as electric, can work at the relatively low rotation rates 

of propellers, thereby forgoing the noisy reduction gears.  

 

  

Noise generated by the ship’s machinery reaches the ocean water only after traversing its 

structure and the hull/ocean interface. This transmission process has a huge impact on the sound. 

Most ships have shock absorbers (or dampers) on the engine mounts. These reduce the tear and 

wear and increase crew and passenger comfort. From a military perspective, shock absorbers are 

essential in decreasing the ship’s acoustical signature, and thus increase its survivability in a war 

scenario. The transmission of sound through the structure is an important part of naval 

architecture. As far as we are concerned, the most important issues are that the transmission 

process generates many harmonics due to non- linearity in many joints, and that internal 

compartments can act as resonators, strongly distorting the sound’s spectra. 

 

Most of the noise generated by machinery is concentrated at the precise frequencies described 

above or at their harmonics. It is thus called tonal noise or narrow band noise, and appears as 

narrow peaks in the spectra of the ship’s acoustical signature. As the operating conditions of the 

ship changes, different machinery will have different behaviours. The machinery associated with 

 

Figure 49 - Propulsion and auxiliary systems, and the fundamental frequency of noise generated by 
them (Collier 1998). 
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the main propulsion will generate noise with a higher frequency as the ship’s speed increases, 

while many auxiliary machines, such as generators or pumps will not change their acoustical 

signatures. The exact frequencies at which these auxiliary machines generate sound, and the 

stability of those frequencies, can reveal important information about the exact type of machine, 

its maintenance status, and its age. Naturally, the ship’s signature will vary considerably as 

different machines are turned on or off. 

 

Machinery will also generate some broadband noise. Pistons will slap on the sides of the 

cylinders producing irregular noise and, together with the shaft movement, will induce a 

multitude of vibration modes in many different engine parts. This will give rise to a generally 

broadband signal (Coates 1990). 

1.3.2 - Propellers 

Propellers will generate very different sounds depending on whether they are cavitating or not, 

and on the level of cavitation (Urick 1982). Cavitation is the process that occurs when, due to 

sudden changes in pressure, water vaporises and forms small bubbles. The bubbles will collapse 

back into liquid state letting off a characteristic click. Recent design changes in propellers, a lot 

of it due to research in aeronautics, has drastically reduced the cavitation of propellers under 

normal circumstances. Unfortunately, total elimination is very difficult, since the propeller must 

produce forward thrust, generating large forces that will inevitably lead to large changes in 

pressure. To reduce cavitation, most modern submarines have large propellers with many blades, 

a design that generates no macroscopically perceivable cavitation. However, as speed increases, 

any propeller will start to cavitate, generating a distinctive loud broadband noise and the bubbles 

will become larger. Although their collapse will make a louder noise, the main lobe of the 

broadband noise generated will actually move to lower frequencies. This happens both because 

their greater size will allow larger wavelength and because there will be less bubbles. 

 

Poorly designed or damaged propellers and shafts, or damaged bearings, will start to resonate at 

certain speeds, letting off a very loud and distinctive noise known as “singing”. While the causes 

of singing can be corrected, given enough time and money, they are sometimes unavoidable in 

the short run. 
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1.3.3 - Hydroacoustic noise generated by water flow on the hull 

The movement of a ship through water it will generate noise for many reasons. On one hand, it 

generates very low frequency waves, due to the simple fact that it pushes water in the bow, sucks 

it in the stern, and pushes it down and sideways in the bow side panels. The wake of turbulent 

water will generate higher frequency noise, both by itself, and as it slaps on the sides of the hull. 

Finally, small irregularities in the hull will give rise to cavitation as water rushes past them, 

resulting in noise with even higher frequencies. The wake will also interfere with the propeller 

making it suffer pressure changes. On the other hand, the propeller will induce noise in the hull 

as it pushes water into it with varying pressure. As speed increases, the amplitude of the 

hydroacoustic noise will rise considerably but, for the reasons explained in the previous section, 

will tend to have its peak at lower frequencies. 

 

1.3.4 - Other sources of noise 

All noise generated within a ship will eventually find its way into the ocean. Some is made 

directly by people inside the ship as they go about their daily chores. In a submerged submarine, 

all these factors must be controlled, and modern submarines have insulating materials on the 

inside hull to dampen noise. Loose or improperly fastened objects, such as dangling keys or 

improperly secured fire extinguishers, will also produce considerable noise when a ship is rocked 

by the waves. Finally, vibrating pipes (due to irregular flow), discharge of refrigeration water, 

above or below surface exhaust of gases, and other similar effects all add up to produce 

considerable noise. 
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Recently, there has been a lot of research into irregular or isolated sounds (or transients) 

produced by ships or submarines, that may reveal important aspects of their operations. A typical 

example is the opening of the torpedo hatches. It is a “one-shot” sound, but it will indicate that 

the submarine is preparing to take offensive action. Firing canons or missiles will also produce 

distinctive noises. One irregular sound that is very difficult to avoid is the one produced by 

rudders and their associated machinery. To keep a ship’s course, constant adjustments must be 

made to the rudders, turning on an off the motors that move them, and causing sudden 

mechanical stress on the machinery and water flow.  

 

The general behaviour of typical ship noise spectra with speed is summarized in Error! 

Reference source not found.. 
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Figure 50 - Typical power spectra of ship generated noise, and its change with speed. 
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1.4 - Transmission of sound to the sonar equipment 

After reaching the water, the sound generated by a ship will be propagated in quite strange ways 

through the ocean, were it will be mixed with a variety of other sounds, until it finally reaches a 

sonar equipment. Let us now see each of these effects. 

1.4.1 - Ambient noise 

Although known romantically as “the silent world”, the underwater environment is actually quite 

noisy, due to a number of different causes (Urick 1986): 

 

a) Human intervention. Due to the easy propagation of sound in water, even very distant 

shipping noise will be felt. Even though individual ships may not be distinguishable, their 

noises will blend together and produce a broadband humming sound. Shore facilities and 

dredges can also produce distinctive sounds. Since this sound (as other ambient sounds) 

has to travel long distances, its spectra is strongly distorted by the transfer function of the 

ocean itself. Typically, the higher frequencies are greatly filtered, and the general effect is 

a lower frequency hum than the one that would be observed if the sources were closer 

(Dyer 1998). 

b) Surface agitation (Dyer 1998). Surface agitation is mainly due to the interaction between 

the atmospheric wind and the ocean water. Higher wind speed implies a correspondingly 

higher level of sound produced by waves, spray, and bubbles.  

c) Biological sources (Tyack and Howald 1993). Marine animals and even plants can 

generate considerable noise. Many marine mammals deliberately generate sound for 

navigation and other purposes, varying from short clicks to long and drawn out whale 

songs. Many other marine animals perform regular movements, so as to be able to swim 

or even just move water through their gills, and this movement produces a distinctive 

sound. One of the most notorious is the “croaking shrimp” that violently snaps while it is 

moving through the water, producing a very well known sound (Lohse, Schmitz et al. 

2001). 

d) Seismic activity (Keenan and Dyer 1984; Goodman and Yamamoto 1988; Gerstoft 1994). 

Although major earthquakes or volcanoes are rare, there is quite a lot of low intensity 

seismic activity going on at any one time. Due to the particular sound transmission 



Ship noise and target identification  191 

 

characteristics of the ocean, some sort of seismic activity can be heard almost anywhere 

on the planet. 

e) Ice breaking (Xie 1992). Temperature changes in polar ice causes great mechanical stress 

that leads to cracks in ice. These cracks produce a loud noise.  

f) Rain (Pumphrey, Crum et al. 1989; Scringer, Evans et al. 1989). Rain, together with snow 

and ice storms, will induce considerable noise. 

 

A good characterization of ambient noise is very important for anti-submarine warfare, and 

charts with expected ambient noise levels are routinely distributed at navy briefings. One such 

chart, known as “Knudsen curves” is presented in Figure 51. A very detailed account of the 

spectra of ambient noise is given in (Wenz 1962), and a recent paper by (Andrew, Howe et al. 

2001) shows and discusses some of the changes that have occurred over the last 40 years. 

 

The ambient noise is not homogeneous in all directions, varying with azimuth and vertical angle 

of arrival. Thus, when planning naval exercises, it is important to have a characterisation of 

ambient noise in all directions. 

 

 

Figure 51 - Typical ambient noise levels (NATO 1993) 
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1.4.2 – Propagation of sound through the ocean 

Propagation of underwater sound is the most important and probably best studied aspect of 

underwater acoustics. 

 

One of the most important 

parameters to determine the 

behaviour of sound in water it its 

propagation speed. The speed of 

sound in the ocean depends on the 

density of the water, and it can vary 

enormously with depth, location, 

and time. Ocean water has high and 

varying concentrations of various 

organic and inorganic substances, 

mainly salts. Furthermore, even 

small changes in temperature will 

induce changes in density and thus 

in sound speed. The greater changes 

in these parameters occur in the vertical direction, since the ocean is composed of a series of 

layers of water with slightly different characteristics. Knowledge of these layers is extremely 

important for anti-submarine warfare. The variation of sound speed with depth is known as 

“bathythermic profile”. Special devices exist to determine it, called bathythermographs, which 

can be expendable (i.e. thrown overboard and lost once used), or towed. The temperature 

gradient tends to be less pronounced during mornings, allowing very long range detections. 

During afternoons, a strong temperature gradient will tend to deflect the sound downwards. 

Unfortunately, it is impossible to know the bathythermic profile along all the path between 

emitter and receiver, since it changes along that path and internal waves (between the layers) will 

make it vary with time. 

 

As sound traverses across water with different densities it is reflected and refracted, giving rise to 

curvilinear paths. Many models and computer programs exist to determine these paths, known as 

ray-paths, but all these are only approximate. A specially adverse effect of these curvilinear 

paths, is that multiple paths may (and usually do) exist between any two points. These multiple 

 

Figure 52 - Typical bathythermic profiles (Apel 1990) 
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paths will interfere with one another, generating areas where the sound cancels out or multiplies 

itself. 

 

As it travels through the ocean, the sound will also reflect on the bottom and on the surface. 

These reflections will further contribute to the existence of multiple paths, and can distort the 

sound introducing phase changes. The sea surface is continuously moving, and thus reflections 

on it will suffer slight Doppler shifts. The type of bottom (sand, rough or smooth rock) will 

induce scattering in the sound waves, and water itself is a dispersive medium, scattering sound in 

all directions. Finally, small bubbles of air will further interfere with the propagation, giving rise 

to a medium far from the linear and time invariant model that some computer programs use. A 

detailed account of the various aspects of sound propagation, including losses, distortions, and 

ray-paths, may be found in (Giellis 1983) or (Urick 1982). 

  

1.4.3 – Reception of the sound 

After propagating in the ocean, the sound will eventually be received by the sonar’s 

hydrophones, and processed. Sonars will usually have many individual hydrophones in order 

perform beam forming and cancellation of spurious effects. 

 

The position and quality of the hydrophones can influence tremendously the received signal. At a 

very low level, molecular agitation due to temperature will induce spurious noise in the 

hydrophones (Dyer 1998). At a more macroscopic level, pressure waves due to water movement 

will also induce noise. This effect, together with technological limitations in the choice of 

hydrophone sensors, makes it very difficult to obtain reliable measurements of sound at very low 

frequencies (Tims and Henriquez 1979). The static pressure on the hydrophones will also 

condition their performance, which generally improves as the pressure rises due to less 

cavitation. 

 

Finally, one of the most important factors in the reception is the receiver’s self-noise.  

 

Isolated hydrophones, on the seabed or suspended from buoys, are naturally the ideal sensors, for 

they have no machinery induced self-noise, and are affected only by possible residual 

interference of their electronic amplifier systems or mount ing mechanisms. This type of 

hydrophone is actually quite common, thanks to the use of sonobuoys by Maritime Patrol 
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Aircraft. Sonobouys come in many types and shapes, but are all basically a hydrophone, a signal 

amplifier, a buoy (from which the former two are suspended), a radio-frequency modulator and 

an antenna. They are dropped by aircraft into the ocean, usually in groups or “fields” so as to be 

able to perform triangulation. After hitting the water, the hydrophone itself is lowered to a pre-

defined depth, and the captured signal is transmitted by radio to the listening station on the 

aircraft or nearby ship. For safety and security reasons, they will usually sink to the bottom after 

a few hours. Although we present no results in this thesis, we used some of our techniques on 

sonobuoy recordings made by the Portuguese Air Force. 

 

Submarines are the next best platform for sonars. They are usually designed to be silent, and 

when submerged (specially at great depths) produce little hydroacoustic noise. Submarines, as 

surface ships, can operate two types of sonars: hull mounted sonars, and towed arrays. Hull 

mounted sonars are very sensitive to self noise generated by the submarine. This self noise can 

reach the hydrophones both through the water (using direct paths or reflecting off the surface and 

bottom) and through the hull itself. Towed arrays are by far the best means of receiving sound, 

both because they are not as influenced by the self noise and because their greater distance 

between individual hydrophones allows better beam forming. Unfortunately, towed arrays are 

quite expensive and cumbersome to operate, require very low speeds of the towing vessel, and 

require estimating the exact position of each hydrophone (Jesus, Felisberto et al. 1994; Jesus, 

Felisberto et al. 1996). 

 

Surface ships are the worse platforms for passive sonar operation, specially when using hull-

mounted hydrophones. As the hull is constantly rocking in the waves, and is by nature near the 

surface, hull-mounted hydrophones will suffer badly from noise induced by water movement and 

cavitation near them. Furthermore, surface ships tend to be much noisier than any submarine. 

 

However, in the early stages of our project, we did perform some passive sonar recordings with 

hull-mounted hydrophones (using the French designed “Diodon” system that has since been de-

activated by the Portuguese Navy), and obtained encouraging results (Lobo 1995). 

 

After reception, the sound usually goes through a signal processing pipeline that will perform 

beam forming, to obtain directional readings, noise cancellation, and feature extraction. It can 

then be presented to sonar operators in a number of forms. The one that is sill most reliable is as 

sound. Passive sonar operators go through a lot of training to be able to identify different ships. 
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The quality of their identifications depends critically on their skill, experience, and state of mind. 

It can be very difficult do distinguish between hundreds of very similar sounds, specially under 

the stressful conditions under which they must operate. It is therefore remarkable how a good 

sonar operator can accurately identify targets, even with low signal to noise ratios. Training 

manuals and recordings for these operators are highly classified, but exist in almost any navy, 

and contain a number of useful tricks and decision charts to help them. The sound can also be 

represented graphically on screens or paper. The most common technique is to use spectrograms, 

known in the submarine community as Lofargrams. These are simply successive spectra of the 

received signal with some sort of colour coding. As time progresses, any tonal noise will give 

rise to identifiable lines on the spectrogram. Changes in these lines usually correspond do 

changes in their Doppler distortion, thus revealing the closest point of approach to the target. 

Although highly classified, there is evidence that automatic identification systems are used by 

major navies, and it is suspected that some use neural networks, similar to those used in this 

thesis. 

 

1.5 – Previous work in this area 

As mentioned before, the identification of underwater noise sources has been studied for a long 

time. After the Second World War and with the advent of the “Cold War”, it became a very 

intensively researched subject. It also became a very sensitive one, and thus highly classified. 

Even so, some publicly available papers have appeared dealing with this subject, and we shall 

consider them here. We shall start by reviewing the research done on neural networks for sonar 

processing, since it is closely related to the work we developed. We shall then briefly see other 

approaches. A lot of research has been done on signal processing techniques for sonar 

processing, but since it is not our main concern, we will just mention some of it. 

 

1.5.1 - Neural Networks for Sonar Signal Classification 

Over the last few years, and despite a period during which anti-submarine warfare no longer 

seemed to be the main priority for most navies, quite a few papers have been presented where 

neural networks have been used to classify sonar data. Although many of them do not deal with 

passive sonar, which is our main interest, we will nevertheless mention them because they do 

provide relevant contributions. 
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When Rumelhart, Hinton and Williams (Rumelhart, Hinton et al. 1986) re-discovered the 

Backpropation algorithm for training networks (it had been described 12 years earlier by Paul 

Werbos (Werbos 1974)), the USA Department of Defense took a great interest in neural 

networks, and DARPA sponsored quite a few projects in the area of neural networks. Due to the 

fact that the “Cold War” was reaching a peak with President Regan’s push for SDI (Strategic 

Defense Initiative, also known as “star wars”), most of the research effort was highly classified. 

This is why in the 1988 DARPA study report (DARPA 1988), the use of neural networks for 

sonar signal classification is mentioned, but not described in any detail. 

 

The first paper describing the use of neural networks for sonar classification was published by 

Terrance Sejnowski in 1988 (Sejnowski and Gorman 1988). In that paper a system to separate 

cylinders (supposed to be mines) from rocks using an active sonar was described. The simple 

FFT coefficients of the sonar echoes were used as features for a Backpropagation network with 

60 input neurons, 25 hidden layer neurons, and two output neurons. The error rate was a 

remarkably low 0.2%, even though human operators could do no better then 9%. These 

impressive results sparked a lot of interest in the field. 

 

In the same year, a South African team (which uses submarines and sonars exactly equal to those 

in use in the Portuguese Navy) published a paper (Lourens) with a model for describing the 

cavitation around the propeller, attempted to model the gearbox, and did some classification 

based on AR models. Although at the time a fully automatic classification was still beyond the 

foreseeable horizon, the same team went on to produce some very interesting classifiers of 

passive acoustic signals (Lourens), that have, as ours, been used on real sonar data. 

 

In 1990, several events led the end of the “Cold War”. With the threat of deep sea warfare largely 

gone, the USA DoD lost most of its interest in classification of sonar data, which had several 

implications: on one hand, research grants for this area were substantially reduced, but on the 

other, the security clearance for research was lowered, leading to a large increase in published 

works, and to the use of the developed technology in different areas (such as fish school 

classification, Autonomous Underwater Vehicle (AUV) navigation, ship traffic monitoring, etc). 

It is ironical, although very fortunate, that when technology was finally getting ready to meet the 

challenge, the main motivation disappeared. The USA DoD did however maintain an interest in 

the area, and recently it regained more importance, especially for identifying potential targets in 

coastal environments. As for smaller navies, such as the Portuguese, their interest never 
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diminished, for coastal warfare (also known as brown water warfare) was always their prime 

mission. 

 

In 1991, the  “IEEE Conference on Neural Networks for Ocean Engineering” was held in 

Washington DC. There was one session dedicated only to “Classification of Acoustic Signals”, 

where several relevant papers were presented, exploring most of the then popular neural network 

paradigms, such as Hopfield Networks and BAM (Van-Houtte, Deegan et al. 1991), 

Backpropagation (Casselman, Freeman et al. 1991; Russo 1991), Linear Vector Quantization and 

Radial Basis Functions (Ghosh, Chakravarthy et al. 1991). Some papers also presented a 

comprehensive comparison of different statistical and neural network based approaches (Pridham 

and Hamilton 1991) (Solinsky and Nash 1991). While some authors managed to have very low 

error rates on specific data sets ( 7% in (Russo 1991), down to 0% in (Pridham and Hamilton 

1991)), the more realistic and general evaluation of (Solinsky and Nash 1991) showed error rates 

between 15% and 39%. Virtually all authors used the FFT coefficients as features (never more 

then 180), with some notable exceptions where wavelet coefficients where used (Ghosh, 

Chakravarthy et al. 1991). While most papers dealt with basically stationary signals (DARPA 

standard dataset 1), one ventured to classify transient signals (DARPA STDS-Standard Transient 

Data Set) (Casselman, Freeman et al. 1991), but still using FFT coefficients.  

 

The DARPA standard dataset 1 was a collection of very different sounds. There were 6 different 

classes, two of them being short non-stationary signals, the other 4 being clear tonal sounds. 

Depending on the preprocessing, various feature vectors could be obtained, but (Ghosh, 

Chakravarthy et al. 1991), for example, obtained 42 training patterns and 179 test patterns, not 

evenly distributed amongst the classes. In this thesis, we do not compare our results with the 

DARPA sets because the data is too uneven to obtain what we feel is an honest evaluation of the 

classifier algorithm. 

 

In the same year (Burton 1991) published a very interesting paper where he classified transient 

sonar signals (ice-breaking) with a vector quantizer (not Kohonen’s LVQ, but the one described 

in (Linde, Buzo et al. 1980)). He used 15 point cepstra (equivalent to 6 ms) with a 83% overlap, 

a rectangular windowing function (thus no window), and 64 codebooks. The data set consisted of 

110 patterns evenly distributed amongst 7 classes, and using the leave-one-out technique 

(Breiman, Friedman et al. 1984) he obtained a 29% error rate. 
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In 1994, a paper even more similar to our work was published (Hemminger and Pao 1994) (only 

recently have we found out that it was published the same month (Lobo 1995) was submitted). 

He used 64 point Welsh periodograms, upon which a Vector-Quantizing type of clustering 

algorithm was applied to create prototypes, followed by a supervised single layer network 

(named Functional Link Net – FLN (Pao 1989) ). The main contribution, however, was the use of 

the Hausdorff Metric (Essex and M.A.H. 1990), which proved to be a very convenient way to 

compare spectra. The error rate was an amazingly low 4%, with a relatively low computational 

load thanks to the simple structure of the neural network.  

 

The dependence of time in the acoustic signals (in this case whale songs) was addressed without 

much success with Time Delay Neural Networks (TDNN) by (Waibel, Hanazawa et al. 1989) but 

with very good results using a biologically inspired “habituation” pre-processor in (Stiles and 

Ghosh 1995). 

 

In the 1995 International Conference on Neural Networks (ICNN95), (Fujii 1995) presented a 

general overview of the use of Neural Networks in Ocean Engineering, in which target 

identification is mentioned, even though the main focus is to help the guidance system of 

Autonomous Underwater Vehicles (AUV). 

1.5.2 - Other related work 

There has been, of course, a lot of work in signal processing, classical statistics and other 

branches of artificial intelligence, that attempt to classify underwater acoustical signals, or to 

give significant contributions towards it. A good, if general, overview of signal processing 

techniques applied to sonar signal processing can be found in (Dwyer 1996), containing 76 

references to papers published at the “IEEE/MTS Oceans” conferences during first half of the 

90’s, all of them concerning classification and detection of sonar signals. 

  

Various papers have shown that ARMA models, or some variation of them, can provide 

satisfactory results in some cases. (Huang, Zhao et al. 1997) uses a 20-order pole model, 

compressing the results to a 6 dimensional vector with a Karhunen-Loève transform. 

 

Several techniques have been proposed to extract more and clearer information from the standard 

spectrograms, or as they are usually called Lofargrams or simply “lofars” (Low Frequency 

Spectrograms). (Jauffret and Bouchet 1996) proposed a new line extraction algorithm for single 
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tonal lofargrams (or at least single dominant), while (Oliveira and Barroso 1999) addresses the 

multi-component case. 

 

It has been shown (Tesei, Regazzoni et al. 1994; Lyons, Newton et al. 1995) that Higher Order 

Spectra (HOS) can significant ly improve the characterization of the acoustic signature, when 

compared to the standard Fourier Spectrum. 

 

The importance of a correct characterization of background noise in designing an optimal 

Generalized Likelihood Ratio Test (GLRT) has also been shown by (Messer 1994).  

 

An information theory approach, using entropy and mutual information has also been used with 

promising results (Ren and Willis 1995; Broadhead, Pflug et al. 1996; Quazi 1996). 

 

Wavelets have been used to characterize sonar signals with good results (Ho, Chan et al. 1996), 

especially when non-stationary phenomena are present. 

 

Various methods have been suggested for breaking up the raw signals into more meaningful 

features, in particular, separating broadband from narrowband effects can be very useful. Some 

approaches use median filters to accomplish this task, while others develop optimal filters that 

use not only the raw signal, but information from the beamforming sub-system (Mehta, Fay et al. 

1996). 

 

An optimized algorithm for Target Motion Analysis (TMA), that takes into account multipath 

and Doppler effects was presented by (Blanc-Benon and Bienvenu 1995). 

 

There have also been several contributions that address not only sonar based classification, but 

the more general task of classification based on all possible sources. (Musman, Chang et al. 

1990) for example, devised a real time control strategy for gathering evidence for a Bayesian 

Belief Network, that considerably reduces the amount of computation necessary for a good 

identification. 

 

The vast amount of data necessary to train a classifier, and in many cases to assist it during 

classification, have led to the development of specific database techniques. The British Defense 
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Research Establishment (DREA) has been developing a very comprehensive database (Ebbeson, 

Ozard et al. 1997), as has the Sweedish FOA (Bergsten, Schubert et al. 1997). 
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PART III 

CHAPTER 2 

The software used 

2.1 – Introduction 

During the course of this PhD program, a lot of software was written, tested, and used. Some of it 

was just circumstantial and will not me mentioned in this thesis, but some of it forms a useful set 

of tools that were very important for our work and may be used by other researchers. 

 

We will first discuss the software written in C/C++ that forms a user friendly program to be used 

both by researchers and end users, and then series of Matlab routines, that are more appropriate 

for research only. We conclude with a brief reference to other software that was used. 
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2.2 – The DSOM program 

When the present research project started, there was a possibility that it would be used by the 

Portuguese Navy in its submarine squadron. It was therefore important that all the software used 

could be incorporated in an operational program (i.e. a program that would be used in everyday 

operations aboard the submarine). This precluded the use of some very fine public domain 

software that is distributed under the GNU license, and since we did not yet have a generous 

budget, we could not use some also very good commercial libraries. We decided to write our own 

code, from scratch in C/C++, for the following reasons: 

 

a) We could have complete control over it. We may incorporate any part of it into whatever 

software we choose to develop. 

b) We would have a better understanding of various problems. Writing our own code from 

scratch gives us first hand experience of all aspects of the implemented algorithms. This 

not only weeds out potential bugs in 3rd party software10, but gives added understanding 

and sensitivity to the problems associated with the implemented techniques. 

c) Introducing new techniques would be easier. We expected to introduce considerable 

changes to existing techniques, and having written all the code makes the introduction of 

these techniques easier. 

d) We could make a user- friendly program, tailored to the needs of the submarine squadron 

personnel. It was important that even during the development phase of the project, so as 

to have full support and feedback from the end users, that the program be very easy to 

use. There are also certain tools and modes of operation with which the personnel is 

familiar that should be incorporated. It would be very difficult to make such a front end 

for very disparate software packages. 

e) We like to code11. Being a PhD program in “Informatics Engineering”, we feel that is 

important to show some proficiency in the most basic skills of computer science: 

programming.  

                                                 
10 Even very good software packages, with excellent reputations have bugs. Matlab’s signal 

processing toolbox, for example incorrectly implements the well known Hamming filter. 
11 There is an interesting book, named “Born to code in C” Schildt, H. (1989). Born to Code in C, 

McGraw Hill., that has a nice explanation of this phenomenon in its introduction. 
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Naturally, writing our own software from scratch has the big disadvantage of being extremely 

time-consuming, and prone to our own bugs. 

 

The next choice that had to be made was that of a hardware and software platform. Writing for a 

generic UNIX environment is the preferred choice for many research projects, since it can easily 

be ported to a very wide variety of machines, including very powerful mainframes and 

supercomputers. Unix is also a very stable system well known to most researchers, and a large 

selection of tested routines and software packages are available. However, UNIX presented a 

series of disadvantages for this particular project: 

 

a) The use of UNIX is not widespread amongst most end users: there are not many 

available machines, and there is little expertise on their operation and maintenance. In 

the Portuguese navy, that was meant to be the main user of the system, there are quite a 

few UNIX systems. These are used mainly as dedicated machines on shore based units 

and large ships, for control and communication systems. As dedicated systems, they 

would not be available for use with our software, and are not available on submarines 

anyway. Some years ago, many PC laptops, running a version of UNIX where 

distributed to patrol craft used in fisheries control, as part of a monitoring project 

sponsored by the governments fisheries department. Even though the software was 

pretty good, even simple maintenance tasks were a nightmare for the crews that had to 

operate them, which led to a relative disinterest and lack of use. Since the crew 

members are far more proficient in using MS-Windows12 based machines, the next 

versions of the system were developed for this operating system, and have been used 

regularly. The lesson to be learned is that either the system has a professional support 

and maintenance team and is used as a black box by the end users, or it has to be 

developed in a system the end users are familiar with. 

 

                                                 
12 We choose to use the rather old term MS-Windows, standing for Microsoft Windows, to refer 

to the family of operating systems produced by Microsoft that have the ir roots in the first graphic 

interface produced by the company (MS-Windows), namely MS-Windows 3.11, Windows 95, 

Windows 98, Windows ME, Windows NT, and Windows 2000. 
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b) The graphical interfaces are not very well standardized, and developing software for 

them can be quite troublesome. Even though there is widespread support for the X-

Windows interface, slightly different versions and implementations are used. Thus 

porting to other platforms is seldom trouble free. Although there are quite a few good 

toolkits for developing interfaces for X-Windows, the equivalent tools for the MS-

Windows environments are generally easier to use. Although too late to have been used 

in this project, an interesting convergence of the tools available for both environments 

is the Kylix system by Borland. This Pascal based development system allows, to a 

certain extent, the development of programs with graphical interfaces that run both 

under UNIX with X-Windows, and MS-Windows, and is very easy to use since it is 

based on the popular and very intuitive Delphi system. 

 

On the other hand there were a few good reasons for deve loping the software in a MS-Windows 

environment, and in particular for Windows 9x (Windows 95 and Windows 98): 

 

a) Widespread availability of machines and expertise. All ships in the Portuguese Navy have 

some PC running MS-Windows aboard. In most cases, these PCs are available to be used, 

as a secondary mission, to run our software. Thus, the critical problem of getting money 

for machines to test and prove our system could be avoided. Moreover, MS-Windows 

based machines are available in large quantities at the Naval Academy, at the New 

University of Lisbon, Portugal, or any other school. 

b) Easy to use development tools. There are a number of very good development systems 

available for MS-Windows, and there is widespread support for sound-card programming 

(which would be a requirement). 

 

The final program proved to be quite reliable, and could perform classification in real time even 

on some early Pentium PCs, running the original Pentium at 75 MHz clock speed. Due to the fact 

that it runs on inexpensive and widely available computers, and can use any TCP/IP networked 

computers to form a PVM cluster, we feel it can have a wide application both in educational 

institutions (where computer classrooms are available), and in commercial enterprises (where the 

networked office computers or points of sale are networked and largely unused during nights). 
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2.2.1 - Overview of DSOM 

The program that was developed, was called DSOM for Distributed Self Organizing Map. It had 

the following requirements, that where all met: 

 

a) Record data from the sound card. We found that, although there are differences between 

sound cards, most of them had quite reliable linear transfer functions in the frequency 

ranges that we would be using. Thus, the program should use the MS-Windows 

Multimedia Interface to control the sound card and read data directly from it. 

b) Show a spectrogram of the sound being recorded in gray scale. This was required to give 

the end users an interface they were familiar with. With it, we were able to check that the 

recording was being done correctly, and a sliding ruler was provided to identify the exact 

frequency of any feature that turned up on the spectrogram. 

c) Read and write data from sound files (in the Microsoft .WAV format), and from feature 

vector files in the format used by Kohonen’s SOMPAK (Kohonen, Hynninen et al. 1995).  

d) Read and write SOM maps in the format used by Kohonen’s SOMPAK (Kohonen, 

Hynninen et al. 1995). 

e) Train SOMs either on a single computer, or over a distributed cluster of networked 

computers. For reasons explained in part I, we chose to use PVM as the distributed 

platform. The possibility of training a SOM over various computers made training very 

large SOMs a possibility. Under operational conditions, this could mean using all the 

vessel’s computers to re-train a network during missions, and ashore it meant being able 

to train the large SOMs in reasonable time. 

f) Show the user a color coded 2-dimensional SOM, highlighting the currently selected 

winner neuron. 

g) Generate U-Matrices of the SOM maps. 

h) Prune a SOM using Q-Sets. 

i) Be as simple as possible to use by non-trained personnel in operational conditions. This 

required that with only a few keystrokes, a end user should have a meaningful output 

from the program. 

j) Be usable for research purposes. This require that various aspects of the software be as 

customizable as possible, to accommodate experimentation with different techniques. It 

also required that the core routines, including those involving the PVM interface, be well 
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documented and written in generic C/C++ so that they could easily be ported to another 

operating system, namely Linux. 

 

It was decided to use the data format standardized by SOMPAK (Kohonen, Hynninen et al. 

1995), for both the data pattern files and the SOM maps. We will refer to this format as “the 

Kohonen format”, and detailed explanation of the format is available in the SOMPAK 

documentation. Basically all files are text files, where the first lines contains the number of 

features (and map characteristics if it is a map), and the next lines contain one pattern each, each 

feature separated with a space, and the optional label as the last value. Comment lines are 

available, and start with a “#”. We used these comment lines to include information specific to 

our implementation, namely the type of distance function to be used. Thus, if we want to use a 

non-Euclidean distance, the second line of the file must be a comment with the information as to 

which function to use (as we will see later, only Hamming distances are currently available). 

 

The program was written in Borland “C++Builder” a visual development system for MS-

Windows that is very similar to the popular Borland “Delphi”, with which most people involved 

 

Figure 53 - Main window of the DSOM program. 
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in the project were familiar with, but that uses C++ instead of Pascal as its base language. The 

PVM version used was the one developed in the University of Coimbra, that is fully compatible 

with the original version for UNIX  (at the time we started, the other version wasn’t even 

available for MS-Windows).  

 

The task of actually writing and program was almost entirely done by Nuno Bandeira, then in his 

last year of undergraduate, as his “final project”13. His merit and very hard work cannot be 

overstated, as it demonstrated not only great proficiency in C/C++ and using the sound card 

windows API, but also programming and debugging PVM with very little in the way of support 

tools. The following year, Raul Moizão coded the generation of U-Matrices and the Q-Set 

simplification, adding on his initiative some enhancements to the U-Matrix visualization. A 

separate auxiliary program, used to initialize the SOMs and named “Drandinit” was written by 

Cadet Almas. The author of this thesis also wrote a few of the routines, but mainly set our 

requirements and design guidelines and helped with debugging and testing. The development 

process in described, in Portuguese, in the students final reports (Bandeira 1996), (Moizao 1997), 

and (Almas 1998). 

 

The main screen of the program can be seen in Figure 53, and appears as soon as the program is 

started. The screen is divided into 4 main areas: 

 

a) Top - Menu Bars . The top of the window has the menus which give access to all the 

program’s options, including secondary windows. The most used options (creating a 

new map, opening a trained map, saving a map, configuring a map, and configuring 

the spectrogram) are available also with “fast buttons” under the menu bar. Although 

the meaning of each option in the menu bars is self-explaining, we shall discuss them 

later. 

b) Center-left – SOM visualization. Each unit of the map is represented by a square in 

this area. The units that have labels are color coded, according to the legend available 

just below. When the program is running in real time classification mode, the winning 

neuron is shown by a blinking circle. Left clicking this area will give available 

                                                 
13 In the New University of Lisbon, as in most science and engineering schools in Portuga l, 

undergraduate students are required to do what is called a “final project”. This “final project” will 

require most of their time during a semester to a year, and is treated like a graduation thesis. 
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information on the underlying unit (its label and coordinates), while right clicking 

pops up a menu that allows us to re-scale and re-draw the map. 

c) Bottom-left – Legend. This area contains the color code legend used in the map. 

Right clicking this pops up a menu with legend related tasks, such as gathering 

legends from the SOM, changing the color a given label, creating/editing/deleting 

labels, and finally loading and saving legend files. 

d) Right – Spectrogram. This area shows the spectrogram of the sound being received. 

The spectra are gray-scale coded, with white representing the highest intensity. Left 

clicking in this area gives the option to start/stop processing the sound from the sound 

card, and gives access to a menu with the signal processing options. A sliding ruler is 

available, that can be moved with the mouse, and gives the exact frequency value 

(shown above) of any area of the spectrogram. As the processing goes on, the 

spectrogram slides upward, with the most recent spectra at the bottom. 

 

2.2.2 - Main menu bar 

The main menu bar has the following options: 

 

a. File menu (FICHEIROS DE MAPAS) 

i. Open (ABRIR) – Opens a SOM stored in Kohonen format. 

ii. Save (GRAVAR) – Saves a SOM in Kohonen format. 

iii. Save as (GRAVAR COMO) - Saves a SOM in Kohonen format with a 

different name. 

iv. Close (FECHAR) – Stops using the loaded SOM. 

v. Exit (SAIR) – Terminates the program. 

b. Actions (ACÇÕES) 

i. Distribute (DISTRIBUIR) – Distributes the map amongst a PVM cluster, 

sending neurons to other machines. A dialog box will ask how many 

machines should be used, and the name of the executable in those 

machines (default=”client.exe”) 

ii. Recall (RECOLHER) – Recalls neurons from the PVM cluster, ending the 

distribution process. 

iii. Train (TREINAR) – Pops up a dialog box with the various options for 

training the SOM. 
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c. Windows (JANELAS) – Gives access to windows with other functionalities. At 

the moment. 

i. Patterns (AMOSTRAS) – Pops up a window that allows processing of data 

files with patterns or with recorded sounds. This is intended for off- line 

data processing. 

ii. U-matrices (U-MAT) – Pops up a window that allows the generation and 

visualization of different U-Matrices. 

 

In the version used for research purposes, a fourth menu entry was added, named “ABOUT”, that 

has information about the authors and version numbers. 

 

2.2.3 - Pattern Window 

This window allows off- line processing of both data pattern files and sound files in Microsoft’s 

.WAV format. 

 

The top menu bar gives access to the various options, the middle edit box indicates which data 

file is being used, and the bottom part shows the labels of each individual pattern.  

 

In the label window, one may select one or a group of labels. Right clicking on the labels pops up 

menu that allows: 

 

a) Editing the label. 

b) Visualizing the spectra of that 

label. 

c) Classifying that pattern on the 

SOM (also Ctrl-C). 

d) Deleting that pattern. 

 

The FILE menu (Ficheiros), allows for the traditional file operations with data files in Kohonen 

format, namely Open, Save, Save As, and Close 

 

The EDIT menu allows editing the selected labels (as can be done by right clicking them), and 

allows 2 options to work with sound files: 

 

Figure 54 - The main Pattern Window 



212  Part III, Chapter 2 

 

 

a) Inserting a WAV file. The WAV file will be read and processed according to the selected 

options, to produce a data pattern file in Kohonen format. 

b) Recording a WAV file. This will produce a WAV file with the sound recoded from the 

sound card. It is possible to hear the sound before or after saving it to disk. 

 

 

The MAP (Mapa) menu has the following options: 

 

a) Train a SOM. This brings up the standard training 

dialog box. 

b) Calibrate. This will label the SOM according to the 

labels of a given set of patterns. For each unit of the 

SOM, the labels of the patterns that have it as the 

winner unit are recorded, and the label given to the 

unit is the most occurring label amongst these. 

c) Classify. This will classify a single pattern (as can 

be done by right clicking the label). 

d) Classify all. This will classify all selected patterns, and if they have labels, it will 

calculate the error rate (i.e., the percentage of cases when the patterns label was different 

from its winning unit label). 

 

 

Figure 55 - Spectra visualization 
from the Pattern Window 
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2.2.4 - Training dialog box 

The training dialog box is 

accessible both at the main 

window and at the pattern 

window. It is assumed that the 

SOM training will always occur 

in two phases, described in 

(Kohonen 2001), and 

parameters for each of the 

phases can be introduced, as can 

be seen in Figure 56. 

 

The top area defines the default 

label color to be assigned to the 

units. The two areas concerning the 1st and 2nd phase of the training process contain the same 

information. 

 

The first dialog box defines the number of iterations (ITERAÇÕES). It must be noted that, 

contrary to Kohonen’s convention, where an iteration is considered to be the presentation of a 

single pattern, each of our iterations is a run through the entire training set. Accordingly, the 

learning parameters are updated only when a complete run through these patterns is performed. 

As a consequence, the number of iterations used by DSOM will always be much smaller than the 

equivalent number of iterations in SOMPAK. 

 

The distance functions currently available ( FUNÇÃO DE DISTÂNCIA) are the Euclidean 

distance and the Hamming distance. When using the Hamming distance, the random bit update 

rule is used, as described in part II of this thesis. 

 

Although there is a dialog box to change the rate of change of the alpha parameter (Kohonen 

2001) (FUNÇÃO DE VARIAÇÃO DO ALFA), only a linear variation is currently possible. 

 

 

Figure 56 - Training dialog box 
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The two neighborhood functions available (FUNÇÃO DE VIZINHANÇA) are “Square” 

(equivalent to Kohonen’s bubble), and “BinSquare”, which is similar but should be used for 

binary maps. 

  

Finally, two dialog boxes allow the introduction of the initial learning rate (alpha), and 

neighborhood radius. It must also be noted that this implementation will force the radius down to 

0, so that in the last iteration only the winning neuron is updated. This feature will compensate 

the annoying outward boundary distortions that the traditional SOM has. Thus, even the units on 

the extremes of the map will be correctly centered amongst the patterns that have them as 

winners. 

 

2.2.5 – Differences between DSOM and SOMPAK 3.11 

Summarizing what has already been discussed, the main differences between DSOM and 

SOMPAK 3.11 are (besides DSOM’s extra features): 

 

a) The way iterations are counted. SOMPAK considers one iteration to be the 

processing of a single pattern, while DSOM considers the processing of the 

entire training set to be an iteration. Thus, the parameters are updated more 

often in the original SOMPAK 

b) The final radius of the neighborhood. SOMPAK makes the neighborhood 

radius converge to 1, i.e., even in the last iteration some neighbors of the best 

matching unit will be updated. DSOM makes the neighborhood converge to 

zero, i.e., in the last iterations, only the best matching unit will be updated. This 

will reduce the border effects that can be observed in the original SOMPAK. 

c) The comments in the datafiles. DSOM uses the comment lines of the datafiles 

to encapsulate information about it’s extra features, such as different similarity 

measures. Since these lines are only comments, they will be ignored by 

SOMPAK. 

 

2.3 – MATLAB routines 

MATLAB, a shortname for MATrix LABoratory, is one of the most used scientific computing 

programs. It started as an interpreter that used the LINPAK library of matrix manipulation 



The software used  215 

 

routines, but has since grown into a full fledged development system. MATLAB is produced by 

Mathworks Inc (www.mathworks.com), and is available for UNIX, MS-Windows, and 

Macintosh (though the Macintosh version has been discontinued). The latest version, at the 

moment, is version 6.1, that for internal reasons is also known as Release 12. The current version 

includes, amongst other things, a compiler (to avoid run-time interpretation of the code), a 

context sensitive editor, a visual debugger with an object inspector, and an excellent Graphic 

User Interface (GUI). Since its start MATLAB has boasted very good data graphics, and a large 

variety of MATLAB toolboxes are available from Mathworks for specific areas, such as the 

Neural Network toolbox, the Financial Toolbox, the Fuzzy Set Toolbox, etc. There are also many 

toolboxes written in MATLAB by researchers, that are freely available. Of these, we must 

mention for SOM related tasks the SOM Toolbox for Matlab available 

“http://www.cis.hut.fi/projects/somtoolbox/links”, that was developed by Kohonen’s group, and 

contains links to many other Matlab packages. For classification tasks, we would recommend 

NETLAB, available at www.ncrg.aston.ac.uk/netlab, that contains most of the code necessary to 

solve the problems proposed by (Bishop 1995), and it’s companion book (Nabney 2001) that 

contains additional exercises and examples. 

 

We started to use MATLAB when the requirement to build an operational program disappeared 

(due to uncertainty as to the future of the submarine squadron). The main reasons to use 

MATLAB where: 

 

a) Prototyping is much faster using MATLAB than using C. The language is more powerful 

(since it is much more high- level), and the interpreter allows a interactive testing and 

design of code. In fact, a lot of useful processing is done interactively without ever 

writing a program. 

b) The graphical outputs of MATLAB are very good and easy to use. 

c) It has a huge amount of toolboxes and routines readily available. 

d) Code developed in MATLAB can be incorporated in stand-alone C programs, using the 

MATLAB compiler and run-time library. While the code may not be as fast as pure C 

code, it is still amazingly fast, specially with matrix manipulations, due to very stable and 

well developed libraries. 

e) It is easy to share MATLAB programs with other researchers. MATLAB does not require 

compiling, and when the code is properly written, it can safely and easily be used with 

little or no knowledge of its inner workings. 
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A lot of our software was originally written for version 5, but runs perfectly on the latest release. 

Some minor (but very annoying and tiresome) adjustments had to be made to some routines, 

since the version 6 Delauny triangulation does not reorder the triangles as version 5 did. 

 

All the routines developed by us contain help information. This includes a one line description of 

the purpose of the routine, a specification of input and output parameters, comments on its 

internal workings when necessary, and always version and author information for configuration 

management. Some of the MATLAB batch files we used are also provided as examples. 

 

The complete listing of the functions is given in Appendix E, and we will only list the filenames 

and purpose of each routine, grouped by purpose. 

 

Q-set related routines 

qs_mat_build.m Build the positive only Q-sets given a set of 
candidate prototypes and a set of training patterns. 
The Q-sets are given as a Boolean matrix. 

qs_select_heuristic.m Select prototypes using the positive-only heuristic 
described in chapter 2 of part II, given the positive 
only q-sets. This function produces only the 
numbers (or indexes) of the prototypes to select. 

qsgc_mat_build.m Build the general case Q-sets given a set of 
candidate prototypes and a set of training patterns. 
The Q-sets are given as two matrices. The first 
contains the indexes of the prototypes sorted by 
proximity, while the second is a Boolean matrix 
indicating whether they have the same class or not. 

g2p.m Transform general case Q-sets to positive-only Q-
sets. 

qs_select.m Select the minimum set of prototypes for positive-
only Q-sets, using branch and bound. 

 

Prototype minimization routines 

cnn.m Select prototypes using the CNN rule. 
rnn.m Select prototypes using the RNN rule, given a set of 

prototypes selected by the CNN rule. 
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Graphic routines 

voronoi_boundary.m Plot the Voronoi boundary between classes, given the 
2-dimensional prototypes of those classes . 

class_plot.m Plot a set of 2-dimensional patterns, using different 
markers for each class. 

 

Classification and validation routines 

knn.m Classify a pattern using the k-nearest neighbor rule. 
The routine also produces a vector with the estimated 
probabilities of that pattern belonging to each class 

knn_mat.m Classify a set of patterns, using the k-nearest neighbor 
rule 

confusionMatrix.m Calculate the confusion matrix, given the true classes 
and the assigned ones. 

selfClassify.m Classify each pattern in a given dataset using all other 
patterns as prototypes, with the nearest neighbor rule  

splitData.m Produce a matrix to split a given dataset into training 
and test sets for cross-validation. 

buildTrainTestSet.m Build training and test sets, given a matrix produced by 
“splitdata.m”. 

 

Miscellaneous 

read_koh.m Read a file in Kohonen’s format (Kohonen, Hynninen et 
al. 1995). 

write_koh.m Write to a file in Kohonen’s format (Kohonen, Hynninen 
et al. 1995). 

remove_col.m Remove a column from a matrix. 
generate_2D_uniform_data.m Generate d-dimensional data with uniform distribution in 

a given rectangle. 
generate_double_f.m Generate data for the double F problem (Hart 1968). 
generate_straight.m Generate data for the straight line problem described in 

chapter 5 of part II. 
spectra_wavfile.m Calculate spectra of data contained in a Microsoft WAV 

format audio file, using windowing and averaging. 
mHamming.m Correctly implemented Hamming window 
hausdorff.m Calculate the Hausdorff distance between two sets of 

points (or spectra) 
findPrimes.m Find prime implicants, using Quine-McClusky’s method 
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2.4 - Other software 

Besides the abovementioned software that we ourselves developed, we used quite a lot of 

software that is provided for free use amongst researchers. We will now mention the 2 software 

packages that were more important for this thesis, and that will certainly be useful for other 

researchers. 

2.4.1 - SOMPAK 

The SOMPAK has been developed at Helsinki University of Technology by Kohonen’s team at 

the Neural Networks Research Center. The most popular version is version 3.1, available at 

http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml , that has fairly good 

documentation (Kohonen, Hynninen et al. 1995). It consists of a series of programs that run in 

command line mode making it very easy to create batch files to perform a given processing 

sequence. The software is written in C, and compiled versions are available for MS-Windows 

based environments and for Linux. Since the code uses very standard C with very few system 

calls, it is easy to compile under any other system. 

 

The original documentation provides a good tutorial on how to use the system, but additional 

information is available at SOMPAK unofficial site (http://www.cis.hut.fi/~hynde/lvq), 

maintained by Jussi Hynninen, that includes information on how to modify SOMPAK, and recent 

developments. An additional work-through tutorial with a simple example is available in (Lobo 

1998). 

 

Included in the package, are the following programs: 

 

randinit  – Initializes a SOM. 

vsom  – Trains a SOM. 

qerror – Calculates the quantization error of a map for a given set of patterns. 

vcal  – Calibrates a SOM, assigning labels to the units, based on a file of patterns. 

visual – Generates a file with the SOM mapping coordinates of each pattern of a data 

file. 

Sammon – Generates a postscript file with the Sammon mapping of the patterns. 

planes – generates a postscript file with the gray-scale coded weights of one of the 

features of the map. 
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umat  – Generates a postscript file with a gray-scale U-Matrix of the SOM. 

 

2.4.2 - RoughSetLab 

For feature selection using Rough Set Theory, we used a program called RoughSetLab, that runs 

under UNIX. This program started as a front end to the publicly available Rough Set Library 

(RSL). The Rough Set Library is a collection of C routines and conventions, to perform various 

tasks necessary to apply Rough Set theory. The original RSL was developed by M.Gawry, 

M.Modrzejewski, and J.Sienkiewicz, and documented in a Users Manual (Gawrys and 

Sienkiewicz 1993) and a research report (Gawrys and Sienkiewicz 1994). It has been 

continuously upgraded to reflect recent development in Rough Set theory, but since its main 

purpose is to provide researchers with C routines, it does not have a front end for users. Thus, a 

few different front ends were developed, including GROBIAN 

(http://www.infj.ulst.ac.uk/~cccz23/ grobian/grobian.html), and the RoughSetLab that we used. 

 

RoughSetLab was originally developed as a MSc. Thesis by Frank Muller (Muller 1993), under 

the supervision of Prof. Roman Swiniarski. Later other students under the supervision of 

Swiniarki made considerable changes. These included re-writing the core functions in C++, and 

thus separating it from the RSL library, providing a menu system to assist the users (making its 

use almost trivial), and making a X-Windows interface that uses MOTIF. For this thesis we used 

the menu driven version.  

 

Rough set lab allows users to: 

- Load a discrete information system 

- Load discretized data set, and define a discrete information system 

- Load a real-valued data set, and produce a discrete information system. To do this, the 

number of discretization levels must be given. The program will calculate the various 

parameters to perform that discretization. 

- Find a relative reduct using heuristic. 

- Find all relative reducts, using a complete search. 

- Find all relative reducts smaller then a given one (using branch-and-bound) 

- Find the core. 

 

The Roughsetlab software is kept by Roman Swiniarski at San Diego State University (SDSU). 



 

  220 

 

 

 

 

 



 

  221 

PART III 

CHAPTER 3 

The Submarine data 

The author of this thesis has been cooperating with the Portuguese Navies Submarine Squadron 

on ship noise recognition, since 1990. The project started with the construction of a 

microcontroller based acquisition system, and proceeded with the first digital recordings 

performed by the submarine squadron personnel and the author. The submarine squadron had 

been doing analog recordings on tape for a long time, and some of those recordings were 

cataloged and digitized. Thus, a digital database with “hydrophonic effects” ( the technical term 

used to refer to underwater sound) started to be constructed, and is now kept for military 

purposes. Most of the data, and all the target and environment information associated with each 
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recording are classified. However, we were allowed to use some of the recordings for research 

purposes, provided we kept some basic safety precautions. 

 

All the recordings were performed by the submarine’s passive sonar equipment. Some of the data 

was recorded by high quality tape recorders and then digitized ashore, while other were digitized 

aboard with PCs. Unfortunately, the exact frequency bands used, together with other important 

details cannot be discussed in this thesis. 

 

3.1 - First experiments 

The first research done with those recordings was the base for a MSc. thesis (Lobo 1995), and a 

conference paper (Lobo and Moura-Pires 1995), where the experiments are described in detail. 

The data then consisted of 10 recordings of 6 different ships (two of the ships had 3 separate 

recordings). Power spectra of small portions of these recordings where calculated, producing a 

total of 210 patterns with 2048 features each. The main reason for using so many features was 

that we knew from prior knowledge that the frequency resolution attained with that many 

features was necessary, and we didn’t know which frequencies could be discarded. Another 

reason was that we were trying to harness the ease of use of a SOM, even with many features, to 

compensate a lack of feature extraction techniques that required deep expert knowledge in real 

ship acoustic signatures, that we did not have. 

 

So as to validate the results, we used a class based leave-one-out technique (Breiman, Friedman 

et al. 1984), and obtained 21 training/test sets, each with 200 training patterns, and 10 test 

patterns, one from each of the recordings. We then repeated the processing steps for each of these 

training/test sets. 
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The patterns were used to train a rectangular SOM with 7x14 units, using SOMPAK. At the time, 

we had to change SOMPAK’s input/output routines slightly to be able to use so many features, 

but the core routines were untouched. For the first (unfolding) phase, we used α=0.2, r=12, and 

1000 steps (aprox. 5 iterations through the training set), taking approximately 6 minutes on a 

DecStation 5000. For the second phase, we used α=0.05, r=3, and 10000 steps (aprox. 50 

iterations through the training set), taking approximately 1 hour on the same machines. 

 

We then labeled the SOMs with the training set, and attempted to classify the test set with that 

SOM. On average, the classification error was 8% if we considered each singular recording to be 

a different target, and only 2% if we considered each ship (or torpedo) to be a class. The SOMs 

obtained were almost identical for the 21 experiments, save for symmetries around the axes 

which are irrelevant for topological ordering and unavoidable due to way a SOM is formed. A 

typical SOM produced with this data is presented in Figure 57. 

 

The main conclusion of these preliminary experiments were that: 

a) – The submarine database can be used to train classifiers that successfully identify targets. 

b) – SOMs could be used as classifiers for this task. 

 

3.2 – Use of DSOM and distributed processing 

One of the problems of the first experiments was that they were performed off- line, with tools 

that although efficient were not user friendly. Moreover, the time necessary to train even a 

relatively small map made it impractical to use the system for very large maps that would be 
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Figure 57 - Example of a SOM obtained with the first experiments with the submarine data. 
Each name (alpha to echo) corresponds to a different ship or class of ships. Echo and Foxtrot are 

two very similar types of torpedoes. 
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necessary for operational use. Thus the DSOM program, described earlier, was developed, to 

provide a real-time, user-friendly environment, with the possibility of training large maps over 

networked computers. The performance of the distributed version of SOM has been discussed in 

chapter 3 of Part II, and being distributed does not have any impact on classification accuracy, so 

we will discuss the advantages of distributed processing no more, event though it was used in 

many experiments. The real-time and user- friendly features of the program will also have no 

impact on the classification accuracy, and these feature by themselves have also been seen 

earlier. 

 

Thus, and although the tools were crucial, we shall concentrate only on the classification results 

obtained. 

 

3.3 – Broadband vs. Tonal identification 

As was seen in chapter 1, the noise generated by a ship moving in the ocean can be divided into 

broadband components, and tonal components, that have quite different causes and behaviors. 

The way we were using our SOMs, they were sensitive mainly to the broadband noise. This 

happens because the broadband signal will, by its own nature, span a large number of bins, 

contributing heavily for the distance measure (which was Euclidean). On the other hand, the 

tonal components will have an impact on very few features, ideally only one, and thus contribute 

little to the distance measure. 

 

We decided to use feature extraction techniques to separate the two components, and design 

separate SOM-based classifiers for each set of features. We then compared the performance of 

each of these classifiers. When considering tonal noise, we did not know whether the frequency 

at which the tonal noise occurred was the best feature, or whether the actual amplitude would 

also be useful, so we tried both approaches. 

 

To compare these techniques, we selected 5 ships available in the database, and extracted 33 

patterns for each ship, producing a total of 165 patterns. Each pattern was the 2048 bin power 

spectrum calculated over a certain time period, using a 4 segment Welsh periodograms with 50% 

overlap, and a Hamming Window, as described in chapter 2 of part I. So as to be able to validate 

the results, we divided the available data into 11 training/test sets, so that in each of the test sets 
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we had 3 different patterns of each class. Thus, each training set had a total of 150 patterns (30 of 

each class), and each test set had a total of 15 patterns (3 of each class). 

 

3.3.1 - Extraction of the tonal signal 

The general idea of extracting the tonal signal, is to estimate the broadband signal for each point 

in frequency, based on the frequency neighborhood, and then set a threshold above which we 

consider that value as an outlier, and thus part of the tonal signal. 

 

The first step to extract the tonal signal was to obtain the reference broadband signal for each 

frequency bin. This was done by calculating for each bin, the median power, based on a 64 point 

neighborhood around that point. This width of neighborhood was reached by experimentation: 

we steadily increased the neighborhood radius, and visually inspected the spectra obtained, until 

plausible (smooth yet detailed) broadband spectra were reached. 

 

Assuming that at each point in frequency, the 

broadband signal is contaminated with white 

Gaussian noise, that our estimate is unbiased, and 

that each of the four segments is statistically 

independent, the spectral density estimate will 

follow Chi-square statistics with 4 degrees of 

freedom. Under these conditions, we can impose a 

desired confidence level to find outliers, and obtain 

the corresponding threshold value (Kay 1988). If we 

impose a 99% confidence value, we will obtain a 

value of 7dB. Thus, we considered any value more than 7dB above the median as a separate tonal 

signal. On average, applying this process to the data yielded 0.81% of non-zero components, and 

a visual inspection of this spectra (see Figure 58) showed that they were plausible tonal signals of 

the ships. 

 

3.3.2 – Experimental comparisons 

From the original dataset we now have 3 datasets with different features: 

 

Title:
bin_pat.eps
Creator:
MATLAB, The Mathworks, Inc.
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

 

Figure 58 - Binary patterns obtained 
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a) Full patterns – The original patterns with 2048 features representing the full spectra. This 

dataset was used to train a standard SOM, using Euclidean distances. 

b) Amplitude  tonal patterns – The original patterns with the broadband signal removed. The 

tonal components kept their amplitude values. This dataset was used to train a standard 

SOM, using Euclidean distances. 

c) Binary  tonal components – The tonal components of the spectra, with a value of 1 where 

the amplitude was different from zero, and 0 otherwise. This dataset was used to train a 

binary SOM, described in Part II. 

 

After training and labeling a SOM, with 10x5 units, for each of the 11 training sets of the 3 

datasets, we obtained the results shown in Table 10 and Table 11. 

 

Dataset Error rate in each training set    

 0 1 2 3 4 5 6 7 8 9 10 Average σ Min. Max. 

Full Patterns  0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
Amplitudes  0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
Binary 0,0 2,6 0,0 0,0 1,4 1,1 0,9 0,0 0,7 0,0 0,0 0,6 0,8 0,0 2,6 

Table 10- Error rates in the training sets 

 

Dataset Error rate in each test set    
 0 1 2 3 4 5 6 7 8 9 10 Average σ Min. Max. 

Full Patterns  0,0 0,0 0,0 0,0 6,7 6,7 20,0 6,7 40,0 0,0 0,0 7,3 12,5 0,0 40,0 
Amplitudes  13,4 13,4 0,0 6,7 0,0 6,7 0,0 13,4 6,7 0,0 0,0 5,5 5,9 0,0 13,4 
Binary 0,0 1,1 6,7 0,0 0,0 0,0 0,0 6,7 6,7 0,0 0,0 1,9 3,1 0,0 6,7 

Table 11 - Error rates in the test sets 
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An example of the SOMs obtained is 

presented in Figure 59. 

 

From the experimental results, we may take a 

few conclusions: 

 

a) The standard deviations are extremely 

high. On one hand, this could be 

explained by the relatively few number of training/test sets, and the existence of some 

“anomalous” error rates for some of these sets. Nevertheless, it does reveal that the results 

obtained with this data are very unstable, and should be used with caution. 

b) The error rate for the training set dose not reach zero when using the binary features. If 

the classes are not separable, this is desired result, since it reveals that the learning 

process is not overfitting the data. However, if each pattern is unique, and no 3 patterns 

are collinear (which cannot occur with binary data), the data must be separable, since we 

have more features (2048) than patterns (165). The error rate could also be non-zero due 

to insufficient training, but more training would not lower the error rate. A close look at 

the data, revealed that in fact the patterns where not unique. This means that either the 

tonal signal of different ships was identical. Due to the many differences in machinery 

aboard different ships, this probably means that the method of extracting the tonal signal, 

despite being useful at it is, could be improved. 

c) The use of the amplitudes of the tonal signal brings no improvement over the use of the 

simple binary features. Since processing real-valued features takes considerably more 

resources than binary valued features, the use of the amplitudes of the tonal signal was 

abandoned. 

d) The results obtained with the binary features were significantly better than those obtained 

with the full spectra. This shows that the tonal signal is in fact an important feature for the 

problem at hand, and should be further explored. 

 

It must be noted that some of work done on classification of ship noise mentioned earlier also use 

the tonal signal to perform classification. (Meister 1993), for example, selects the most 

significant peaks in the power spectrum, and uses their frequencies and amplitudes as inputs to a 

Backpropagation Neural Network. For our objective, this method has two main drawbacks: it 

forces us to select a fixed number of frequencies from the spectrum, and it is not a clustering 

 

Figure 59 - A 10x5 unit SOM trained with 
binary data. Each shade corresponds to a 

different type of ship 
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method, which we want so as to do some exploratory analysis of the data. Also, as we showed 

experimentally, the presence of a spectral line seems to be a much more reliable feature than its 

relative amplitude. This can be explained because the actual amplitude can be strongly distorted 

by multipath interference. 

 

3.4 – Clustering on a large dataset 

To be of practical use, the system we were designing had to be able to work with very large 

databases, containing many ships. To test the system, both methods and available data, under 

these circumstances, we selected 2 hours of recordings, containing 33 different ships or types of 

ships, From these recordings, we extracted 2342 patterns, containing spectra with 2048 frequency 

bins, obtained using Welsh periodograms with 50% overlap and Hamming Windowing. The 

actual number of patterns available for each class differed considerably, as would be expected 

from a practical situation, where it is easy to record data from friendly ships, but hard to obtain 

data from others. 

 

We used the DSOM program to cluster this data with a 30 × 20 unit SOM, and obtained the U-

Matrix shown in Figure 60. 
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A careful inspection of the U-Matrix shows 38 reasonably bounded areas, and thus 38 clusters. 

When labeling the SOM, almost all units were winners for a single class of ship, and only a few 

had a mixture of classes, and thus a label chosen by majority vote. This let to a 2.4% error rate in 

the training set, corresponding to 57 patterns. Given the very large amount of data, and the fact 

that its quality (signal to no ise ratio) was sometimes quite bad, the results are remarkably good. 

 

It can also be observed that some classes of ships, namely those that had several recordings, had 

more than one cluster, corresponding to different environment conditions during the recording. 

This explains why we obtained 38 clusters for only 33 classes. 

 

Three of the corners of the U-Matrix have very well defined borders, and are quite different from 

the rest. The upper left corner corresponds to various types of very large merchant vessels 

(tankers, bulk carriers), that do indeed have a very distinguishable acoustic signature. The lower 

left corner, corresponds to torpedoes, whose signatures had also proved to be very different from 

the rest in our first experiments. Finally, the upper right corners contains ships that were recorded 

 

Figure 60 - The U-Matrix obtained after clustering the 33 ship dataset with a SOM. 
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under circumstances that are unusual for the recording platform, and thus are mainly due to 

considerable changes in the self- induced noise. 

 

3.4.1 – Fusing information from the standard SOM and the binary SOM 

We repeated the experiment with the binary version of the SOM, and as would be expected from 

the previous section, the error rate in the training set was considerably higher. However, even in 

these circumstances, as long as a classifier performs better than random choice, it can be used to 

improve the performance of another one (Schurmann 1996; Gama 2000; Alexandre, Campilho et 

al. 2001; Demirekler and Altincay 2002). Since we only have two classifiers (standard SOM and 

binary SOM), we would only obtain confirmations or ties if we used their final output to vote for 

the final decision. Thus, we used the following method: 

 

a) When labeling the SOMs, keep the classes of every training pattern that has a given unit 

as its winner in the units label. The label thus ceases to be a simple class, but will be a 

vector with the number of patterns of each class. As discussed previously, this can be 

taken as an estimate for the probability density at that point. 

b) When classifying, use the label given by the standard SOM, if only class is represented in 

it. Elsewise (i.e. if the standard SOM is not 100% sure of the class), use the label vectors 

of both the standard SOM and the binary SOM to decide on the class. 

 

Using this method, the error rate on the training set went down to 1,9%, thus improving slightly 

the results obtained. 

 

Due to the fact that we were already using all the available data, we could not estimate the error 

outside the training set. Due to the fact that some classes had very few patterns, a leave-one-out 

cross validation, besides being extremely time-consuming, would be very biased. Thus we where 

satisfied with the results obtained, and proceeded to perform experiments with a larger, if slightly 

less realistic set of recordings. 
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PART III 

CHAPTER 4 

Acoustic Tank Data 

4.1 - Introduction 

The data obtained by the submarine squadron, undoubtedly the one with real practical interest, 

are not the best to conduc t experiments on, or to use in a thesis such as this. This happens mainly 

due to 3 reasons: 

 

a) Security classification 

 The data collected by the submarine squadron has great military value, and thus is 

classified. Some of the results obtained with those data are not classified, and have been 
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presented earlier, but the raw data itself, and many intermediate and final results remain 

classified. Thus, in this thesis, we were not able to present all interesting results, and worse than 

that from an academic point of view, we cannot provide means for other researchers to replicate 

our results. 

 

b) Uncontrolled environment 

 Having been recorded at sea, on an “opportunity basis” as a “secondary mission”, over a 

large span of time, and by different operators, the submarine data often lack a detailed 

description of the environment and scenario of each recording. The complete description of the 

environment and scenario is all but impossible in real life situation, since it requires not only a 

very thorough observation of all variables involved, but an efficient and fluid communication 

between the recording vessel and the “target”. Indeed, sometimes the actual user-given 

classification might be wrong, given conditions under which those classifications were made. 

Thus, it is very difficult to isolate the contribution of different factors towards the performance of 

the system. 

 

c) Scarcity of data 

 Although the submarine database is already quite large, there are relatively few 

recordings available for each separate ship, resulting in a low statistical significance for the 

results. Those data have to be enough for designing an operational classifier, but an academic 

project should try to demonstrate statistical significance. 

 

Thus, it was decided to perform recordings on unclassified “targets” in controlled environments. 

As mentioned earlier, we did not want to use computer-generated data, and the next cleanest data 

that we could obtain would be in an acoustic tank. Such a tank exists in one of the departments of 

the Portuguese Navy’s shipyard (named “Arsenal do Alfeite”), where it is used to calibrate 

sonars. Every year, in July, that tank is emptied for cleaning and maintenance. Thanks to the 

good will and collaboration of a few officers (namely Captain Ferreira de Sousa, and, Lieutenant-

Commander Deusdado), we obtained permission to use the tank for a week in July 1999, just 

before the tank was to be emptied. We could set up our equipment, as long as we could make the 

tank available for its main purpose in a few hours if it were necessary. This situation actually 

occurred one day, when a ship’s sonar array was brought for a quick fix, and we were pleased to 

find out that it was easy to accommodate both tasks. 
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A complete and very detailed report of the preparation and recording of the signals is available as 

a technical report from the Naval Academy, but is written in Portuguese (Lobo and Oliveira 

1999). The report is also available in a 3CD set, that contains all the data along with programs to 

help process it, and various information. 

4.1 - Data gathering 

4.1.1 - The tank and recording equipment 

The acoustic tank is an anechoic tank built under the supervision of the now Rear-Admiral Silva 

Nunes in 1976, and can me seen in Figure 61. It measures 8 m × 5 m × 5 m, and its walls are 

covered with a mixture of cork and rubber (with a density of approximately 0.8 g/cm2), that form 

small spikes. Floating boards usually cover the tank, to absorb sound in every direction, but we 

did not use them, both because we wanted to simulate the sea surface, and because they 

interfered with our equipment. There is a sliding bridge over the tank that was used to hold the 

hydrophone and other equipment when necessary. One of the corners of the tank has a small 

compartment, with a sliding door, where the outboard motors where fixed. Other two corners 

have fixed hoses that are used to fill the tank and recycle its water. On one of the sides of the 

tank, there is a glass cabin where the measuring equipment is kept and operated. 

  

  
Figure 61 - Various aspects of the acoustic tank. Note the sliding bridge and the outboard motor fixation on 

the top photographs, and in the bottom ones, the acoustical isolation visible when the tank was emptied. 
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The sonar division is equipped with 

high quality hydrophones and 

amplifiers, build by Bruel. The 

hydrophone used in our tests was a 

reference “Bruel & Kjaer 8104” (see 

Figure 62), which is passive and 

omnidirectional, weighing 1,3 Kg, and 

is basically a 12 cm long cylinder with 

2 cm diameter. It is sensitive to signals 

from 0.1Hz up to 200 kHz, and had 

recently been confirmed to have 

perfectly flat transfer function up to 20 

kHz (the highest frequency we would 

try to measure). 

 

The signal amplifier is a Bruel & Kjaer 

2636, which is a 2 stage variable gain 

amplifier with various filters. We always used a high quality low-pass filter set to 20 kHz, to act 

as an anti-aliasing filter. The gain varied from recording to recording, being set manually after 

observing the signal for a short while, so as to maximize the dynamical range. Most of the time, 

the gain was around 30 dB. 

 

After the amplifier, we had a high quality HP oscilloscope and spectral analyzer to monitor the 

signals that where being measured. This allowed us 

to manually set the optimal amplification to use all 

the available dynamic range without saturating, 

confirm that the signals were band limited, and 

correct any anomalies. 

 

Finally, the audio signal was fed to a 16 bit Sound 

Blaster compatible sound card installed in a Pentium 

200MMX computer, with 64 Mb RAM and a 8 Gb 

hard disk. Lab tests showed that the transfer function of the sound card was reasonably flat in the 

 

Figure 62 - Bruel & Kjaer 8104 passive 
omnidi rectional hydrophone 

 

Figure 63 - Bruel 2636 amplifier 
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50 Hz to 20 kHz range, and could digitize very low frequency signals under 1 Hz. Since the same 

sound card was used in all recordings, all signals in the very low frequency range were affected 

in the same way. All recordings were done with a 44.1 kHz sampling rate, in mono channel 

mode. 

 

4.1.2 - The hidrophonic effects generated 

So that the data could be useful for our purposes, we had to generate noise similar to that of a real 

ship, and then introduce background noise similar to that found in the ocean, and finally, so that 

the data could also be used for other work, introduce transients similar to those that are 

interesting from a military or security point of view. 

 

Since the main sources of noise in a ship are its main propulsion engines and auxiliary machines, 

we opted to use maritime outboard motors to simulate the “target” ships. The background noise 

was simulated with air bubbles and running water falling into the tank, simulating in some way 

the effect produced by waves and water movement. Finally, banging objects or shots of air 

pressure rifles provided the transients. 

 

It must be clearly stated that these effect are not equivalent to the real effects they stand for, and 

their specific characteristics may differ considerably from them. They do however have the same 

general behavior, and the techniques developed for them can be re-applied to operational data, to 

obtain operational classifiers. Similarly, the accuracy results obtained are an indication for the 

performance of the operational system. 

4.1.2.3 - The motors 

We used 5 different types of motors: 4 outboard motors, and one small electrical motor of a 

radio-controlled model boat. Since the electric motor is significantly different from the others, 

and the amount of data recorded with it are considerably less, only the outboard motors are used 

in most of the tests with this dataset. 

 

Motor 1 

Motor 1 is a 4.5 horsepower Mercury, with one cylinder, and a right hand 3 blade propeller, 

belonging to the Portuguese Naval Academy’s NRP Vega Yacht. 
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Motor 2 

Motor 2 is a 18 horsepower Mercury, with two cylinders, with a right hand 3 blade propeller, 

belonging to the Officers Club of the Portuguese Navy - CNOCA. 

 

Motor 3 

Motor 3 is a 8 horsepower Yamaha, with one cylinder, and a right hand 3 blade propeller, 

belonging to the Naval Academy’s NRP Polar Yacht 14. 

 

 
Figure 67 _ Various aspects of the electric model boat (motor 5) 

                                                 
14 Curiously, this Yacht is a somewhat imperfect copy of the America, that won the first America 

Cup. 

 

Figure 64 - Motor 1, a 4.5 hp 
Mercury 

 

Figure 65 - Motor 4, a 3.6 hp 
Mercury 

 

Figure 66 - Motor 3, a 3.6 hp 
Yamaha 
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Motor 4 

Motor 4 is a 3.6 horsepower Mercury, with one cylinder, and a right hand 3 blade reinforced 

rubber propeller, belonging to the Officers Club of the Portuguese Navy - CNOCA. 

 

Motor 5 

Motor 5 belongs to a small radio-controlled boat that is used in the Naval Architecture classes at 

the Naval Academy. It is shown in Figure 67, and has a left hand 3 bale plastic propeller. The 

servos that power the rudder make noise that is louder than the main motor, and so must also be 

taken into consideration. 

 

4.1.2.4 - The interferences 

To simulate the ocean background noise, two devices where used, each with two variants. 

 

The first was to pour water into the tank using the fixed hoses. The pumps are reasonably far 

away and well isolated acoustically, so that when they were used we were able to hear only the 

water falling in the tank. We used two different intensities, to simulate different sea states. 

 

The second, was to make air bubbles. These were produced with the help of the compressed air 

system available throughout the shipyard. A rubber hose was connected to the air outlet, and the 

other end of the hose was lowered from the sliding bridge of the tank, with a metal weight to take 

it close to the bottom of the tank. The weight was sufficiently heavy to stop the hose from 

moving around in the tank, even when air was pumped at full pressure. Again, two different air 

pressures were used to simulate different sea states. 
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4.1.2.5 - The transients 

Besides what we 

considered “steady state” 

interferences, we also 

wanted to provoke 

transients. Event the 

steady state interferences 

are many times a sum of 

many distant transients, 

but isolated transients are 

important both to identify 

ships and their operation, 

and to identify certain 

natural sources, as for example marine mammals. In this thesis we are not interested in pursuing 

the latter objectives, and treat the transients as just another interference in the desired signals, 

namely the motor noise. This interference is, naturally, quite different from that produced by the 

“steady state” sources. 

 

We produced 5 types of transients: 

 

 

Figure 68 – Transients c and 
d: hitting metal tubes 

 

Figure 69 - Transient a : bursts 
of compressed air. 
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a) Compressed air bursts. Produced with the 

compressed air setup described earlier, we 

simply turned the air on and back off very fast, 

generally producing a single large bubble that 

broke out into smaller ones. This transient 

simulated the effect that is produced when a 

ship produces air discharges under the surface, 

such as expelling gases or even firing 

torpedoes. 

b) Water splash. This was obtained by throwing a 

bucket full of water on the surface. The splash 

obtained simulated the effect of throwing 

liquids or even solid objects into the water. 

c) Hit of a metal tube with wood. This was 

obtained by hanging a metal tube with a rope, and hitting it with a wooden hammer. It 

simulates a number of effects that are produced by men and machinery inside a ship. 

d)  Hit of a metal tube with iron. This was obtained by hanging a metal tube with a rope, 

and hitting it with a metal hammer. Since both objects are metallic, the sound is 

distinctly different from transient c. Like transient c it simulates a number of effects 

that are produced by men and machinery inside a ship. 

e) Air pressure shot. This was obtained using a air pressure shotgun. The barrel was 

inserted in the water, so that the air was all expelled through it. It is a much shorter 

than that produced by transient a, though a short bubbly noise can be heard. This 

noise may simulate a very violent air discharge, such as expelling small objects from 

a submarine, or dropping something from a ship. 

 

4.1.3 - The recordings 

Each of the above effects was recorded individually, and in conjunction with others. In all almost 

5 hours of recordings were obtained ( 4 h 58 min 30 s to be precise). For the comparisons carried 

out in this thesis, we considered the “targets” to be the four internal combustion motors, named 

“motor1”, “motor2”, “motor3”, and “motor4”. All recordings where a single of these internal 

combustion motor was used, with and without various interferences and transients, where used. 

All the recordings of interferences, both with and without various transients, were used as 

 

Figure 70 - Transient b : 
splashing water 
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background noise, and for the sake of simplicity named “motor5”. We also used some recordings 

of transients by themselves (without steady state interferences) as background noise. The total 

recoding time used was 4 h 30 min, totaling 1.457 GB, and the actual filenames of the recordings 

used are in the Appendix C. 

 

When extracting data patterns from the recordings, we chose to use always segments of 

approximately 3 seconds. This choice was based on our experience and that of sonar operators, 

and it is the bare minimum required by a human operator, even under very favorable conditions. 

Using the same time interval, and thus approximately the same amount of data patterns in 

different experiments makes comparisons easier. Finally, this choice of time intervals provides 

what we think is a reasonable amount of data patterns. Information about the data used is 

presented in Table 12. 

 

Effect Nº of Patterns Time Size /MB 

motor 1 1263  1 h 03 min 333.606 

motor 2 949  47 min 249.587 

motor 3 968  48 min 254.763 

motor 4 1045  52 min 275.536 

motor 5 

(background) 

1291 1 h 04 min 343.890 

TOTAL 5516 5 h 01 min 1.457.382 

Table 12 - General information about the Acoustic Tank data. The number of patterns correspond to 3s 
segments of the original signal. These will later be subject to different feature extraction techniques, to 

produce the final patterns. 

 

4.2 - Datasets and experiments 

Each raw pattern is a segment of a time-series stored in a Microsoft WAV file. Since the sample 

rate is 44 kHz and each sample requires 16 bits, each pattern consists of approximately 258 K. A 

number of feature extraction and selection techniques must be applied to both reduce the size of 

the patterns and strip them from irrelevant information. 
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4.2.1 - General overview of the signals 

Before going into a detailed analysis of the data, we started by plotting the power spectra of the 

different motors, which are presented in Appendix D. These plots where obtained by computing 

the power spectra of each raw pattern with 5.3 Hz resolution15, corresponding to 4096 frequency 

bins, from 0 to 22 kHz. A Hamming window and 50% overlap Welsh periodograms were used, 

so each spectrum presented is the average of 32 individual spectra16. Although this resolution is 

coarser than that used in the experiments described in Chapter 3, it does provide a good overview 

of the signals and, as we shall see later, is more than enough for an accurate classification.  

 

From these figures, it is clear that the noise produced by the motors is felt in the low and very 

low frequency ranges. There is almost no visible signal above 12 kHz, and it seems possible to 

distinguish the various motors using only the frequency range from 0 to 270 Hz. 

 

We chose to use only two different frequency resolutions in our tests. The finer resolution 

dataset, using 5.3 Hz per bin, was called dataset 1, while the coarser resolution, with 690 Hz per 

bin was called dataset 2. 

4.2.1.1 - Dataset 1 

Dataset 1 consists of the power spectra used for the general overview of the signal. Each pattern 

is thus a vector with 4096 real-valued components, corresponding to the power spectra with 5.3 

Hz per bin. 

 

To check if the data clustered according to the desired classes, we trained a 15x20 unit SOM. The 

results are shown in Figure 71. The resubstitution error obtained when using this SOM as a 

                                                 
15 For the sake of simplicity we use the term resolution when we really are referring to the width 

of each bin. Due to the fact that we used a Hamming Window, the true resolution is actually quite 

lower, and corresponds roughly to 2.6 times more than the frequency width of each bin. 
16 We broke up the original recordings into separate 3 s chunks only when we extracted the actual 

data patterns. This allows us optimize the usage of recording time by allowing very slight 

overlaps between data patterns. It we isolated the 3 s chunks before extracting the spectra, we 

would only be able to average 31 spectra per pattern. Allowing a slight overlap, we can use 32 

spectra, which is more convenient. 
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classifier is only 0.96%, which is remarkably low considering SOM is a clustering technique. 

This reveals that this representation of the data should make the classes separable. However, a 

visual inspection of the SOM presented shows the classes are not grouped together, but are 

instead dispersed over the map. Tracing the origins of the various patterns, we can observe that 

the interferences (air bubbles, water flow, etc) are having a very strong influence in the 

distribution of data. This influence would be expected and can only be eliminated using signal 

processing techniques aimed at canceling it.  

 

 

  

Figure 71 - SOM with 20x15 units trained with all the patterns of dataset 1, and the corresponding U-
matrix. For the unfolding phase we used α=0.2, rinit=18, and 10 iterations through the dataset. For the 

second, we used α=0.05, rinit=8, and 100 iterations through the dataset. 

  

Figure 72 - SOM with 40x30 units trained with all the patterns of dataset 1, and the corresponding U-
matrix. For the unfolding phase we used a=0.2, rinit=38, and 10 iterations through the dataset. For the 

second, we used a=0.05, rinit=12, and 100 iterations through the dataset 
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To further distinguish each cluster, we trained another SOM that was four times bigger, having 

40x30 units. The results are presented in Figure 72, and clearly show well defined clusters, both 

in the colored SOM map, where there are unlabeled (white) units between each of the labeled 

groups of units, and in the U-matrix, where there are several well defined clusters. The 

resubstitution error for this larger map was 0.1%. 

 

To perform cross-validation we randomly selected 10 pairs of training and test sets. All those 10 

pairs have exactly the same name number of patterns, and all classes are represented in the same 

proportion as in the original known set. Each training set consisted of 4599 patterns, and each test 

set consisted of 511 patterns. The results are shown in Table 13. 

 

Method Nº Prototypes Error rate Training time / s 

NN 4941.0 ± 0.0 0.0 ± 0.0 0 

CNN 72.8 ± 1.5 0.1 ± 0.2 926.65 ± 310.36 

RNN 63.0 ± 2.9 0.2 ± 0.2 63833.85 ± 2409.19 

QSet-P 64.5 ± 1.9 0.3 ± 0.3  26756.85 ± 11325.93 

Table 13 - Results of cross-validation on dataset 1. 

 

4.2.1.1.1 - Dataset 1 with small training set 

In most practical situations, the amount of acoustic data available for training is quite limited. To 

simulate this situation, we inverted the role of training and test sets, i.e., we trained 10 different 

classifiers with 511 patterns, and tested them with the remaining 4599. The results are shown in 

Table 14. 

 

Method Nº Prototypes Error rate Training time / s 

NN 549.0 ± 0.0 0.5 ± 0.2 0 

CNN  48.4 ± 3.0 1.4 ± 0.2 51.65 ± 12.82 

RNN 43.1 ± 3.4 1.8 ± 0.4 2759.63 ± 1057.01 

QSet-P 43.1 ± 2.3 1.6 ± 0.6 195.26 ± 1.47 
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Table 14 - Results of cross-validation on dataset 1, using small training sets. 

4.2.1.1.2 - Dataset 1 with reduced features 

Due to the very large number of features, rough set techniques cannot be used to find a reduced 

set of features for classification. Following the classical approach, we tried to use scatter matrix 

techniques. Using full scatter matrices is computationally very demanding, so we have to work 

with each feature separately. For each feature, we computed it’s within class variance (Sw), and 

it’s variance between the class means (Sb). We then chose sequentially the 32 features that had 

greatest value of Sb/Sw, excluding those that had a correlation coefficient greater than 0.8 with 

any of the already selected features. The features chosen, together with their correlation 

coefficients, are presented in Table 15. 

 

Order 

of 

choice 

Bin Frequency 

/Hz 

Order 

of 

choice 

Bin Frequency 

/Hz 

Order 

of 

choice 

Bin Frequency 

/Hz 

1 227 1,219 12 204 1,095 23 36 189 

2 258 1,387 13 28 146 24 23 119 

3 10 49 14 370 1,991 25 45 237 

4 267 1,435 15 175 939 26 192 1,031 

5 3866 20,854 16 215 1,155 27 43 227 

6 324 1,743 17 33 173 28 477 2,568 

7 306 1,646 18 273 1,468 29 165 885 

8 446 2,401 19 291 1,565 30 284 1,527 

9 244 1,311 20 9 43 31 30 156 

10 404 2,174 21 522 2,811 32 610 3,286 

11 234 1,257 22 12 59    

Table 15 - Features selected from dataset 1, using scatter matrices. 
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Training a 20x15 unit SOM with this data and using it as a classifier yields a resubstitution error 

of 2.19 %. 

 

 

Method Nº Prototypes Error rate Training time / s 

NN 4941.0 ± 0.0 0.1 ± 0.1 0 

CNN  100.3 ± 3.5 0.5 ± 0.3 9.53 ± 1.31 

RNN 85.6 ± 3.0 0.5 ± 0.3 228.04 ± 13.60 

QSet-P 94.9 ± 2.0 0.4 ± 0.4 2728.17 ± 700.96 

Table 16 - Results of cross-validation on dataset 1 with reduced features. 

 

Method Nº Prototypes Error rate Training time / s 

NN 549.0 ± 0.0 1.2 ± 0.3 0 

CNN  53.5 ± 3.9 2.4 ± 0.5 0.76 ± 0.17 

RNN 46.7 ± 3.6 2.7 ± 0.5 7.42 ± 1.16 

QSet-P 48.1 ± 2.3 2.6 ± 0.5 1.84 ± 0.04 

Table 17 - Results of cross-validation on dataset 1 with reduced features, using small training sets. 

 

  

Figure 73 - SOM with 20x15 units trained with all the patterns of dataset 1 using reduced features, and the 
corresponding U-matrix. For the unfolding phase we used α=0.2, rinit=18, and 10 iterations through the 

dataset. For the second, we used α=0.05, rinit=8, and 100 iterations through the dataset 
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4.2.1.2 - Dataset 2 

Dataset 2 was obtained by calculating 64 point FFTs of the original signal, using a Hamming 

window, and 50% overlap between spectra. We then averaged 4096 consecutive spectra to obtain 

each data pattern. Each data pattern is thus the spectrum of approximately 3 s of the original 

signal, with 690 Hz per bin. Although such a coarse resolution goes against common wisdom 

amongst the submariner’s community, we will show that fairly good classification accuracy can 

be obtained with it. The consequence is that far less computing power is required than when fine 

resolution is used. In a practical application, a low-resolution system may be used as a permanent 

vigilance system, while a finer resolution system will be used only to identify the targets where 

the first system has low confidence. 

  

Figure 74 - SOM with 20x15 units trained with all the patterns of dataset 2, and corresponding U-
matrix. For the unfolding phase we used a=0.2, rinit=18, and 10 iterations through the dataset. For 

the second, we used a=0.05, rinit=8, and 100 iterations through the dataset 

  

Figure 75 - SOM with 40x30 units trained with all the patterns of dataset 2, and corresponding U-
matrix. For the unfolding phase we used a=0.2, rinit=38, and 10 iterations through the dataset. For 

the second, we used a=0.05, rinit=12, and 100 iterations through the dataset 
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When we train a SOM with all the patterns of this dataset, we obtain the map shown in Figure 74. 

The various classes do not seem to form well defined clusters, which would suggest that some 

pre-processing should be added. Even so, if we use this map as a classifier, we obtain a 

resubstitution error of 6.6% (339/5110). Considering that this is a clustering technique, that error 

can be considered quite good.  

 

Applying 10-fold cross-validation, just as it was applied to dataset 1 discussed earlier, we 

obtained the results shown in Table 18. 

 

Method Nº Prototypes Error rate Training time / s 

NN 4599.0 ± 0.0 1.2 ± 0.4 0 

CNN 266.6 ± 8.4 2.0 ± 0.4 22.99 ± 1.19 

RNN 227.2 ± 6.3 2.4 ± 0.6 1517.16 ± 104.17 

QSet-P 252.1 ± 7.3 2.1 ± 0.6 1496.04 ± 507.88 

SOM (10x) 300.0 ± 0.0 8.4 ± 3.6 80.96 ± 1.47 

SOM (100x) 300.0 ± 0.0 6.6 ± 3.6 844.56 ± 21.00 

Table 18 - Results of cross-validation on dataset 2. 

 

4.2.1.2.1 - Dataset 2 with small training sets 

Using the same 10 fold partition of the dataset, but using only 1/10 of it for training and the rest 

for testing, we obtained the results shown in Table 19.  

 



250  Part III, Chapter 4 

 

Method Nº Prototypes Error rate Training time 

/ s 

NN 511.0 ± 0.0 4.0 ± 0.5 0 

CNN  84.1 ± 7.1 6.0 ± 0.6 0.92 ± 0.14 

RNN 73.8 ± 5.4 6.4 ± 0.8 17.10 ± 2.56 

QSet-P 77.0 ± 4.9 6.3 ± 1.0 1.66 ± 0.03 

SOM (10x) 300.0 ± 0.0 22.6 ± 1.2 12.27 ± 3.03 

SOM (100x) 300.0 ± 0.0 18.8 ± 1.4 86.66 ± 1.98 

Table 19 - Results of cross-validation on dataset 2, using small training sets. 

 

4.2.1.2.2 – Reduced features dataset 2 

From the general overview of the signals, we suspect that it is possible to classify them using 

only the lower frequency ranges. Since dataset 2 has only 32 features, we can use roughsets to 

find which are dispensable for classification. Using 10 levels for discretization, the roughsetlab 

program found 16 reducts. Two of them have 22 features, while the rest have 23. The core 

consists of 20 of those features, corresponding to frequency bins 1 to 10, 12 to 14, 16 to 20, 23 

and 31. The complete results are presented in table Table 20. 
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Frequency bins selected 

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20  22 23   26     31 32 

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20  22 23    27    31 32 

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20  22 23     28   31 32 

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20   23 24  26     31 32 

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20   23 24   27    31 32 

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20   23 24    28   31 32 

1 2 3 4 5 6 7 8 9 10 11 12 13 14  16 17 18 19 20 21  23  25      31  

1 2 3 4 5 6 7 8 9 10  12 13 14  16 17 18 19 20   23  25      31 32 

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20  22 23   26     31 32 

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20  22 23    27    31 32 

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20  22 23     28   31 32 

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20   23 24  26     31 32 

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20   23 24   27    31 32 

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20   23 24    28   31 32 

1 2 3 4 5 6 7 8 9 10 11 12 13 15  16 17 18 19 20 21  23  25      31  

1 2 3 4 5 6 7 8 9 10  12 13 15  16 17 18 19 20   23  25      31 32 

Table 20 - Reducts for dataset 2 produced by Roughsetlab, using 10 levels of discretization. 

 

Re-applying the cross validation process applied earlier, we will have the results shown in Table 

21 and Table 22. 

 

Method Nº Prototypes Error rate Training time / s 

NN 4599.0 ± 0.0 1.3 ± 0.4 0 

CNN 288.3 ± 6.0 2.4 ± 0.6 18.98 ± 3.33 

RNN 243.0 ± 3.4 2.7 ± 0.6 1198.91 ± 54.51 

QSet-P 266.9 ± 7.2 2.6 ± 0.6 1027.31 ± 68.74 

Table 21- Results of cross-validation on the reduced dataset 2. 
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Method Nº Prototypes Error rate Training time 

/ s 

NN 511.0 ± 0.0 4.3 ± 0.4 0 

CNN  85.3 ± 6.6 6.3 ± 0.6 0.70 ± 0.11 

RNN 71.9 ± 5.3 6.8 ± 0.7 11.15 ± 1.50 

QSet-P 77.1 ± 6.4 6.9 ± 1.1 1.22 ± 0.04 

Table 22- Results of cross-validation on the reduced dataset 2, using small training sets 
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This appendix presents the detailed results of 

applying a series of prototype minimization 

techniques to Hart’s double F problem, as described 

in Chapter 1 of part II.  

 

This problem, initially proposed by (Hart 1968), 

consists of two classes of bi-dimensional patterns 

with a uniform distribution in two interlocked F 

shapes, as seen in Figure 76. The two classes lie in 

the 22.5 x 20 rectangle with the bottom left corner 

at the origin (0,0), and have boundaries defined by the line that joins (7.5,0), (7.5,5), (15,5), 

(15,10), (7.5,10), (7.5,15), (15,15), (15,20).  

 

In the following experiments, 30 different datasets, randomly generated with the described 

probability density function, are used for each size of training set. For each of those datasets, 

classifiers were designed using standard nearest neighbors (NN), Condensed Nearest Neighbors 

(CNN), Reduced Nearest Neighbors (RNN), positive-only Q-Set heuristic (QSET-P or Q-Set (P) 

), general case Q-Set heuristic with 1 acceptable error (QSET-N or Q-Set (N1)), and general case 

Q-Set heuristic with no acceptable errors (QSET-N0 or Q-Set (N0)). 

 

A large test set, consisting of 100.000 patterns, was then classified with each of the 6 classifiers, 

so as to estimate the generalization error.  

 

The average number of prototypes, error rate, training time, and classification times (for the test 

set), are presented, together with the standard deviation of those values. 

 

Since the patterns are 2-dimensional, it is easy to graph them, and these graphs can give us 

insight into the problem. The graphs presented do not show the individual patterns chosen in each 

case, but superimpose the borders between classes, obtained for the 30 trials performed. Over 

each of the graphs, the name of the method used is given, followed by the average number of 

prototypes and average error, in parenthesis. 
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Figure 76 - Hart's Doubl e F problem. 
Class 1 has a uniform distribution in 
the rightmost F shape, while class 2 has 
the same type of distribution in the 
leftmost, inverted, F shape. 
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100 patterns 

 

 

Method Nº Prototypes Error rate Training time Classification time 

NN  100.0 ± 0.0  5.9 ± 1.1  0.00 ± 0.00  6.15 ± 0.02 

CNN  18.6 ± 3.6  7.2 ± 1.5  0.05 ± 0.02  1.17 ± 0.22 

RNN  14.6 ± 3.1  7.4 ± 1.5  0.10 ± 0.04  0.92 ± 0.18 

Q-Sets (P)  17.0 ± 2.4  7.2 ± 1.4  0.03 ± 0.03  1.07 ± 0.14 

Q-Sets (N1)  15.3 ± 2.3  7.4 ± 1.2  0.67 ± 0.23  0.96 ± 0.14 

Q-Sets (N0)  16.6 ± 2.5  7.2 ± 1.3  0.39 ± 0.21  1.05 ± 0.14 

 

 

Figure 77 - Borders between classes in the double F problem using 100 training patterns 
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200 patterns 

 

 

Method Nº Prototypes Error rate Training time Classification time 

NN  200.0 ± 0.0  4.5 ± 0.7  0.00 ± 0.00  12.27 ± 0.03 

CNN  30.2 ± 3.4  5.5 ± 1.1  0.12 ± 0.02  1.85 ± 0.20 

RNN  23.4 ± 2.8  5.6 ± 1.1  0.35 ± 0.07  1.45 ± 0.17 

Q-Sets (P)  26.8 ± 3.2  5.7 ± 1.0  0.10 ± 0.02  1.65 ± 0.19 

Q-Sets (N1)  25.0 ± 3.0  5.6 ± 0.9  3.97 ± 1.65  1.55 ± 0.19 

Q-Sets (N0)  26.4 ± 3.2  5.7 ± 0.9  2.25 ± 1.19  1.62 ± 0.19 

 

 

Figure 78 – Borders between classes in the double F problem using 200 training patterns a 
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400 patterns 

 

 

Method Nº Prototypes Error rate Training time Classification time 

NN 400.0 ± 0.0  3.2 ± 0.3  0.00 ± 0.00  24.33 ± 0.13 

CNN  46.1 ± 6.1  4.0 ± 0.5  0.29 ± 0.05  2.77 ± 0.37 

RNN  34.3 ± 4.2  4.2 ± 0.7  1.20 ± 0.26  2.08 ± 0.25 

Q-Sets (P)  39.6 ± 4.0  4.2 ± 0.7  0.39 ± 0.03  2.38 ± 0.23 

Q-Sets (N1)  37.6 ± 4.2  4.2 ± 0.7 24.17 ± 10.72  2.26 ± 0.24 

Q-Sets (N0)  39.3 ± 4.0  4.2 ± 0.7 12.60 ± 7.85  2.37 ± 0.23 

 

 

Figure 79 – Borders between classes in the double F problem using 400 training patterns 
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800 patterns 

 

 

Method Nº Prototypes Error rate Training time Classification time 

NN 800.0 ± 0.0  2.3 ± 0.3  0.00 ± 0.00  48.92 ± 0.22 

CNN  66.0 ± 7.2  2.8 ± 0.4  0.75 ± 0.11  3.98 ± 0.47 

RNN  47.0 ± 5.3  2.9 ± 0.4  3.98 ± 0.78  2.80 ± 0.33 

Q-Sets (P)  56.3 ± 4.6  3.0 ± 0.5  1.60 ± 0.06  3.35 ± 0.28 

Q-Sets (N1)  54.2 ± 4.5  3.0 ± 0.4  146.04 ± 71.77  3.23 ± 0.28 

Q-Sets (N0)  55.9 ± 4.5  3.0 ± 0.5  74.15 ± 40.27  3.34 ± 0.27 

 

 

 

Figure 80 – Borders between classes in the double F problem using 800 training patterns 
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1600 patterns 

 

 

Method Nº Prototypes Error rate Training time Classification time 
NN  1600.0 ± 0.0  1.7 ± 0.2  0.00 ± 0.00  109.99 ± 0.34 
CNN  93.8 ± 7.9  2.1 ± 0.2  1.83 ± 0.27  5.69 ± 0.48 
RNN  66.3 ± 5.3  2.2 ± 0.2  14.20 ± 2.15  3.98 ± 0.34 
Q-Sets (P)  80.8 ± 4.9  2.1 ± 0.2  6.93 ± 0.15  4.89 ± 0.30 
Q-Sets (N1)  78.5 ± 4.8  2.1 ± 0.2 777.00 ± 354.19  4.74 ± 0.30 
Q-Sets (N0) 80.6 ± 4.9 2.1 ± 0.2 378.99 ± 129.93 4.88 ± 0.30 
 

 

 

Figure 81 – Borders between classes in the double F problem using 1600 training patterns 
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1600 patterns: 

 

Method Nº Prototypes Error rate Training time Classification time 
NN 1600.0 ± 0.0 1.7 ± 0.2 0 116.21 ± 4.10 
CNN 95.0 ± 6.8 2.1 ± 0.3 2.43 ± 0.36 5.79 ± 0.43 
RNN 66.9 ± 5.5 2.1 ± 0.3 15.52 ± 2.18 4.04 ± 0.37 
Q-Sets 80.6 ± 4.3 2.2 ± 0.3 9.95 ± 0.66 4.91 ± 0.27 

 

 

Figure 82 - Borders between classes in the double F problem, using 1600 patterns 
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3200 patterns: 

 

Method Nº Prototypes Error rate Training time Classification time 
NN 3200.0 ± 0.0 1.2 ± 0.1 0 385.88 ± 19.08 
CNN 135.5 ± 12.2 1.5 ± 0.1 6.57 ± 0.87 8.31 ± 0.72 
RNN 93.7 ± 8.3 1.5 ± 0.2 57.44 ± 9.64 5.68 ± 0.49 
Q-Sets 112.8 ± 6.9 1.5 ± 0.1 41.40 ± 2.22 6.83 ± 0.42 

 

 

 

Figure 83 - Borders between classes in the double F problem, using 3200 patterns 
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This problem consists of two classes 

with uniform distribution in the unit 

square limited by (0,0) and (1,1). 

Those that lie in the left side of that 

square (i.e., with x<0.5) are considered 

to belong to class 1, and the others to 

class 2, as seen in Figure 84. A 

summary of the results, and their 

discussion can be found in Chapter 

1.6.3 of part II. 

 

In the following experiments, 30 different datasets, randomly generated with the described 

probability density function, are used for each size of training set. For each of those datasets, 

classifiers were designed using standard nearest neighbors (NN), Condensed Nearest Neighbors 

(CNN), Reduced Nearest Neighbors (RNN), positive-only Q-Set heuristic (QSET-P or Q-Set (P) 

), general case Q-Set heuristic with 1 acceptable error (QSET-N or Q-Set (N1)), general case Q-

Set heuristic with no acceptable errors (QSET-N0 or Q-Set (N0)), and positive-only Q-sets with a 

branch-and-bound search for the optimal solution (QSET-BB). 

 

A large test set, consisting of 100.000 patterns, was then classified with each of the 6 classifiers, 

so as to estimate the generalization error.  

 

The average number of prototypes, error rate, training time, and classification times (for the test 

set), are presented, together with the standard deviation of those values. 

 

Unlike Appendix A, where the graphs presented superimposed the borders obtained with the 30 

trials, we here present only one of those trials. We do however show individual prototypes 

chosen, and how they generate the border for that particular trial. The complete training set can 

naturally be seen in the graph of the nearest neighbor classifier. This is only possible here, since 

for all experiments the total number of patterns is relatively small. 

 

Figure 84 - The straight line problem. Patterns 
belonging to class 1 are represented by "+", and 

patterns belonging to class 2 by “x” 
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4 patterns 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  4.0 ± 0.0  17.4 ± 8.1  0.00 ± 0.00  0.54 ± 0.02 
CNN  2.8 ± 0.8  19.3 ± 9.9  0.00 ± 0.01  0.40 ± 0.09 
RNN  2.4 ± 0.7  18.9 ± 11.2  0.00 ± 0.01  0.36 ± 0.08 
QSet-P  2.5 ± 0.7  18.9 ± 11.2  0.00 ± 0.00  0.37 ± 0.08 
QSet-N  2.0 ± 0.0  21.5 ± 10.7  0.01 ± 0.02  0.32 ± 0.02 
QSet-N0  2.4 ± 0.7  17.7 ± 10.3  0.01 ± 0.02  0.36 ± 0.09 
QSet-BB  2.5 ± 0.7 18.9 ± 11.2  0.00 ± 0.01  0.37 ± 0.09 

 

 

 

Figure 85 – Borders for the straight line problem, with a training set of 4 prototypes 
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8 patterns 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  8.0 ± 0.0  10.9 ± 5.1  0.00 ± 0.00  0.98 ± 0.02 
CNN  3.7 ± 1.4  11.6 ± 5.8  0.00 ± 0.01  0.51 ± 0.14 
RNN  3.1 ± 1.0  12.9 ± 5.8  0.00 ± 0.01  0.45 ± 0.11 
QSet-P  3.2 ± 1.0  12.4 ± 5.2  0.00 ± 0.01  0.45 ± 0.11 
QSet-N  2.3 ± 0.7  12.6 ± 8.1  0.01 ± 0.02  0.35 ± 0.07 
QSet-N0  2.9 ± 1.1  10.9 ± 6.2  0.02 ± 0.03  0.42 ± 0.12 
QSet-BB  3.2 ± 1.0  12.4 ± 5.2  0.00 ± 0.01  0.46 ± 0.11 

 

 

 

Figure 86 – Borders for the straight line problem, with a training set of 8 prototypes 
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16 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  16.0 ± 0.0  8.0 ± 4.0  0.00 ± 0.00  1.84 ± 0.03 
CNN  4.6 ± 1.3  10.0 ± 5.6  0.00 ± 0.01  0.60 ± 0.15 
RNN  3.5 ± 1.1  11.0 ± 7.5  0.01 ± 0.02  0.48 ± 0.12 
QSet-P  4.1 ± 0.9  11.8 ± 7.5  0.01 ± 0.02  0.54 ± 0.10 
QSet-N  2.8 ± 0.7  10.4 ± 6.7  0.04 ± 0.03  0.39 ± 0.09 
QSet-N0  3.8 ± 0.8  11.6 ± 7.9  0.02 ± 0.03  0.52 ± 0.10 
QSet-BB  4.0 ± 0.9  11.8 ± 7.5  0.10 ± 0.14  0.54 ± 0.09 

 

 

 

Figure 87 – Borders for the straight line problem, with a training set of 16 prototypes 
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24 patterns 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  24.0 ± 0.0  6.1 ± 1.9  0.00 ± 0.00  2.72 ± 0.03 
CNN  5.9 ± 1.9  8.1 ± 2.8  0.01 ± 0.02  0.75 ± 0.21 
RNN  4.5 ± 1.3  8.0 ± 3.0  0.01 ± 0.02  0.59 ± 0.14 
QSet-P  5.2 ± 1.0  8.3 ± 2.8  0.00 ± 0.01  0.66 ± 0.11 
QSet-N  4.1 ± 1.4  8.1 ± 2.9  0.08 ± 0.06  0.55 ± 0.16 
QSet-N0  4.8 ± 1.5  7.7 ± 2.7  0.05 ± 0.06  0.62 ± 0.16 
QSet-BB  5.1 ± 1.0  8.2 ± 2.7  7.75 ± 34.79  0.65 ± 0.11 

 

 

 

Figure 88 – Borders for the straight line problem, with a training set of 24 prototypes 
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32 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  32.0 ± 0.0  5.7 ± 1.8  0.00 ± 0.00  3.58 ± 0.02 
CNN  7.0 ± 2.0  6.9 ± 3.2  0.01 ± 0.02  0.86 ± 0.23 
RNN  5.0 ± 1.3  7.5 ± 3.3  0.02 ± 0.03  0.64 ± 0.14 
QSet-P  5.9 ± 1.2  7.4 ± 3.1  0.00 ± 0.01  0.76 ± 0.14 
QSet-N  4.6 ± 1.4  7.1 ± 3.3  0.12 ± 0.08  0.60 ± 0.15 
QSet-N0  5.4 ± 1.5  6.7 ± 2.7  0.06 ± 0.06  0.70 ± 0.16 
QSet-BB  5.7 ± 1.3  7.4 ± 3.0  4.37 ± 10.97  0.73 ± 0.15 

 

 

 

Figure 89 – Borders for the straight line problem, with a training set of 32 prototypes 
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40 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  40.0 ± 0.0  5.3 ± 1.4  0.00 ± 0.00  4.44 ± 0.02 
CNN  7.5 ± 2.6  6.7 ± 2.2  0.01 ± 0.02  0.92 ± 0.28 
RNN  5.4 ± 1.6  6.7 ± 2.1  0.02 ± 0.03  0.68 ± 0.18 
QSet-P  6.6 ± 1.0  6.6 ± 2.8  0.01 ± 0.02  0.82 ± 0.12 
QSet-N  5.2 ± 1.2  6.8 ± 2.8  0.18 ± 0.13  0.67 ± 0.13 
QSet-N0  6.1 ± 1.2  7.1 ± 2.5  0.09 ± 0.08  0.77 ± 0.13 
QSet-BB  6.3 ± 1.0  6.6 ± 2.7 111.95 ± 422.53  0.79 ± 0.11 

 

 

Figure 90 – Borders for the straight line problem, with a training set of 40 prototypes 
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48 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  48.0 ± 0.0  4.8 ± 1.3  0.00 ± 0.00  5.34 ± 0.24 

CNN  8.9 ± 1.9  5.9 ± 2.1  0.02 ± 0.03  1.04 ± 0.20 

RNN  6.2 ± 1.3  5.9 ± 2.2  0.03 ± 0.03  0.75 ± 0.13 

QSet-P  7.1 ± 1.3  6.0 ± 1.9  0.01 ± 0.02  0.85 ± 0.15 

QSet-N  5.6 ± 1.2  6.2 ± 2.5  0.25 ± 0.17  0.69 ± 0.13 

QSet-N0  6.8 ± 1.4  5.7 ± 2.0  0.11 ± 0.13  0.84 ± 0.17 

 

 

 

Figure 91 – Borders for the straight line problem, with a training set of 48 prototypes 
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56 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  56.0 ± 0.0  4.2 ± 0.7  0.00 ± 0.00  6.19 ± 0.10 
CNN  10.0 ± 2.9  4.9 ± 1.7  0.02 ± 0.03  1.16 ± 0.31 
RNN  7.4 ± 2.0  5.3 ± 1.9  0.03 ± 0.03  0.89 ± 0.21 
QSet-P  8.4 ± 1.5  5.7 ± 1.7  0.01 ± 0.02  1.00 ± 0.15 
QSet-N  7.0 ± 1.7  5.0 ± 1.9  0.26 ± 0.19  0.85 ± 0.17 
QSet-N0  7.9 ± 1.6  5.4 ± 1.5  0.14 ± 0.13  0.95 ± 0.20 

 

 

 

Figure 92 – Borders for the straight line problem, with a training set of 56 prototypes 
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64 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  64.0 ± 0.0  4.0 ± 1.1  0.00 ± 0.00  7.17 ± 0.28 
CNN  9.7 ± 2.9  5.3 ± 1.6  0.03 ± 0.03  1.13 ± 0.31 
RNN  7.0 ± 1.7  5.5 ± 1.6  0.05 ± 0.04  0.84 ± 0.18 
QSet-P  8.5 ± 1.5  5.4 ± 1.6  0.02 ± 0.03  1.00 ± 0.16 
QSet-N  6.7 ± 1.6  6.2 ± 1.9  0.35 ± 0.25  0.80 ± 0.17 
QSet-N0  8.2 ± 1.7  5.3 ± 1.5  0.15 ± 0.12  0.96 ± 0.17 

 

 

 

Figure 93 – Borders for the straight line problem, with a training set of 64 prototypes 
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96 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  96.0 ± 0.0  3.3 ± 0.8  0.00 ± 0.00  10.67 ± 0.05 
CNN  12.0 ± 2.3  4.3 ± 1.1  0.04 ± 0.02  1.37 ± 0.24 
RNN  8.5 ± 1.8  4.5 ± 1.4  0.07 ± 0.03  0.99 ± 0.18 
QSet-P  9.9 ± 1.2  4.0 ± 1.2  0.03 ± 0.03  1.15 ± 0.13 
QSet-N  8.3 ± 1.5  4.3 ± 1.4  0.63 ± 0.56  0.98 ± 0.16 
QSet-N0  9.5 ± 1.1  4.1 ± 1.4  0.26 ± 0.13  1.11 ± 0.11 
 

 

 

Figure 94 – Borders for the straight line problem, with a training set of 96 prototypes 
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128 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  128.0 ± 0.0  2.9 ± 0.7  0.00 ± 0.00  14.24 ± 0.05 
CNN  14.3 ± 4.2  3.5 ± 0.9  0.06 ± 0.02  1.60 ± 0.44 
RNN  9.7 ± 2.8  3.7 ± 0.9  0.11 ± 0.04  1.12 ± 0.29 
QSet-P  12.2 ± 2.2  3.6 ± 0.8  0.05 ± 0.01  1.38 ± 0.23 
QSet-N  10.3 ± 1.7  3.9 ± 0.9  1.81 ± 1.43  1.19 ± 0.18 
QSet-N0  11.3 ± 2.2  3.8 ± 0.7  1.11 ± 1.14  1.29 ± 0.24 

 

 

 

Figure 95 – Borders for the straight line problem, with a training set of 128 prototypes 
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256 patterns 

 

 

Method NºPrototypes Error rate Training t /s Test t /s 
NN  256.0 ± 0.0  2.1 ± 0.4  0.00 ± 0.00  30.93 ± 12.25 
CNN  21.4 ± 3.6  2.5 ± 0.5  0.15 ± 0.03  2.33 ± 0.38 
RNN  14.3 ± 2.0  2.7 ± 0.6  0.31 ± 0.07  1.58 ± 0.21 
QSet-P  17.0 ± 2.3  2.6 ± 0.4  0.19 ± 0.03  1.89 ± 0.24 
QSet-N  14.9 ± 2.9  2.7 ± 0.6  10.35 ± 7.25  1.66 ± 0.30 
QSet-N0  15.8 ± 2.3  2.5 ± 0.5  5.30 ± 2.88  1.75 ± 0.24 

 

 

Figure 96 – Borders for the straight line problem, with a training set of 256 prototypes 



 

  277 

APPENDIX C 

List of data recorded in the acoustical tank 



278  Appendix C 

 

 

Nº File Name Length 

/bytes 

Duration 

/s 

Target Transient Interference 

1 A00000T00R01x1.wav 5292058 60.00066 None - Air (strong) 

2 A00000T00R01x2.wav 5292058 60.00066 None - Air (strong) 

3 A00000T00R02x1.wav 5292058 60.00066 None - Ar (weak) 

4 A00000T00R02x2.wav 5292058 60.00066 None - Ar (weak) 

5 A00000T00R08x1.wav 5292058 60.00066 None - Water (strong) 

6 A00000T00R08x2.wav 5292058 60.00066 None - Water (strong) 

7 A00000T00R04x1.wav 5292058 60.00066 None - Water (weak) 

8 A00000T00R04x2.wav 5292058 60.00066 None - Water (weak) 

9 A10000T00R00x1.wav 5292058 60.00066 Motor 1 (desengaged) - - 

10 A10000T00R00x2.wav 5292058 60.00066 Motor 1 (desengaged) - - 

11 A10000T00R00x3.wav 5292058 60.00066 Motor 1 (desengaged) - - 

12 A10000T00R00x4.wav 5292058 60.00066 Motor 1 (desengaged) - - 

13 A10000T00R00x5.wav 5292058 60.00066 Motor 1 (desengaged) - - 

14 E20000T00R00x1.wav 5292058 60.00066 Motor 1(very slow) - - 

15 E20000T00R00x2.wav 5292058 60.00066 Motor 1(very slow) - - 

16 E20000T00R00x3.wav 5292058 60.00066 Motor 1(very slow) - - 

17 E20000T00R00x4.wav 5292058 60.00066 Motor 1(very slow) - - 

18 E20000T00R00x5.wav 5292058 60.00066 Motor 1(very slow) - - 

19 E30000T00R00x1_R.wav 5292058 60.00066 Motor 1 (lento-ré) - - 

20 A30000T00R00x1.wav 5292058 60.00066 Motor 1 (slow) - - 

21 A30000T00R00x2.wav 5292058 60.00066 Motor 1 (slow) - - 

22 A30000T00R00x3.wav 5292058 60.00066 Motor 1 (slow) - - 

23 A30000T00R00x4.wav 5292058 60.00066 Motor 1 (slow) - - 

24 A30000T00R00x5.wav 5292058 60.00066 Motor 1 (slow) - - 

25 A40000T00R00x1.wav 5292058 60.00066 Motor 1 (half) - - 

26 A40000T00R00x2.wav 5292058 60.00066 Motor 1 (half) - - 

27 A40000T00R00x3.wav 5292058 60.00066 Motor 1 (half) - - 

28 A40000T00R00x4.wav 5292058 60.00066 Motor 1 (half) - - 

29 A40000T00R00x5.wav 5292058 60.00066 Motor 1 (half) - - 

30 A20000T00R01x1.wav 5292058 60.00066 Motor 1(very slow) - Air (strong) 

31 A20000T00R01x2.wav 5292058 60.00066 Motor 1(very slow) - Air (strong) 

32 A20000T00R01x3.wav 5292058 60.00066 Motor 1(very slow) - Air (strong) 

33 A20000T00R01x4.wav 5292058 60.00066 Motor 1(very slow) - Air (strong) 

34 A20000T00R01x5.wav 5292058 60.00066 Motor 1(very slow) - Air (strong) 

35 A20000T00R02x1.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak) 

36 A20000T00R02x2.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak) 
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37 A20000T00R02x3.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak) 

38 A20000T00R02x4.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak) 

39 A20000T00R02x5.wav 5292058 60.00066 Motor 1(very slow) - Ar (weak) 

40 A20000T00R04x1.wav 5292058 60.00066 Motor 1(very slow) - Water (weak) 

41 A20000T00R04x2.wav 5292058 60.00066 Motor 1(very slow) - Water (weak) 

42 A20000T00R04x3.wav 5292058 60.00066 Motor 1(very slow) - Water (weak) 

43 A20000T00R04x4.wav 5292058 60.00066 Motor 1(very slow) - Water (weak) 

44 A20000T00R04x5.wav 5292058 60.00066 Motor 1(very slow) - Water (weak) 

45 A20000T00R08x1.wav 5292058 60.00066 Motor 1(very slow) - Water (strong) 

46 A20000T00R08x2.wav 5292058 60.00066 Motor 1(very slow) - Water (strong) 

47 A20000T00R08x3.wav 5292058 60.00066 Motor 1(very slow) - Water (strong) 

48 A20000T00R08x4.wav 5292058 60.00066 Motor 1(very slow) - Water (strong) 

49 A20000T00R08x5.wav 5292058 60.00066 Motor 1(very slow) - Water (strong) 

50 A50000T00R00x1.wav 5292058 60.00066 Motor 5 (changing) - - 

51 A50000T00R00x2.wav 5292058 60.00066 Motor 5 (changing) - - 

52 A00000T16R00x01.wav 909538 10.31222 None Gunshot - 

53 A00000T16R00x02.wav 915050 10.37472 None Gunshot - 

54 A00000T16R00x03.wav 843394 9.56229 None Gunshot - 

55 A00000T16R00x04.wav 915050 10.37472 None Gunshot - 

56 A00000T16R00x05.wav 915050 10.37472 None Gunshot - 

57 A00000T16R00x06.wav 893002 10.12474 None Gunshot - 

58 A00000T16R00x07.wav 920562 10.43721 None Gunshot - 

59 A00000T16R00x08.wav 915050 10.37472 None Gunshot - 

60 A00000T16R00x09.wav 915050 10.37472 None Gunshot - 

61 A00000T16R00x10.wav 837882 9.499796 None Gunshot - 

62 A00000T16R00x11.wav 920562 10.43721 None Gunshot - 

63 A00000T16R00x12.wav 920562 10.43721 None Gunshot - 

64 A00000T16R00x13.wav 926074 10.49971 None Gunshot - 

65 A00000T16R00x14.wav 926074 10.49971 None Gunshot - 

66 A00000T16R00x15.wav 915050 10.37472 None Gunshot - 

67 A00000T16R00x16.wav 926074 10.49971 None Gunshot - 

68 A00000T16R00x17.wav 920562 10.43721 None Gunshot - 

69 A00000T16R00x18.wav 920562 10.43721 None Gunshot - 

70 A00000T16R00x19.wav 948122 10.74968 None Gunshot - 

71 A00000T16R00x20.wav 920562 10.43721 None Gunshot - 

72 A00000T16R00x21.wav 926074 10.49971 None Gunshot - 

73 A00000T16R00x22.wav 843394 9.56229 None Gunshot - 

74 A00000T16R00x23.wav 920562 10.43721 None Gunshot - 

75 A00000T16R00x24.wav 909538 10.31222 None Gunshot - 
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76 A00000T16R00x25.wav 920562 10.43721 None Gunshot - 

77 A00000T16R00x26.wav 920562 10.43721 None Gunshot - 

78 A00000T16R00x27.wav 915050 10.37472 None Gunshot - 

79 A00000T16R00x28.wav 920562 10.43721 None Gunshot - 

80 A00000T16R00x29.wav 920562 10.43721 None Gunshot - 

81 A00000T16R00x30.wav 920562 10.43721 None Gunshot - 

82 A00000T16R00x31.wav 832370 9.437302 None Gunshot - 

83 A00000T16R00x32.wav 898514 10.18723 None Gunshot - 

84 A00100T00R00.wav 26507340 300.5367 Motor 3 (desengaged) - - 

85 A00200T00R00.wav 26556948 301.0992 Motor 3(very slow) - - 

86 A00300T00R00.wav 26512852 300.5992 Motor 3 (slow) - - 

87 A00400T00R00.wav 26512852 300.5992 Motor 3 (half) - - 

88 A00200T00R01.wav 26540412 300.9117 Motor 3(very slow) - Air (strong) 

89 A00400T00R01.wav 26507340 300.5367 Motor 3 (half) - Air (strong) 

90 A00200T00R08.wav 26512852 300.5992 Motor 3(very slow) - Water (strong) 

91 A00400T00R08.wav 26667188 302.3491 Motor 3 (half) - Water (strong) 

92 A00500T00R00x1.wav 5357796 60.74599 Motor 3 (changing) - - 

93 A00500T00R00x2.wav 5335748 60.49601 Motor 3 (changing) - - 

94 A01000T00R00.wav 26512852 300.5992 Motor 2 (desengaged) - - 

95 A02000T00R00.wav 26540412 300.9117 Motor 2(very slow) - - 

96 A03000T00R00.wav 26512852 300.5992 Motor 2 (slow) - - 

97 A04000T00R00.wav 26507340 300.5367 Motor 2 (half) - - 

98 A02000T00R01.wav 26545924 300.9742 Motor 2(very slow) - Air (strong) 

99 A02000T00R08.wav 26518364 300.6617 Motor 2 (half) - Water (strong) 

100 A04000T00R01.wav 26793964 303.7864 Motor 2(very slow) - Air (strong) 

101 A04000T00R08.wav 26507340 300.5367 Motor 2 (half) - Water (strong) 

102 A05000T00R00x1.wav 5352284 60.68349 Motor 2 (changing) - - 

103 A05000T00R00x2.wav 5335748 60.49601 Motor 2 (changing) - - 

104 A20000T00R00.wav 26518364 300.6617 Motor 1 (half) - - 

105 A40000T00R01.wav 26540412 300.9117 Motor 1 (half) - Air (strong) 

106 A40000T00R08.wav 26529388 300.7867 Motor 1 (half) - Water (strong) 

107 A02000T16R00.wav 5292058 60.00066 Motor 2(very slow) Gunshot - 

108 A02000T08R00.wav 5292058 60.00066 Motor 2(very slow) Metal hammer - 

109 A02000T04R00.wav 5292058 60.00066 Motor 2(very slow) Rubber hammer - 

110 A02000T01R00.wav 5292058 60.00066 Motor 2(very slow) Air - 

111 A02000T02R00.wav 5292058 60.00066 Motor 2(very slow) Bucket of water - 

112 A22000T00R00.wav 5292058 60.00066 Motor1+Motor2 - - 

113 A02200T00R00.wav 5292058 60.00066 Motor2+Motor3 - - 

114 E02040T00R00.wav 5292058 60.00066 Motor2+Motor4 - - 



List of data recorded in the acoustic tank   281 

 

115 A00200T16R00.wav 5292058 60.00066 Motor 3(very slow) Gunshot - 

116 E00220T00R00.wav 5292058 60.00066 Motor3+Motor4 - - 

117 A00200T08R00.wav 5292058 60.00066 Motor 3(very slow) Metal hammer - 

118 A00200T04R00.wav 5292058 60.00066 Motor 3(very slow) Rubber hammer - 

119 A00200T01R00.wav 5292058 60.00066 Motor 3(very slow) Air - 

120 A00200T02R00.wav 5292058 60.00066 Motor 3(very slow) Bucket of water - 

121 A02002T00R00.wav 5292058 60.00066 Motor2+Model boat - - 

122 A02020T00R00.wav 5292058 60.00066 Motor2+Motor4 - - 

123 A20200T00R00.wav 5292058 60.00066 Motor1+Motor3 - - 

124 A00220T00R00.wav 5292058 60.00066 Motor3+Motor4 - - 

125 E00200T00R00.wav 5292058 60.00066 Motor 3(very slow) - - 

126 A20220T00R00.wav 5292058 60.00066 Motor1+3+4 - - 

127 A20020T00R00.wav 5292058 60.00066 Motor1+Motor3 - - 

128 E20000T16R00.wav 5292058 60.00066 Motor 1(very slow) Gunshot - 

129 A20000T16R00.wav 5292058 60.00066 Motor 1(very slow) Gunshot - 

130 A20000T08R00.wav 5292058 60.00066 Motor 1(very slow) Metal hammer - 

131 A20000T04R00.wav 5292058 60.00066 Motor 1(very slow) Rubber hammer - 

132 A20000T01R00.wav 5292058 60.00066 Motor 1(very slow) Air - 

133 A20000T02R00.wav 5292058 60.00066 Motor 1(very slow) Bucket of water - 

134 A00010T00R00.wav 31528772 357.4691 Motor 4 (desengaged) - - 

135 A00020T00R00.wav 32702828 370.7804 Motor 4(very slow) - - 

136 A00030T00R00.wav 39603852 449.0233 Motor 4 (slow) - - 

137 A00040T00R00.wav 29097980 329.9091 Motor 4 (half) - - 

138 A00020T00R01.wav 26667188 302.3491 Motor 4(very slow) - Air (strong) 

139 E00040T00R01.wav 9144540 103.6796 Motor 4 (half) - Air (strong) 

140 A00040T00R01.wav 27312092 309.6609 Motor 4 (half) - Air (strong) 

141 A00020T00R08.wav 26523876 300.7242 Motor 4(very slow) - Water (strong) 

142 A00040T00R08.wav 26738844 303.1615 Motor 4 (half) - Water (strong) 

143 A00020T16R00.wav 5065586 57.43295 Motor 4(very slow) Gunshot - 

144 A00020T08R00.wav 5292058 60.00066 Motor 4(very slow) Metal hammer - 

145 A00020T04R00.wav 5275042 59.80773 Motor 4(very slow) Rubber hammer - 

146 A00020T01R00.wav 5292058 60.00066 Motor 4(very slow) Air - 

147 A00020T02R00.wav 5292058 60.00066 Motor 4(very slow) Bucket of water - 

148 A00011T00R00.wav 5292058 60.00066 Motor4+Model boat - - 

149 A00022T00R00.wav 5292058 60.00066 Motor3+Model boat - - 

150 A20002T00R00.wav 5292058 60.00066 Motor 1 (half) - - 

151 A00000T08R00.wav 28601900 324.2846 None Metal hammer - 

152 A00000T04R00.wav 28353860 321.4723 None Rubber hammer - 

153 A00000T01R00.wav 28342836 321.3473 None Air - 
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154 A00000T02R00.wav 29368068 332.9713 None Bucket of water - 

155 A00002T16R00.wav 5292058 60.00066 Model boat Gunshot - 

156 A00002T08R00.wav 5292058 60.00066 Model boat Metal hammer - 

157 A00002T04R00.wav 5292058 60.00066 Model boat Rubber hammer - 

158 A00002T01R00.wav 5292058 60.00066 Model boat Air - 

159 A00002T02R00.wav 5292058 60.00066 Model boat Bucket of water - 

160 A00001T00R00.wav 5335748 60.49601 Model boat (slow) - - 

161 A00002T00R00.wav 5539692 62.8083 Model boat (rapido) - - 

162 A00003T00R00.wav 5335748 60.49601 Model boat (re lento) - - 

163 A00004T00R00.wav 5886948 66.74544 Model boat (re rápido) - - 

164 A00005T00R00.wav 6945252 78.74435 None - - 

165 E00006T00R00.wav 7292508 82.6815 None - - 

166 A00006T00R00.wav 5341260 60.5585 None - - 

167 A00000T00R09.wav 26601044 301.5991 None - Air + Water 

168 A00000T00R01.wav 1.12E+08 1265.699 None - Air (strong) 
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This appendix presents an overview of the signals recorded in the acoustic tank, as described in 

Chapter 4 of part III, and used in the experiments contained in that Chapter.  

 

Each data pattern was extracted from approximately 3 s of raw signal. The total number of 

patterns available is presented in Table 12. 

 

Effect Nº of Patterns Time Size /MB 
motor 1 1263  1 h 03 min 333.606 
motor 2 949  47 min 249.587 
motor 3 968  48 min 254.763 
motor 4 1045  52 min 275.536 
motor 5 
(background) 

1291 1 h 04 min 343.890 

TOTAL 5516 5 h 01 min 1.457.382 

Table 23 - General information about the Acoustic Tank data. The number of patterns correspond to 3 s 
segments of the original signal. These will later be subject to different feature extraction techniques, to 

produce the final patterns. 

 

The plots presented in the following pages where obtained by computing the power spectra of 

each raw pattern with 8192 points (4096 positive frequency bins), corresponding to 5.3 Hz per 

bin from 0 to 22 kHz. A Hamming window and 50% overlap Welsh periodograms were used, so 

each spectrum used is the average of 32 individual spectra. 
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Figure 97 - Spectra of Motor 1. The black line represents the average, the dark gray area represents the 
region of average ± standard deviation, and the light gray area encompasses all observed signals (from 

maximum to minimum values) 
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Figure 98 -Spectra of Motor 2. The black line represents the average, the dark gray area represents the region 
of average ± standard deviation, and the light gray area encompasses all observed signals (from maximum to 

minimum values). 
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Figure 99 -Spectra of Motor 3. The black line represents the average, the dark gray area represents the region 
of average ± standard deviation, and the light gray area encompasses all observed signals (from maximum to 

minimum values). 
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Figure 100 - Spectra of Motor 4. The black line represents the average, the dark gray area represents the 
region of average ± standard deviation, and the light gray area encompasses all observed signals (from 

maximum to minimum values). 
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Figure 101 - Spectra of background noise (or motor 5). The black line represents the average, the dark gray 
area represents the region of average ± standard deviation, and the light gray area encompasses all observed 

signals (from maximum to minimum values). 
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function qs=qs_mat_build( prototype, label_prototype, pattern ,label_pattern ) 

% qs=qs_mat_build( prototypes, label_prototypes,patterns ,label_patterns ) 

% 

% OBJECTIVE 

%   Build the Q-set matrix for the patterns in PATTERNS. This routine 

%   caclulates the Q-set of order 0, necessary for the positive-only 

%   Q-set approach descibed in (Lobo). 

% 

% INPUT PARAMETERS 

%     prototype        - Candidate prototypes (one per column) 

%     label_prototype  - Labels of the prototypes 

%     pattern          - Data patterns (one per column) for which the  

%                        Q matrix is calculated 

%     label_pattern    - Labels of the patterns 

% 

% OUTPUT PARAMETERS 

%     qs               - Boolean matrix where each row corresponds to 

%                        a data pattern, and each column to a prototype 

%                        A value of 1 indicates that the prototype 

%                        corresponding to that columns belongs to the 

%                        Q-set of the data pattern corresonding to the row 

% 

% V.1.0.0 - 00-JUN-2000 - V.Lobo, Home 

% V.1.1.0 - 08-AUG-2002 - V.Lobo, SDSU 

 

[numFeatures,numPatterns]=size(pattern); 

[numFeatures2,numPrototypes]=size(prototype); 

if numFeatures ~= numFeatures2 

   disp('ERROR in qs_mat_build: number of features does not agree.'); 

   return ; 

end; 

 

d = dist(pattern',prototype); 

                           % sameClass is 1 if pattern and prototype 

                           % have the same label 

                            

sameClass = (repmat(label_prototype,numPatterns,1) == 

(repmat(label_pattern,numPrototypes,1))'); 

                           % we shall now find the nearest prototype with 

                           % WRONG class 
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warning off; 

wrongDistances = min((d ./ ~sameClass )')'; 

warning on; 

qs= sameClass & (d<repmat(wrongDistances,1,numPrototypes)); 
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function chosenPrototypes=qs_select_heuristic(qset) 

% chosenPrototypes=qs_select_heuristic(qset) 

% 

% OBJECTIVE 

%   This function selects the classifiying prototypes, given 

%   a matrix with their Q-sets, using the positive-only 

%   heuristic descibed in (Lobo) 

% 

% INPUT PARAMETERS 

%   qset    Binary matrix with qsets, produced by "qs_mat_build" 

% 

% OUTPUT PARAMETERS 

%   chosenPrototypes    Indexes of the chosen prototypes 

% 

% COMMENTS 

% 

% V.1.0.0 - 00-000-2001 - V.Lobo 

% V.1.1.0 - 08-AUG-2002 - V.Lobo 

 

[numPatterns,numPrototypes]=size(qset); 

indexPrototypes=1:numPrototypes; 

 

   % find how many prorotypes classify each pattern 

sumPrototypes=sum(qset,2); 

 

   % Find patterns that are classified by a single prototype 

singlyClassifiedPatterns = find(sumPrototypes==1); 

 

   % Store the candidate Prototypes that classify those patterns 

[dummy,candidatePrototype] = find( qset(singlyClassifiedPatterns,:)==1 ); 

 

   % Remove repeated prorotypes from the list 

candidatePrototype = unique(candidatePrototype); 

 

   % make the choice permanent 

chosenPrototypes = candidatePrototype; 

[numChosenPrototypes,dummy] = size(chosenPrototypes); 

 

   % clear the qs_matrice of the already dealt with patterns  

remainingPatterns = find( sumPrototypes > 1 ); 

qset = qset(remainingPatterns,:); 
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   % find the indexes of patterns already covered by the chosen prototypes 

tmpQset=qset(:,chosenPrototypes); 

sumPrototypes=sum(tmpQset,2); 

remainingPatterns = find( sumPrototypes < 1 ); 

qset = qset(remainingPatterns,:); 

   % At this moment, all patterns in QSET are classified by at leat 2 protot. 

  

while( size(qset)>0 ) 

   frequency = sum(qset,1); 

   [dummy,candidatePrototype]=max(frequency); 

   remainingPatterns = find( qset(:,candidatePrototype) == 0 ); 

   qset = qset(remainingPatterns,:); 

   chosenPrototypes = [chosenPrototypes ; candidatePrototype ]; 

end; 



296  Appendix E 

 

function [qsgc,qsgc_lv]=qsgc_mat_build( prototype, label_prototype, pattern 

,label_pattern ) 

% [qsgc,qsgc_lv]=qsgc_mat_build( prototype, label_prototype, pattern 

,label_pattern ) 

% 

% OBJECTIVE 

%   Build the generalised Q set matrix for the patterns in PATTERNS, 

%   according to [Lobo 02]. From this matrix, the various Q and R sets 

%   can easlily be computed 

%   

% 

% INPUT PARAMETERS: 

%     prototype        - Candidate prototypes (one per column) 

%     label_prototype  - Labels of the prototypes 

%     pattern          - Data patterns (one per column) for which the  

%                        Q matrix is calculated 

%     label_pattern    - Labels of the patterns 

% 

% OUTPUT PARAMETERS 

% 

%       qsgc    - Q-Set-General-Case: Matrix with the indexes of the 

%                   nearest prototypes, sorted by distance. Each row 

%                   corresponds to a given pattern 

%       qsgc_lv -Q-Set-General-Case-Logical-Values: companion matrix 

%                   to qsgc, has 1 if the corresponding variable is 

%                   affirmative (same classes), and 0 it they are not 

%                   (different classes) 

% 

% V.1.0.0 - 00-JUN-2000 - V.Lobo, Home 

% V.1.1.0 - 08-APR-2002 - V.Lobo, SDSU 

 

[numFeatures,numPatterns]=size(pattern); 

[numFeatures2,numPrototypes]=size(prototype); 

if numFeatures ~= numFeatures2 

   disp('ERROR in qsgc_mat_build: incorrect number of features'); 

   return ; 

end; 

qsqc_lv=zeros(numPatterns,numPrototypes); 

 

d = dist(pattern',prototype); 

                           % Sort the distances into the Qset 
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[lixo, qsgc ] = sort( d, 2 ); 

 

for i=1:numPatterns 

    tmp=label_prototype(qsgc(i,:)); 

    qsgc_lv(i,:)=tmp==label_pattern(i); 

end; 
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function [qs,removedP]=g2p( qsgc,qsgc_lv,amer ) 

% [qs,removedP]=g2p( qsgc,qsgc_lv,amer  

% 

% OBJECTIVE 

%   Transform a general-case Q-set to a positive-only, usin amer 

% 

% INPUT PARAMETERS: 

%       qsgc    - Q-Set-General-Case: Matrix with the indexes of the 

%                   nearest prototypes, sorted by distance. Each row 

%                   corresponds to a given pattern 

%       qsgc_lv -Q-Set-General-Case-Logical-Values: companion matrix 

%                   to qsgc, has 1 if the corresponding variable is 

%                   affirmative (same classes), and 0 it they are not 

%                   (different classes) 

%       amer    - Maximum number of errors allowed 

% 

% OUTPUT PARAMETERS 

%       qs      - Boolean matrix with the positive-only q-sets 

%       removedP- Indexes of the patterns removed 

% 

% V.1.0.0 - 08-APR-2002 - V.Lobo, SDSU 

 

% Variables: 

%       gsgc_valid - boolean matrix that is a companion to qsgc and qsgc_lv 

%                    if it is 1, that combination of pattern/prototype is sill 

%                    possible, because the prototype hasen't been excluded 

 

[numPatterns,numPrototypes]=size(qsgc); 

 

qsgc_valid=ones(numPatterns,numPrototypes); 

P=1:numPrototypes;  % indexes of prototypes that can be included 

removedP=[];        % indexes of prototypes that are excluded 

 

%calculate the original error rate 

errors=not(qsgc_lv(:,1));   % if the first entry in the Qset has the same 

class 

                            % then there is no error. Otherwise, there is. The 

                            % variable "errors" is a vector that that has a 

"1" 

                            % in the positions corresponting to patterns that 

are 
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                            % badly classified 

                             

validPatterns=find(errors==0);  % "validPatterns" contains indexes of valid 

Patt. 

numValidPatterns=length(validPatterns); 

numErrors=numPatterns-numValidPatterns; 

 

oldRemovedP=removedP;             % we might have to backtrack 1 step 

oldqsgc_valid=qsgc_valid; 

olderrors=errors; 

oldvalidPatterns=validPatterns; 

 

while numErrors <= amer 

     

% First search for obvious candidates for exlusion 

candidateP=zeros(1,numValidPatterns); 

for i=validPatterns'            % Search all still valid patterns 

    bad=and(qsgc_valid(i,:),not(qsgc_lv(i,:))); 

    ibad=find(bad==1);          % indexes of prototypes with wrong class 

    thisCandidate=ibad(1);      % index of FIRST prototype with wrong class 

    candidateP(i)= qsgc(i,thisCandidate); % add that prototype to the 

candidate list 

end; 

 

candidateP=unique(candidateP);  % Remove duplicate candidates 

if candidateP(1)==0      % pathological case 1: one pattern has no bad prot. 

    candidateP=candidateP(2:end); 

end; 

if candidateP==[]        % pathological case 2: there are no mode candidates 

    break; 

end; 

 

% calculate min cost/benefit for each of the candidates 

minCB=10000;        % dummy initial value for minumum Cost/Benefit found 

minCBP=0;           % dummy initial value for the index of the best prototype 

for j=candidateP    % for every candidate... 

    cost=1; 

    benefit=1; 

    for i=validPatterns'    % check effect on all remaining Patterns 

        position=find( qsgc(i,:)==j);   % position of candidate prototype in 

Qset 
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        if qsgc_lv(i,position)==1 

            %if they have the SAME class 

            valid=qsgc_valid(i,1:position-1); 

            right=qsgc_lv(i,1:position-1); 

            previous_right=and(valid,right); 

            if not(any(previous_right)) 

                %if it is the first right 

                if qsgc_lv(i,position+1)==0 

                    % if the next has the wrong label 

                    % in this case, the cost would be increased 

                    cost=cost+1; 

                end; 

            end; 

        else % if they have different classes 

            %find out if it's the first of the wrong class 

            valid=qsgc_valid(i,1:position-1); 

            wrong=not(qsgc_lv(i,1:position-1)); 

            previous_wrong=and(valid,wrong); 

            if not(any(previous_wrong)) 

                % if this is the first wrong 

                % we will count how may benefits we have 

                % 1-go to the next valid 

                position=position+1; 

                while ((position < numPrototypes) & 

(qsgc_valid(i,position)==0) ) 

                    position=position+1; 

                end; 

                while (position < numPrototypes) & (qsgc_lv(i,position)==1)  

                    benefit=benefit+1; 

                    position=position+1; 

                    while (position < numPrototypes) & 

(qsgc_valid(i,position)==0) 

                        position=position+1; 

                    end; 

                end; 

            end; 

        end; 

    end; % end of for validPatterns (the effect of this prototype "j" on all 

         % remaining patterns is accounted for. 

          

         % We shall now see if it is better than all previous candidates... 
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    CB=cost/benefit; 

    if CB<minCB 

        minCB=CB; 

        minP=j; 

    end; 

end; 

%We have now selected the best prototype 

 

oldRemovedP=removedP;             % we might have to backtrack 1 step 

oldqsgc_valid=qsgc_valid; 

olderrors=errors; 

oldvalidPatterns=validPatterns; 

 

removedP=union(removedP,minP);      % we add it to the removed set; 

P = setdiff(P,minP);                % ... and remove it from the prototype 

 

%We will now remove it from the Qsets and which are not errors 

errors=zeros(1,numPatterns); 

for i=1:numPatterns' 

    removedIndex=find( qsgc(i,:)== minP ); 

    qsgc_valid(i,removedIndex)=0; 

    % now lets check if Ro={} 

    good=and(qsgc_valid(i,:),qsgc_lv(i,:)); 

    igood=find(good==1); 

    if igood==[] 

        errors(i)=1; 

    else 

        igood=igood(1); 

        bad=and(qsgc_valid(i,:),not(qsgc_lv(i,:))); 

        ibad=find(bad==1); 

        if ibad~=[] 

            ibad=ibad(1); 

            if ibad < igood 

                % in this case there is a bad one before the good one 

                errors(i)=1; 

            end; 

        end; 

    end; 

end; 

 

% calculate the error 
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validPatterns=find(errors==0)'; 

numErrors=numPatterns-length(validPatterns); 

 

end; % do amer... 

 

% now we must construct the boolean positive-only functions 

errors=olderrors; 

qsgc_valid=oldqsgc_valid; 

validPatterns=oldvalidPatterns; 

 

% initialize qs 

qs=zeros(length(validPatterns),numPrototypes); 

 

% fill qs eith the appropriate ones 

for i=1:length(validPatterns) 

    patternIndex=validPatterns(i); 

    bad=and(qsgc_valid(patternIndex,:),not(qsgc_lv(patternIndex,:))); 

    ibad=find(bad==1); 

    ibad=ibad(1); 

    good=and(qsgc_valid(patternIndex,1:ibad-1),qsgc_lv(patternIndex,1:ibad-

1)); 

    igood=find(good==1); 

    iprototypes=qsgc(patternIndex,igood); 

    qs(i,iprototypes)=1; 

end; 

 

return; 
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function [chosenPrototypes]=qs_select(qset) 

% [chosenPrototypes]=qs_select(qset) 

% 

% OBJECTIVE 

%   This function selects the classifiying prototypes, given 

%   a matrix with their Q-sets, using branch-and-bound described 

%   in [Lobo 2002] 

% 

% INPUT PARAMETERS 

%   qset    Binary matrix with qsets, produced by "qs_mat_build" 

% 

% OUTPUT PARAMETERS 

%   chosenPrototypes    Indexes of the chosen prototypes 

% 

% COMMENTS 

%   This functions contains "sub-functions", and uses global variables 

% 

% V.1.0.0 - 00-000-2001 - V.Lobo 

 

global originalQs; 

global indexPrototypes; 

global stopCost;        % cost of bestsolution MINUS 1 

global selectedPrototypes  

 

originalQs = qset; 

clear qset; 

 

[numPatterns,numPrototypes]=size(originalQs); 

indexPrototypes=1:numPrototypes; 

 

   % find how many prorotypes classify each pattern 

sumPrototypes=sum(originalQs,2); 

 

   % Find patterns that are classified by a single prototype 

singlyClassifiedPatterns = find(sumPrototypes==1); 

 

   % Store the candidate Prototypes that classify those patterns 

[dummy,candidatePrototype] = find( originalQs(singlyClassifiedPatterns,:)==1 

); 

 

   % Remove repeated prorotypes from the list 
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candidatePrototype = unique(candidatePrototype); 

 

   % make the choice permanent 

selectedPrototypes = candidatePrototype; 

[numChosenPrototypes,dummy] = size(selectedPrototypes); 

 

 

   % clear the qs_matrice of the already dealt with patterns  

remainingPatterns = find( sumPrototypes > 1 ); 

originalQs = originalQs(remainingPatterns,:); 

 

   % find the indexes of patterns already covered by the chosen prototypes 

tmpQset=originalQs(:,selectedPrototypes); 

sumPrototypes=sum(tmpQset,2); 

remainingPatterns = find( sumPrototypes < 1 ); 

if ~isempty(remainingPatterns) 

   % originalQs = originalQs(remainingPatterns,:); 

   remainingPrototypes = setdiff(indexPrototypes,selectedPrototypes); 

   stopCost = inf ; 

   IterateSearch(remainingPatterns,remainingPrototypes,selectedPrototypes,1) 

end; 

 

chosenPrototypes = selectedPrototypes; 

 

return 

%-----------------------------------------------------------------------------

-- 

% now the iterative part 

%-----------------------------------------------------------------------------

-- 

function 

IterateSearch(remainingPatterns,remainingPrototypes,candidateSelectedPrototype

s,cost) 

% ITERATIVE SEARCH - Iterative part of the QS selection with Branch&Bound 

% 

global originalQs; 

global indexPrototypes; 

global stopCost;        % cost of bestsolution MINUS 1 

global selectedPrototypes 

 

frequency = sum( originalQs(remainingPatterns,remainingPrototypes),1 ); 
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      % frequency will contain the relative frequencies of remaining prot. 

localPrototypes = indexPrototypes(remainingPrototypes); 

      % localPrototypes will contain the numbers of the remaining prototypes, 

      % in the same order as they appear in frequency 

 

 [maxFrequency,candidatePrototypePosition]= max(frequency); 

 

while( maxFrequency > 0 ) 

   % select that candidate prototype 

   candidatePrototype = localPrototypes( candidatePrototypePosition ); 

    

   removedPatterns = find( originalQs(:,candidatePrototype)); 

   localRemainingPatterns = setdiff(remainingPatterns,removedPatterns); 

   if isempty(localRemainingPatterns) 

      % in this case, the search has ended. 

            stopCost = cost-1; 

      selectedPrototypes = [ candidateSelectedPrototypes ; candidatePrototype 

]; 

      %disp('found a new solution'); 

      %selectedPrototypes' 

      return; 

   end; 

   % if the set isen't empty, is it worthwhile continuing this branch ? 

   if cost < stopCost  

    % if all is OK, let us iterate down one level 

    localRemainingPrototypes = 

setdiff(remainingPrototypes,candidatePrototype); 

   

 IterateSearch(localRemainingPatterns,localRemainingPrototypes,[candidate

SelectedPrototypes ; candidatePrototype],cost+1); 

   end; 

   if cost == stopCost 

      return; %in this case, it's no use trying more at this level 

   end; 

   frequency(candidatePrototypePosition)=0; 

   [maxFrequency,candidatePrototypePosition]= max(frequency);   

end; 

 

%disp('finished a branch'); 

return;    
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function [cnn,cnn_label]=cnn( train, train_label ) 

% [cnn,cnn_label]=Cnn(train, train_label ) 

% 

% OBJECTIVE 

%   This function selects the Condensed Nearest Neighbor classifiying 

%   patterns, acording to the CNN rule givem in [Hart 67] 

% 

% INPUT PARAMETERS 

%   train          Matrix with the initial trining set  

%                   (one pattern per column) 

%   train_label    Row vector with the lables (1:Nclasses)  

%                   of the training set 

% 

% OUTPUT PARAMETERS 

%   cnn             Matrix with de CNN (one pattern per column) 

%   cnn_label       Row vector with the labels of cnn 

% 

% COMMENTS 

%   Uses the knn function by VSL 

% 

% V.1.0.0 - 00-FEB-2000 - V.Lobo 

 

[num_features,num_patterns]=size(train); 

 

% The first CNN is the first training pattern. 

cnn = train(:,1); 

cnn_label = train_label(1); 

additions=1; 

while additions~=0 

   additions=0; 

   for k=2:num_patterns 

      class = knn( cnn, cnn_label, train(:,k), 1); 

      if class ~= train_label(k) 

         cnn=[cnn train(:,k)]; 

         cnn_label=[cnn_label train_label(k)]; 

         additions=1; 

      end; 

   end; 

end; 
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function [rnn,rnn_label]=rnn(train,train_label,cnn,cnn_label) 

% [rnn,rnn_label]=rnn(train,train_label,cnn,cnn_label) 

% 

% OBJECTIVE 

%  This function selects the Reduced Nearest Neighbor classification 

%  set from a previously obtained Condensed Nearest Neighbor set, 

%  acording to the RNN rule givem in [Gates 72] 

% 

% INPUT PARAMETERS 

%   train          Matrix with the initial trining set  

%                  (one pattern per column) 

%   train_label    Row vector with the lables (1:Nclasses)  

%                  of the training set 

%   cnn            Matrix with the CNN  

%                  (one pattern per column) 

%   cnn_label      Row vector with the lables (1:Nclasses)  

%                  of the CNN 

% 

% OUTPUT PARAMETERS 

%   rnn             Matrix with de RNN (one pattern per column) 

%   rnn_label       Row vector with the labels of rnn 

% 

% COMMENTS 

%    

% V.1.0.0 - 00-FEB-2000 - V.Lobo 

 

[num_features,num_cnn]=size(cnn); 

rnn = cnn; 

rnn_label=cnn_label; 

rnn_index=1; 

for m=1:num_cnn 

   try_rnn = Remove_col(rnn,rnn_index);       % remove pattern 

   try_rnn_label = Remove_col(rnn_label,rnn_index); % remove label  

   c=knn_mat(try_rnn,try_rnn_label,train);    % classify all patterns with 

                                              % new set  

   if c==train_label                          % if there are no errors... 

      rnn=try_rnn;                            % Accept the new RNN 

      rnn_label = try_rnn_label; 

   else                                       % If not... 

      rnn_index=rnn_index+1;                  % pass on to next candidate 

   end; 
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end; 

return; 
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function [vxx,vy] = voronoi_boundary(x,y,class,arg3,arg4) 

%VORONOI Voronoi boundary diagram. 

%   VORONOI_BOUNDARY(X,Y,CLASS) plots the Voronoi diagram for the points X,Y. 

% 

%   VORONOI(X,Y,TRI) uses the triangulation TRI instead of 

%   computing it via DELAUNAY.  

% 

%   H = VORONOI(...,'LineSpec') plots the diagram with color and linestyle 

%   specified and returns handles to the line objects created in H. 

% 

%   [VX,VY] = VORONOI(...) returns the vertices of the Voronoi 

%   edges in VX and VY so that plot(VX,VY,'-',X,Y,'.') creates the 

%   Voronoi diagram. 

% 

%   See also DELAUNAY, TRIMESH, TRISURF, DSEARCH, CONVHULL. 

%   Clay M. Thompson 7-15-95. 

%   Copyright (c) 1984-98 by The MathWorks, Inc. 

%   $Revision: 1.7 $  $Date: 1997/11/21 23:46:58 $ 

% V.2.0.0 - 00-FEB-2000 - V.Lobo. Changes Voronoi do draw bondaries 

% V.2.2.0 - 00-MAY-2002 - V.Lobo. Re-orders trainges for compatibility 

%                                 with MATLAB 6 

 

error(nargchk(3,5,nargin)); % 1 more parameter than Voronoi 

 

if nargin==3,      % 1 more parameter than 

Voronoi 

  tri = delaunay(x,y); 

  ls = ''; 

elseif nargin==4,     % 1 more parameter than Voronoi 

  if isstr(arg3), 

    tri = delaunay(x,y); 

    ls = arg3; 

  else 

    tri = arg3; 

    ls = ''; 

  end 

else 

  tri = arg3; 

  ls = arg4; 

end 
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% re-orient the triangles so that they are all clockwise 

xt = x(tri); yt=y(tri); 

ot = xt(:,1).*(yt(:,2)-yt(:,3)) + ... 

     xt(:,2).*(yt(:,3)-yt(:,1)) + ... 

     xt(:,3).*(yt(:,1)-yt(:,2)); 

bt = find(ot<0); 

tri(bt,[1 2]) = tri(bt,[2 1]); 

% ----------------------------- End reorientation 

 

n = prod(size(x)); 

ntri = size(tri,1); 

t = (1:ntri)'; 

T = sparse(tri,tri(:,[3 1 2]),t(:,ones(1,3)),n,n); % Triangle edge if T(i,j) 

    %NOTA: T is a nxn matrix, where every col/row intersection corresponds 

    %      to 0 if the points are adjacent in the triangulation 

 

E = (T & T').*T; % Voronoi edge if E(i,j)  

 

[i,j,v] = find(triu(E)); 

[i,j,vv] = find(triu(E')); 

 

c1 = circle(tri(v,:),x,y); 

c2 = circle(tri(vv,:),x,y); 

 

vx = [c1(:,1) c2(:,1)].'; 

vy = [c1(:,2) c2(:,2)].'; 

 

% we shall now eliminate the v and vv that belong to isoclass triangles 

 

[numlines dummy]=size(i); 

indexes=1:numlines; 

selection = ((class(i)~= class(j))'); 

selection = selection'.*indexes; 

selection = find(selection); 

 

vx = vx(:,selection); 

vy = vy(:,selection); 

 

if nargout<2 

  if isempty(ls), 

    co = get(gcf,'defaultaxescolororder'); 
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    h = plot(vx,vy,'-',x,y,'.','color',co(1,:)); 

  else 

    [l,c,m,msg] = colstyle(ls); error(msg) 

    if isempty(m), m = '.'; end 

    h = plot(vx,vy,ls,x,y,[c m]); 

  end 

  if ~ishold, 

    view(2), axis([min(x(:)) max(x(:)) min(y(:)) max(y(:))]) 

  end 

  if nargout==1, vxx = h; end 

else 

  vxx = vx; 

end 

 

function c = circle(tri,x,y) 

%CIRCLE Return center and radius for circumcircles 

%   C = CIRCLE(TRI,X,Y) returns a N-by-3 vector containing [xcenter(:) 

%   ycenter(:) radius(:)] for each triangle in TRI. 

 

% Reference: Watson, p32. 

x = x(:); y = y(:); 

 

x1 = x(tri(:,1)); x2 = x(tri(:,2)); x3 = x(tri(:,3)); 

y1 = y(tri(:,1)); y2 = y(tri(:,2)); y3 = y(tri(:,3)); 

 

% Set equation for center of each circumcircle:  

%    [a11 a12;a21 a22]*[x;y] = [b1;b2] * 0.5; 

 

a11 = x2-x1; a12 = y2-y1; 

a21 = x3-x1; a22 = y3-y1; 

 

b1 = a11 .* (x2+x1) + a12 .* (y2+y1); 

b2 = a21 .* (x3+x1) + a22 .* (y3+y1); 

 

% Solve the 2-by-2 equation explicitly 

idet = a11.*a22 - a21.*a12; 

 

% Add small random displacement to points that are either the same 

% or on a line. 

d = find(idet == 0); 

if ~isempty(d), % Add small random displacement to points 
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  delta = sqrt(eps); 

  x1(d) = x1(d) + delta*(rand(size(d))-0.5); 

  x2(d) = x2(d) + delta*(rand(size(d))-0.5); 

  x3(d) = x3(d) + delta*(rand(size(d))-0.5); 

  y1(d) = y1(d) + delta*(rand(size(d))-0.5); 

  y2(d) = y2(d) + delta*(rand(size(d))-0.5); 

  y3(d) = y3(d) + delta*(rand(size(d))-0.5); 

  a11 = x2-x1; a12 = y2-y1; 

  a21 = x3-x1; a22 = y3-y1; 

  b1 = a11 .* (x2+x1) + a12 .* (y2+y1); 

  b2 = a21 .* (x3+x1) + a22 .* (y3+y1); 

  idet = a11.*a22 - a21.*a12; 

end 

 

idet = 0.5 ./ idet; 

 

xcenter = ( a22.*b1 - a12.*b2) .* idet; 

ycenter = (-a21.*b1 + a11.*b2) .* idet; 

 

radius = (x1-xcenter).^2 + (y1-ycenter).^2; 

 

c = [xcenter ycenter radius]; 
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function class_plot(x,y,class) 

% class_plot(x,y,class) 

% 

% OBJECTIVE 

%   Plot prototypes of different classes using different colors and 

%   markers 

% 

% INPUT PARAMETERS 

%   x       - x coordinates of the patterns 

%   y       - y coordinates of the patterns 

%   class   - classes of the patterns 

% 

% OUTPUT PARAMETERS 

% 

% COMMENTS 

% 

% V.1.0.0 - 00-MAR-2000 - V.Lobo 

 

class_index=find(class==1); 

classx = x(class_index); 

classy = y(class_index); 

plot(classx,classy,'+b'); 

hold on 

 

class_index=find(class==2); 

classx = x(class_index); 

classy = y(class_index); 

plot(classx,classy,'xr'); 

 

class_index=find(class==3); 

classx = x(class_index); 

classy = y(class_index); 

plot(classx,classy,'oy'); 
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function [ c,cp ] = knn( t_data, t_label, x,  k) 

% [ c,cp ] = knn( t_data, t_label, x,  k) 

% 

% OBJECTIVE 

%   This function classifies a data patterns using a training set and 

%   the k-nn rule [Bishop 95] 

% 

% INPUT PARAMETERS 

%   t_data          Training data matrix with one pattern per column 

%   t_label         Row vector containg the labels of the T_DATA 

%   x               Colum vector with the sample to classify 

%   k               Number of neighbours to consider 

% 

% OUTPUT PARAMETERS 

%   c               Class of the sample 

%   cp              Row vector with the class probability for 

%                   each class 

% COMMENTS 

%   Classes are supposed to be labeled 1...N 

% 

% V.1.0.0 - 00-FEB-2000 - V.Lobo 

 

 

% Euclidean distances from x to all t_data patterns 

% 'distance' is a row vector with the discances 

distance  = dist( x',t_data); 

 

cp(max(t_label))=0; 

 

 

% Get the indexes 

for j=1:k                       % do it K times 

  [tmp,i]=min(distance);        % i is the index of the NNeighbour 

  cp( t_label(i) )=cp( t_label(i) )+1; 

  distance(i)=inf;              % don't use this distance again 

end; 

 

[tmp,c]=max(cp);                % choose class 

cp=cp./k; 

return; 
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function [ c ] = knn_mat( t_data, t_label, x ) 

% [ c ] = knn( t_data, t_label, x ) 

% 

% OBJECTIVE 

%   This function classifies a matrix of data patterns using a training 

%   set and the 1-nn rule [Bishop 95]. 

% 

% INPUT PARAMETERS 

%   t_data          Training data matrix with one pattern per column 

%   t_label         Row vector containg the labels of the t_data 

%   x               Matrix with the patterns to classify (1 per column) 

% 

% OUTPUT PARAMETERS 

%   c               Row vector with the classes of the patterns in x 

%   cp              Row vector with the class probability for 

%                   each class 

% COMMENTS 

%   Classes are supposed to be labeled 1...N 

% 

% V.1.0.0 - 00-FEB-2000 - V.Lobo 

 

% Euclidean distances from x to all t_data patterns 

% 'distance' is a row vector with the discances 

distance  = dist( x',t_data); 

[values,index]=min(distance,[],2); 

c=t_label(index); 

return; 
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function confusion=confusionMatrix( correct_class, given_class, num_classes ) 

% confusion=confusionMatrix( correct_class, given_class, num_classes ) 

% 

% OBJECTIVE 

%   To compute the confusion matrix (Fukunaga 1990), that shows which patterns 

%   were correclty classified (in the diagonal), and between which classes the 

%   errors occured 

% 

% INPUT PARAMETERS 

%   correct_class   - vector with the correct class of each pattern 

%   given_class     - vector with the class given by the classifier 

%   num_classes     - number of classes present 

% 

% COMMENTS 

%   nil 

% 

% V 1.0.0 - 00-000-1999 - V.Lobo  

% V 1.1.0 - 22-MAY-2002 - V.Lobo  

 

[tmp num_patterns]=size(correct_class); 

confusion=zeros(num_classes); 

for k=1:num_patterns 

   m=correct_class(k); 

   index=given_class(k)-correct_class(k); 

   confusion(m,m+index)=confusion(m,m+index)+1; 

  % k 

end; 
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function outclass=selfClassify( dataset,inclass,k ) 

% outclass=SelfClassify( dataset,inclass,k ) 

% 

% OBJECTIVE 

%   This Function will classify every pattern in DATASET 

%   using the knn rule (with K neighbors), using as training 

%   set all remaining patterns of DATASET. The correct class 

%   for each pattern must be passed in INCLASS, and the 

%   function returns the vector OUTCLASS with the classifications 

% 

% INPUT PARAMETERS 

%   dataset         Training data matrix with one pattern per column 

%   inclass         Row vector containg the labels of "dataset" 

%   k               Number of neighbours to consider 

% 

% OUTPUT PARAMETERS 

%   outclass        Row vector with the given classes 

% 

% COMMENTS 

%   Classes are supposed to be labeled 1...N 

% 

% V.1.0.0 - 00-JUN-2000 - V.Lobo 

 

[nfeatures,npatterns]=size(dataset); 

 

[ c,cp ] = knn( dataset(:,2:npatterns), inclass(2:npatterns), dataset(:,1), 

k); 

outclass(1)=c; 

 

for a=2:npatterns-1 

   xd=[dataset(:,1:a-1) dataset(:,a+1:npatterns)]; 

   xc=[inclass(1:a-1) inclass(a+1:npatterns)]; 

   [ c,cp ] = knn( xd, xc, dataset(:,a), k); 

   outclass(a)=c; 

   a 

   disp(c); 

end 

 

[ c,cp ] = knn( dataset(:,1:npatterns-1), inclass(1:npatterns-1), 

dataset(:,npatterns), k); 

outclass(npatterns)=c; 
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function splitData=splitData(numParts,class) 

% splitData=splitData(numParts,class) 

% 

% OBEJCTIVE: 

%   Split a given dataset into small sets for cross-validation. 

% 

% INPUT PARAMETERS 

%   numParts    Number of parts into which the data set is to be partitioned 

% 

%   class       A ROW vector, with the class of the pattern 

% 

% OUTPUT PARAMETERS 

%   splitData   A matrix with "numParts" Columns, corresponding to each of the 

%               sets. The values in the matrix are the intexes into the 

%               original "data" and "class" sets. 

% 

%                

% V. 1.0.0  V.Lobo, May 2002 

 

numPatterns=length(class);      % Find the total number of patterns 

indexes=1:numPatterns;          % Identify each pattern by it's index num. 

sortNum=rand(1,numPatterns);    % Build a random sort index 

classes=unique(class);          % Find which classes exist 

numClasses=max(classes);        % Find how many classes exist 

classNumbers=hist(class,numClasses);         % find how many patterns per 

class 

classNumbers=floor(classNumbers/numParts); % find how many pat/class per part 

patternsPerPart=sum(classNumbers);           % find the total n.patt. per part 

splitData=zeros(patternsPerPart,numParts);   % initialize the splitData Matrix 

 

 

for i=classes' 

    thisClassIndexes=find(class==i);     % Select the indexes that belong to C 

    sortmatrix=[ sortNum(thisClassIndexes)' indexes(thisClassIndexes)']; 

    sortmatrix=sortrows(sortmatrix); 

    stopIndex=sum(classNumbers(1:i)); 

    startIndex=stopIndex-classNumbers(i)+1; 

    for part=1:numParts 

        fst=(part-1)*classNumbers(i)+1; 

        lst=part*classNumbers(i); 

        splitData(startIndex:stopIndex,part)=... 
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            sortmatrix(fst:lst,2); 

    end; 

end; 

 

return; 
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function [train,trainClass,test,testClass]=... 

    buildTrainTestSet(data,class,splitData,k) 

% [train,trainClass,test,testClass]=buildTrainTestSet(data,class,splitData,k) 

% 

% OBEJCTIVE: 

%   Build a training and test set, based on the information contained in 

%   the matrix splitData (produced by the routine SplitData) 

% 

% INPUT PARAMETERS 

%   data        Matrix with one pattern per COLUMN 

%   class       ROW vector with the class of each patterns 

%   k           the number of the train/test set. Must be one of the rows 

%               of the matrix splitData 

% 

% 

% OUTPUT PARAMETERS 

%   train    

%   test 

% 

%                

% V. 1.0.0  V.Lobo, May 2002 

 

 

train=data(:,splitData(:,k)); 

trainClass=class(splitData(:,k)); 

tmpMat=removeCol(splitData,k); 

[x,y]=size(tmpMat); 

numElements=x*y; 

tmpMat=reshape(tmpMat,[1 numElements]);  

test=data(:,tmpMat); 

testClass=class(tmpMat); 

 

return 
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function [data,class] = read_koh(filename) 

%   [data,class] = read_koh(filename) 

% 

% OBJECTIVE 

%   Read an ASCII file in KOHONEN format 

%   This function will read an ASCII file using KOHONEN format [Kohonen 93] 

% 

% INPUT PARAMETERS 

%   filename    String with the name of the file to read 

% 

% OUTPUT PARAMETERS 

%   y           Matlab matrix with the data in the file 

% 

% COMMENTS 

%   Still is not universal, does not read classes, etc,etc 

% 

% V.1.0.0 - 00-FEB-2000 - V.Lobo 

 

 fin=fopen(filename,'r'); 

  

                    % read first line 

x = fgetl(fin); 

num_colunas = sscanf(x,'%g',1); 

data = []; 

class = []; 

 

while ~feof(fin) 

  x = fgetl(fin); 

  if x(1)=='#' 

      break; 

  end; 

  [ y, count, errmsg, nextindex ] = sscanf(x,'%g',num_colunas); 

  if count==num_colunas 

      data = [data ; y']; 

      x=x(nextindex:end); 

      [label,count,errmsg,nextindex ] = sscanf(x,'%g',1); 

      if count==1 

          class = [class ; label ]; 

      else 

          class = [class ; 0 ]; 

      end; 
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  end; 

end; 

  

fclose(fin); 
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function write_koh(filename,data,class) 

%   write_koh(filename,data,class) 

% 

% OBJECTIVE 

%   Write an ASCII file in KOHONEN format 

%   This function will write an ASCII file using KOHONEN format [Kohonen 93] 

% 

% INPUT PARAMETERS 

%   filename  String with the name of the file to write 

%   data      Matrix with one pattern per row 

%   class     Class (label) given to each pattern 

% 

% OUTPUT PARAMETERS 

%   nil 

% 

% COMMENTS 

% 

% V.1.0.0 - 00-FEB-2000 - V.Lobo 

 

[num_patt,num_features]=size(data); 

 

fout=fopen(filename,'w'); 

fprintf(fout,'%d\n',num_features); 

for i=1:num_patt 

    fprintf(fout,'%f ',data(i,:)); 

    fprintf(fout,'%d\n',class(i)); 

end; 

fclose(fout); 
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function data=remove_col(data,index) 

% data=remove_col(data,index) 

% 

% OBJECTIVE 

%   This function will remove a single column from a matrix 

% 

% INPUT PARAMETERS 

%   data        - Matrix from where the column is removed 

%   index       - Index of the column to remove 

% 

% OUTPUT PARAMETERS 

%   data        - Output matrix 

%                   each class 

% COMMENTS 

% 

% V.1.0.0 - 00-MAR-2000 - V.Lobo 

 

[num_row,num_col]=size(data); 

if index==1 

   data=data(:,2:end); 

else 

   if index==num_col 

      data=data(:,1:index-1); 

   else 

      data=[data(:,1:index-1) data(:,index+1:end)]; 

   end; 

end; 

return; 
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function data=generate_2D_uniform_data(x1,x2,y1,y2,n) 

% data=generate_2D_uniform_data(x1,x2,y1,y2,n) 

% 

% OBJECTIVE 

%   Generate 2-dimensional data with a uniform distribution  

%   in a specified area 

% 

% INPUT PARAMETERS 

%   x1,x2,y1,y2     - x and y coordinates of the rectange where the 

%                     data is to be generated 

%   n               - number od data points 

% 

% OUTPUT PARAMETERS 

%   data        - Output matrix, with one poiont per column 

%                   

% COMMENTS 

% 

% V.1.0.0 - 00-MAR-2000 - V.Lobo 

 

data=rand(2,n); 

data(1,:)=data(1,:)*(x2-x1)+x1; 

data(2,:)=data(2,:)*(y2-y1)+y1; 
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function [data,class]=generate_double_f_validation(totalpoints) 

% [data,class]=generate_double_f_validation(totalpoints) 

% 

% OBJECTIVE 

%   Generate 2-dimensional data for Hart's doube F problem 

% 

% INPUT PARAMETERS 

%   totalpoints - Total number of data patterns. Thus must be an 

%                 even number, and prefably devidable by 12 

% 

% OUTPUT PARAMETERS 

%   data        - Data matrix, with one pattern per column 

%   class       - Class of the patterns contain in "data" 

%                   

% COMMENTS 

% 

% V.1.0.0 - 00-MAR-2000 - V.Lobo% 

 

error(nargchk(1,1,nargin)); 

 

nsmall = floor(totalpoints/12);  

nlarge = floor(totalpoints/6); 

nlast = (totalpoints/2) - 2*nsmall-nlarge; 

 

a1=generate_2D_uniform_data(0,7.5,0,5,nsmall); 

a2=generate_2D_uniform_data(0,15,5,10,nlarge); 

a3=generate_2D_uniform_data(0,7.5,10,15,nsmall); 

a4=generate_2D_uniform_data(0,15,15,20,nlast); 

 

b1=generate_2D_uniform_data(7.5,22.5,0,5,nlarge); 

b2=generate_2D_uniform_data(15,22.5,5,10,nsmall); 

b3=generate_2D_uniform_data(7.5,22.5,10,15,nlast); 

b4=generate_2D_uniform_data(15,22.5,15,20,nsmall); 

 

 

data=[a1 a2 a3 a4 b1 b2 b3 b4]; 

class = [ones(1,totalpoints/2) 2*ones(1,totalpoints/2)]; 

 

return 
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function [data,class]=generate_straight(totalpoints) 

% [data,class]=generate_straight(totalpoints) 

% 

% OBJECTIVE 

%   Generate 2-dimensional data for the straight line problem 

% 

% INPUT PARAMETERS 

%   totalpoints - Total number of data patterns. Thus must be an 

%                 even number. 

% 

% OUTPUT PARAMETERS 

%   data        - Data matrix, with one pattern per column 

%   class       - Class of the patterns contain in "data" 

%                   

% COMMENTS 

% 

% V.1.0.0 - 00-AUG-2002 - V.Lobo 

 

error(nargchk(1,1,nargin)); 

 

nsmall = floor(totalpoints/12);  

nlarge = floor(totalpoints/6); 

nlast = (totalpoints/2) - 2*nsmall-nlarge; 

 

a1=generate_2D_uniform_data(0,0.5,0,1,totalpoints/2); 

 

b1=generate_2D_uniform_data(0.5,1,0,1,totalpoints/2); 

 

data=[a1 b1 ]; 

class = [ones(1,totalpoints/2) 2*ones(1,totalpoints/2)]; 

 

return 
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function spec=spectra_wavfile(wavname,npontos,num_average,pontosUteis,useLog) 

% spec=spectra_wavfile(wavname,npontos,num_average,pontosUteis,log) 

% 

% OBJECTIVE 

%   Calculate the spectra of a signal contained a WAV file 

% 

% INPUT PARAMETERS 

% 

%   wavname     - Ascii text with the name of the wav file to open. The full 

%                   name must be given, including the .wav extension. 

%   npontos     - Number of points that will be used to calculate each spectra 

%   num_average - Number of raw spectra that will be averaged to produce a 

final 

%                   spectrum. There will be a 50% overlap between them. 

%   pontosUteis - Number of points of the spectra that will be output. Only 

the 

%                   first "pontosUteis" will be used, and the higher 

frequencies 

%                   will be ignored. This is used to compensate for bad analog 

%                   filtering. 

%   useLog      - LOGARITHM, set to "0" for linear amplitude, or "1" to 

produce a spectra 

%                   where the values are equal to LOG(amplitude+1) 

% 

% OUTPUT PARAMETERS 

% 

%   spec        - Spectra of the signal. The number of columns will be equal 

to 

%                   "pontosUteis", and the number of rows will be as many as 

can 

%                   be extracted from the file. 

% 

% COMMENTS 

%   The power is normalized to the number of bins (so that the average power 

per bin is 1 

%   The spectra will always be positive, since 1 is added when calculating 

LOGARITHMS 

% 

% USES 

%   mHamming 

% 
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% V 1.0.0 - 00-000-2000 - V.Lobo  

% V 1.0.0 - 00-MAY-2002 - V.Lobo  

 

npontos2=npontos/2; 

nHamming=mHamming(npontos); 

 

wavsize=wavread(wavname,'size'); 

ntotal=wavsize(1);                      % Total number of samples in file 

 

num_spectra=floor(ntotal/npontos2)-1; 

num_patterns=floor(num_spectra/num_average); 

spec=zeros(num_patterns,pontosUteis); 

tmp_spec=zeros(num_average,pontosUteis); 

iter=1; 

for iter_pattern=1:num_patterns 

    for i=1:num_average 

        tmpt=wavread(wavname,[ (iter-1)*npontos2+1 (iter+1)*npontos2 ])'; 

        tmpf=abs(fft((tmpt-mean(tmpt)).*nHamming)); 

        tmpf=tmpf(1:pontosUteis);       % Extract only the first points 

        tmpf=tmpf./mean(tmpf);          % Normalize power to n.of bins 

        if useLog 

            tmpf=log(tmpf+1);           % Calculate the LOG (+1 to avoid neg) 

        end; 

        tmp_spec(i,:)=tmpf;              

        iter=iter+1; 

    end; 

    spec(iter_pattern,:)=mean(tmp_spec); 

end; 
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function window=mHamming(N) 

% window=hamming(N) 

% 

% OBJECTIVE 

%   Calculate Hamming's window 

% 

% INPUT PARAMETERS 

%   N   - Number of points (must be even) 

% 

% OUTPUT PARAMETERS 

%   window  - Hamming's window 

%                   

% COMMENTS 

%   This version implements the correct Hamming window 

% 

% V.1.0.0 - 25-APR-1996 - P.Monica de Oliveira 

 

window=0.54-0.46*cos(2*pi*(0:N-1)/N); 
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function hausdorff=hausdorff( A, B ) 

% hausdorff=hausdorff( A, B ); 

% 

% OBJECTIVE 

%   Calculate the Hausdorff distance between two sets of points 

% 

% INPUT PARAMETERS 

%   A,B         - Vectors with data 

% 

% OUTPUT PARAMETERS 

%   hausdorff   - The Hausdorff distance 

%                   

% COMMENTS 

% 

% V.1.0.0 - 00-AUG-1998 - V.Lobo 

 

max_i = max( size(A));  % Find the dimension of the vectors 

dist_vectorA = zeros(1,max_i); % Initialize parital distance vector 

dist_vectorB = zeros(1,max_i);  % Initialize parital distance vector 

 

min_distA = zeros(1,max_i); % Initialize the minimum dist.vector 

min_distB = zeros(1,max_i);     % Initialize the minimum dist.vector 

 

for i=1 : max_i 

 for j=1 :  max_i 

   dist_vectorA(j) = sqrt( (A(i)-B(j)).^2 + (i-j).^2 ) ; 

          dist_vectorB(j) = sqrt( (B(i)-A(j)).^2 + (i-j).^2 ) ; 

    end; 

 min_distA(i) = min (dist_vectorA ); 

        min_distB(i) = min (dist_vectorB ); 

 end; 

 

hausdorff = max( max(min_distA), max(min_distB) ); 
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function primes=findPrimes(inmat) 

% primes=findPrimes(inmat) - Finds Prime implicants 

%  

% OBECTIVE: 

%   Given a number of minterms of a Boolean function, this routine 

%   calculates all prime implicants of that function 

%  

% INPUT PARAMETERS: 

%   inmat       Matrix with one minterm per line. Each row corresponds 

%               to a different variable, which must have the value 1 or 0 

% 

% OUTPUT PARAMETERS: 

%   outmat      Matrix with one implicant per line.Variables that 

%               are not contained in the implicant (that are Don't 

%               cares) are represenented by NAN (not-a-number). 

%               Thus, this matrix has the same number of columns as inmat 

%                

% USES: 

%   SolveImplicant, Dual3Single,DistHamming, & common Matlab routines. 

% 

% V.1.0.0 - 00-APR-2002 - V.Lobo 

 

finish=0; 

inmatc=ones(size(inmat)); 

 

primes=[]; 

primesc=[]; 

 

while not(finish) 

    [o, oc, n, nc]=SolveImplicant(inmat,inmatc); 

    primes = [ primes ; o ]; 

    primesc= [ primesc ; oc ]; 

    if n==[] 

        finish=1; 

    else 

        inmat=n; 

        inmatc=nc; 

    end; 

end; 

 

primes=Dual2Single( primes, primesc ); 
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return 

 

function [outmat,outmatc,nextmat, nextmatc]=SolveImplicant(inmat,inmatc) 

% [outmat,outmatc,nextmat, nextmatc]=SolveImplicant(inmat,inmatc) 

% 

% OBJECTIVE 

%   Given a matrix with implicants, try to form larger implicants, and return 

%   those implicants, together with another matrix with the implicants that 

%   cannot be simplified. This implements the QUINE-McCLUSKY method of 

%   simplification 

% 

% INPUT PARAMETERS 

%   inmat   matrix where each row is an implicant. Each column corresponds 

%           to a different boolean variable. If a variable is not specified, 

%           (i.e. if it is a don't care), that column should contain a 0, 

%           and the corresponding element of the companion matrix inmatc 

should 

%           also have a 0. 

%   inmatc  companion matrix to inmat, that contains 1 for each column where 

%           the value of inmat "counts" ( it is CARE as opposed do a don't 

care) 

% 

% OUTPUT PARAMETERS 

%   outmat  matrix with the implicants that cannot be solved further 

%   outmatc companion matrix to outmat, indicating which variables are to 

%           be considered (i.e., are NOT don't cares) 

%   nextmat matrix with the simplified implicants, that may be passed again 

%           to this routine to attempt further simplification 

% 

% by V.Lobo, April 2002, SDSU 

 

[implicants,x]=size(inmat); 

 

nextmat=[]; 

nextmatc=[]; 

prime=ones(1,implicants); 

 

for i=1:implicants-1 

    for j=i+1:implicants 

        if inmatc(i,:)==inmatc(j,:); 
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            %if i and j have the same don't care 

            d=DistHamming(inmat(i,:),inmat(j,:)); 

            if d==1     % now we'll build a new implicant 

                newImplicant=inmat(i,:); 

                newImplicantc=inmatc(i,:); 

                toRemove=find(xor(inmat(i,:),inmat(j,:))); 

                newImplicant(toRemove)=0; 

                newImplicantc(toRemove)=0; 

                nextmat=  [nextmat  ; newImplicant]; 

                nextmatc= [nextmatc ; newImplicantc]; 

                prime(j)=0; 

                prime(i)=0;  

            end; 

        end; 

    end; 

end; 

[x,i,j]=unique([nextmat nextmatc],'rows'); 

nextmat=nextmat(i,:); 

nextmatc=nextmatc(i,:); 

outmat=inmat(find(prime),:); 

outmatc=inmatc(find(prime),:); 

 

return; 

 

function outmat=Dual2Single(inmat,inmatc) 

% outmat=Dual2Single(inmat,inmatc) 

%  

% OBJECTIVE 

%   Convert between the two formats used to represent implicants 

%   of Boolean functions. In both formats, each implicant is 

%   represented by a row, and each column corresponds to a different 

%   variable.In the SINGLE format,each element is a 1, a 0 or a NAN 

%   (matlab's Not-A-Number) to represent don't care (an indetermined 

%   value).In the double format,the matrix representing the implicant 

%   has only 1 and 0, and when the value is don't care it uses also a 

%   0. To distinguish between these two values, another, so called 

%   COMPANION MATRIX (whose name ends with a C) is used that has 1 

%   when the corresponding value in the implicant matrix is to be taken 

%   as 1 or 0, and 0 when it is a "Don't care". 

% 

% INPUT PARAMETERS 
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%   inmat   matrix where each row is an implicant. Each column corresponds 

%           to a different boolean variable. If a variable is not specified, 

%           (i.e. if it is a don't care), that column should contain a 0, 

%           and the corresponding element of the companion matrix inmatc 

should 

%           also have a 0. 

%   inmatc  companion matrix to inmat, that contains 1 for each column where 

%           the value of inmat "counts" ( it is CARE as opposed do a don't 

care) 

% 

% OUTPUT PARAMETERS 

%   outmat      Matrix with one implicant per line.Variables that 

%               are not contained in the implicant (that are Don't 

%               cares) are represenented by NAN (not-a-number). 

%               Thus, this matrix has the same number of columns as inmat  

% 

% by V.Lobo, April 2002, SDSU 

 

outmat=inmat; 

outmat(find(inmatc==0))=nan;
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